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The relativistic plasma jets from a misaligned black hole-accretion disk system will not be axially symmetric.
Here we analyze nonaxisymmetric, stationary, translation invariant jets in the force-free approximation where
the field energy dominates the particle energy. We derive a stream equation for these configurations involving
the flux function ψ for the transverse magnetic field, the linear velocity v(ψ) of field lines along the jet, and the
longitudinal magnetic fieldBz(ψ). The equations can be completely solved when |v| = 1, and when |v| < 1 the
problem can be reduced to the pure magnetic case v = 0 by a “field line dependent boost”. We also find a large
class of nonaxisymmetric solutions with arbitrary dependence on the longitudinal retarded time. A subclass of
these constitutes a novel type of jet that has vanishing electromagnetic pressure 1

2
(B2 − E2) and requires no

external pressure for confinement. We prove that such self-confinement is impossible when B2 > E2. Finally,
we write down specific solutions approximating numerical results for the nonaxisymmetric jet produced by a
spinning black hole in an external, misaligned magnetic field.

I. INTRODUCTION

Plasma jets launched by spinning stars and black holes are
ubiquitous over multiple scales in the universe, yet their in-
ternal structure and the mechanisms that launch them remain
only poorly understood. Part of the challenge arises from ob-
servational limitations, and part from the dynamical complex-
ity of the systems. But the universality of the phenomenon
suggests the possibility that some relatively simple physics is
at play, perhaps obscured by the complex details of individual
cases.

A gross simplification that may nevertheless capture some
essential physics is the force-free approximation, in which it
is assumed that the stress-energy tensor for the electromag-
netic field is conserved since the 4-momentum exchanged
with charges is negligible compared with that stored in the
field. The field strength in a force-free plasma is derived from
a potential as usual, and satisfies the nonlinear equation ex-
pressing the vanishing of the 4-force on the 4-current. Force-
free relativistic jets have been considered in a number of pre-
vious studies (e.g. [1–3] and references therein).

The simplest setting for jet studies is to assume stationarity,
axisymmetry, and translational symmetry along the symmetry
axis. This describes steady jets whose width does not change
appreciably over their length, such as seen in pictor A and
some other FR II type jets. Relaxing the assumption of trans-
lational symmetry allows the jet to expand appreciably over
its length, as seen in FR I type jets such as the famous M87.
With all three symmetries the equations can be completely
integrated, and with only stationarity and axisymmetry they
can be reduced to a nonlinear stream equation using the Grad-
Shafranov approach. Previous analytic studies of jets have
focused on these two cases.

In this paper we will consider a third case, where we
relax the assumption of axisymmetry, retaining stationarity
and translation invariance. This describes non-expanding jets
whose internal fields are nonaxisymmetric. Such nonaxisym-
metries are natural when the jet launching region is not ax-
isymmetric, such as when a spinning black hole is misaligned

relative to its accretion disk. Some recent observations of
Faraday rotation gradients in jets (Fig. 2c of Ref. [4]) sug-
gest distinct regions of different magnetic structure within the
jet, as would be the case with nonaxisymmetric fields.

Previous studies of nonaxisymmetric jets have been numer-
ical. In the simplified case of a spinning black hole in a mis-
aligned external magnetic field, Ref. [5] found a rather inter-
esting nonaxisymmetric jet structure, with two opposing heli-
cal structures within a single jet region (see their Figs. 5 and
6 and our Fig. 1(b)). Remarkably, we can semi-quantitatively
match the structure of the jet to an exact solution (Sec. V and
Fig. 1), which effectively extends the size of the simulation
box to infinity. The exact solution can serve as a basis for fur-
ther investigation, for example of stability over large distances
or synchrotron emission from particles loaded onto the jet. In
general, we hope that this kind of matching will allow efficient
and detailed study of the structures that emerge in simulations,
bridging the gap between numerical and analytical work, and
ultimately connecting to observation.

Our main tool for studying nonaxisymmetric jets will be a
Grad-Shafranov formalism based on the time and space trans-
lation symmetries. We will derive an equation (cf. (21)) for
the stream function of the magnetic field transverse to the jet,
the analog of the pulsar equation for the poloidal field lines
of a stationary, axsiymmetric magnetosphere. Appearing in
this equation are two invariants along the transverse magnetic
field lines, the longitudinal magnetic field Bz and the longitu-
dinal velocity v of field lines (analogous to the toroidal field
and field angular velocity, respectively). The case v = 0 is the
well-studied case of a pure magnetic field, and if v is a con-
stant less than the speed of light 1, then the field is just a boost
of a pure magnetic field. Surprisingly, we find (cf. Sec. III B
and App. D) that even when |v| < 1 is not constant, every
solution can still be related to a pure magnetic solution by a
“field line dependent boost”. (A similar construction holds for
|v| > 1, which admits magnetically dominated solutions for
sufficiently large Bz .) The pure magnetic solutions (“force-
free magnetic fields”) have been extensively studied as mag-
netic flux rope models in solar and planetary magnetosheres
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(e.g., [6]). This analysis shows how to promote any such rope
to an infinite family of energy-carrying jets, in general nonax-
isymmetric.

When v = 1 (cf. Sec. III A) the boost cannot be carried
out and the solutions can have qualitatively different proper-
ties, such as the ability to self-confine (see next paragraph).
In this case the equations are straightforwardly solved, with
Bz = const and any stream function ψ providing an exact
solution. Furthermore, the solutions may be generalized to
include in the stream function arbitrary dependence on the re-
tarded time t − z as well, which is the cylindrical analog of
the general class of null-current solutions found in [7] and [8].
A subset of these solutions was actually found a century ago
by Bateman [9, 10], who was attempting to develop a theory
of charge-carrying radiation, and unaware of any plasma ap-
plication. We follow Bateman in calling these solutions “light
darts”.

The intuition that magnetic fields possess positive pressure
suggests that a force-free jet cannot “self-confine” and in-
stead must held in by an external medium, such as a gas or
an ambient magnetic field. The electromagnetic virial theo-
rem precludes stationary, compact three-dimensional blobs of
force-free plasma (cf. App. A), but the case of confinement in
only two directions, relevant to jets, is more subtle. We find
(cf. Sec. IV) that force-free jets can self-confine if the field
strength is allowed to become null, F 2 ∝ (B2 − E2) = 0.
This can be understood in terms of pressure balance if one
regards |F 2|/4 as the electromagnetic pressure, which van-
ishes in the null case. We give a simple solution representing
a self-confined jet of this nature. We prove that when mag-
netic domination is assumed, there are no jets (with our sym-
metries) compactly supported in transverse directions.

We make use of the formalism introduced by Uchida
[11, 12], and further developed in [13], in which the field
strength tensor is described by a 2-form F = dφ1 ∧ dφ2,
the wedge product of differentials of a pair of scalar fields.
This methodology is extraordinarily efficient. With the ex-
ception of the discussion of the virial theorem in the appendix,
we restrict to flat spacetime. We use Minkowski coordinates
t, x, y, z, with signature (−+++) and orientation defined by
the volume element ε = dt∧ dx∧ dy ∧ dz. Greek indices run
over all coordinates, lower-case Latin indices run over spa-
tial coordinates x, y, z, and upper-case Latin indices run over
the transverse coordinates x, y. For the transverse space we
also use polar coordinates r, ϕ. Partial derivatives are some-
times denoted with a subscript comma, e.g. ψ,r ≡ ∂ψ/∂r.
The “square” of a tensor is formed using the spacetime met-
ric, e.g. F 2 = gαµgβνFαβFµν . The notation U · F denotes
the contraction of a vector U with the first index of the form
F , in tensor component notation UαFαβ . We use Heaviside-
Lorentz units, and set c = 1.

II. DEGENERATE, STATIONARY, TRANSLATION
INVARIANT FIELDS

Force-free fields are defined by the condition that the
Lorentz force density j ·F = 0 vanishes, where j is the current

4-vector and F is the electromagnetic field strength 2-form. If
j 6= 0 this implies that F is degenerate, i.e. it is the wedge
product of two 1-forms. (The same property holds in ideal
MHD, where the electric field vanishes in the frame of the
plasma 4-velocity U , i.e. U ·F = 0. Degeneracy is equivalent
to E ·B = 0.) Faraday’s law1 dF = 0 then implies that any
degenerate electromagnetic field may be expressed as

F = dφ1 ∧ dφ2 (1)

in terms of “Euler Potentials” φ1 and φ2. In the magnetically
dominated (F 2 > 0) case the surfaces on which φ1 and φ2 are
both constant may be thought of as worldsheets of magnetic
field lines [11, 13, 14]. We call these surfaces “field sheets”.
The intersection of a field sheet with a constant-t hypersurface
is an ordinary lab frame magnetic field line. A frame in which
the electric field vanishes at a point has 4-velocity tangent to
the field sheet there.

When symmetries are present, the Euler potentials can be
assumed without loss of generality to take restricted forms
[12, 13]. Here we are interested in the case of two symmetries,
time and space translation, generated by commuting vector
fields ∂t and ∂z . Faraday’s law then implies that the longitu-
dinal electric field Ftz is constant, and we will consider the
case where it is zero. We also restrict attention here to config-
urations with nonzero transverse magnetic field (i.e., Fxz and
Fyz are not both vanishing).2 For such fields we may choose
the potentials to have the form

φ1 = ψ(x, y), φ2 = ψ2(x, y) + z − v(ψ)t. (2)

A magnetic field line with φ1 = ψ = const moves in the z-
direction with velocity v(ψ). We refer to v as the velocity of
the field line. This is analogous to the more familiar angular
velocity of field lines in the stationary axisymmetric case. The
field strength (1) associated with (2) is

F = Bzdx ∧ dy + dψ ∧ (dz − v dt), (3)

where the longitudinal magnetic field Bz is related to the po-
tentials by Bzdx ∧ dy = dψ ∧ dψ2.

If v = 0 then (3) is a purely magnetic field. If v is con-
stant and v2 < 1, then one may eliminate v by boosting into
the frame moving with speed v in the z-direction, in which
case the field is again purely magnetic. In fact, even for non-
constant v2 < 1 one may eliminate v by ψ-dependent boost,
as described in Sec. III B and App. D below. If v2 > 1 then a
similar change of variables can be made, with suitable adjust-
ments for the fact that 1− v2 < 0. In the special case v2 = 1
the variable change cannot be carried out, but in some sense v
is already eliminated. This case is of considerable interest to
us in this paper.

1 The time-space components of dF = 0 correspond to ∂tB+∇×E = 0,
while the purely spatial component corresponds to∇ ·B = 0.

2 Configurations with zero transverse magnetic field have no z-term in φ2
(2). These can be obtained by setting v = const and taking the limit
v →∞ with vψ and Bz held fixed.
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A. General properties of translation invariant jets

Given a curve C in the x-y plane, the magnetic flux through
the surface C × ∆z is ∆ψ∆z, where ∆ψ =

∫
C dψ is the

change of ψ along C. We may always shift ψ by a constant
without affecting the field (3), and we will take ψ to vanish
at the origin. This makes ψ the “flux function” the the sense
that ψ(x, y) gives the magnetic flux (per unit length along z)
through any curve connecting (x, y) to the origin. The invari-
ant F 2 = 2(B2 − E2) is given by

1
2F

2 = B2
z + (1− v2)(∇ψ)2. (4)

The field is magnetically dominated if B2
z > (v2 − 1)(∇ψ)2,

which always holds if v2 < 1. The electric and magnetic field
components are given by Bz and

Bx = −Ey/v = ψ,y (5)
By = Ex/v = −ψ,x (6)
Ez = 0, (7)

or in vector language as B = ∇ψ × ẑ + Bzẑ and E =
−v∇ψ = −vẑ×B. The “drift velocity” vD = E ×B/|B|2
is

vD =
v

B2
z + (∇ψ)2

(
−Bzψ,y x̂+Bzψ,x ŷ+(∇ψ)2 ẑ

)
. (8)

This is the smallest velocity, measured relative to ∂t, of a
frame in which the electric field vanishes (e.g., [13]). The
drift velocity is always less than or equal to v,

vD/v = BT /B, (9)

where BT is the magnitude of the transverse field.
To find the current we first evaluate the dual of (3),

∗F = Bzdt ∧ dz + ?dψ ∧ (dt− vdz), (10)

where ? indicates duality on the transverse (xy) subspace.
(The derivation makes use of Eq. (A13) of [13].) The current
3-form J = d ∗ F is

J = dBz∧dt∧dz+[(∇2ψ) dt−∇·(v∇ψ) dz]∧dx∧dy. (11)

In particular, the charge density jt and current density jz in
the z-direction are

jt = −∇ · (v∇ψ) (12)

jz = −∇2ψ. (13)

(These are the the coefficients in J of ∂t ·ε = dx∧dy∧dz and
∂z · ε = −dt∧ dx∧ dy.) The charge density is the divergence
of the electric field E = −v∇ψ. The transverse currents are

jx = ∂yBz (14)
jy = −∂xBz. (15)

The energy, linear z-momentum, and angular z-momentum
current 3-forms can be expressed as the Noether current Jξ =

−(ξ ·F )∧∗F + 1
4F

2ξ ·ε, where ξ is the appropriate spacetime
Killing vector, respectively ∂t, −∂z , and −∂ϕ = −x∂y + y∂x
(cf. Appendix E of [13]). Using the above expressions we find
for the corresponding fluxes per unit time per unit area in the
z-direction,

energy flux = v(∇ψ)2 (16)

Pz-flux = 1
2 (1 + v2)(∇ψ)2 − 1

2B
2
z (17)

Lz-flux = Bzrψ,r. (18)

These results could of course instead be obtained using the
energy-momentum tensor.

III. STREAM EQUATION AND SOLUTIONS

So far we have assumed only that the field F is degenerate,
which holds either in the force-free setting or in ideal MHD.
Now we impose the force-free condition, which may be ex-
pressed as [13]

dφ1 ∧ J = 0 = dφ2 ∧ J. (19)

For the case under consideration, the first force-free condition
is dψ ∧ J = 0, which is equivalent to the statement that the 4-
force on the current j · F has vanishing z component, i.e. that
the field linear momentum density in the z direction is con-
served. If v(ψ) 6= 0 it is also equivalent to the vanishing of the
t component, i.e. to conservation the field energy density [see
Sec. 7.3 of [13] for explanation of the analogous statements
in the axisymmetric case]. Since the transverse subspace is
only two dimensional, the first force-free condition is simply
dψ ∧ dBz = 0, which implies

Bz = Bz(ψ). (20)

That is, the longitudinal field is constant on transverse field
lines.

The second force-free condition dφ2∧d∗F = 0 then yields
the stream (Grad-Shafranov) equation for ψ,

(1− v2)∇2ψ − vv′(∇ψ)2 +BzB
′
z = 0, (21)

where prime denotes a derivative with respect to ψ. If v2 = 1
everywhere then the general solution can be immediately writ-
ten down, Eq. (22) below. If v2 6= 1 then the equation can
be transformed to a simpler equation by a field redefinition,
Eq. (24) below. If v2 = 1 only on individual transverse field
lines (“critical surfaces”), then the equation should be solved
on the separate domains and matched at the surfaces, as ex-
plained in Sec. III D below.

A. v2 = 1: light darts

If v2 = 1 everywhere, then Eq. (21) reduces to the demand
that Bz = const. This yields the solution

F = Bzdx ∧ dy + dψ ∧ (dz ± dt), (22)
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which is force-free for any choice of ψ(x, y) and constant lon-
gitudinal field Bz . In fact, the field remains force-free if ψ is
allowed to depend on t±z in addition, i.e., ψ = ψ(t±z, x, y).3

Thus there can be arbitrary time dependence at a given value
of z, which propagates at the speed of light in the z di-
rection. This is the cylindrical analog of the generalized
Michel [15] solutions found in [7]. It has a null four-current
along the z direction. The solution (22) with Bz = 0 and
ψ = Ω(x, y)f(z − t) was previously obtained by Bateman in
1923 [10] and termed a “light dart”; it is only fitting that we
retain this name for the more general expression (22).4

B. v2 < 1: Boosted field lines

Solutions with v2 < 1 everywhere5 are related to v = 0
solutions by a field-line-dependent boost. At the level of the
stream equation this constitutes introducing a new potential Φ
by

dΦ = dψ/γ, γ ≡ 1/
√

1− v2. (23)

The stream equation now takes the form

∇2Φ +BzB
′
z = 0, (24)

where now the prime denotes derivative ofBz(Φ) with respect
to Φ. This equation is identical in form to the stream equa-
tion in the purely magnetic (or “nonrelativistic”) case v = 0;
it is satisfied by the force-free magnetic fields studied in the
context of solar physics (e.g., [6]). Thus we may take any
force-free magnetic field with our symmetries and promote it
to an infinite family of relativistic solutions parameterized by
a free function v(Φ). More specifically, any solution of (24)
together with any choice |v(Φ)| < 1 gives rise to a force-free
field

F = Bzdx ∧ dy + γdΦ ∧ (dz − v dt). (25)

Conversely, every stationary, z-translation invariant force-free
solution with |v(Φ)| < 1 arises in this way from a purely
magnetic solution by a field-line-dependent boost. A sim-
ilar observation was made in Ref. [16] for the cylindrically
symmetric case, including plasma pressure. In order to gain
some insight into why a field line dependent boost is possible,
in Appendix D we compute the current of the boosted field,
finding that it differs from the boosted current by something
whose contraction with the boosted field vanishes. 6

3 Eq. (11) for the current still holds for the time-dependent light dart, for
which it reduces to jµ = −∇2ψ(1, 0, 0, 1). This manifestly has zero
contraction with the field strength (22).

4 Bateman was interested in formulating a theory of charge-carrying radia-
tion and used these null-current solutions as examples. While for Bateman
the null current represented charges moving at the speed of light, in the
plasma context it corresponds to net charge and three-current densities of
equal magnitude.

5 An analogous treatment is straightforward for v2 > 1 by allowing γ and
Φ to be imaginary. For simplicity we focus on the case v2 < 1.

6 Perhaps the simplest version of this construction begins with a uniform
vacuum magnetic field in the x direction, and boosts it in the z direction

C. Examples of magnetic solutions

In this subsection we discuss several pure magnetic, z-
translation invariant solutions, to which an arbitrary field line
dependent boost can be applied to obtain a solution with
Poynting flux.

Though simpler than the general case, Eq. (24) is still in
general nonlinear and therefore difficult to solve analytically.
A nonlinear example is the cylindrical flux rope of Gold and
Hoyle [17], which follows from the assumption that the num-
ber of ϕ turns made by the magnetic field lines per unit length
in the z-direction is equal to a constant ν. Then ψ,r = −Bϕ =
−2πνrBz , which yields the solution Bz ∝ 1/[1 + (2πνr)2].
A class of nonaxisymmetric solutions (including Gold-Hoyle
as a special case) follows from choosing Bz = eψ , giving rise
to the Liouville equation, whose analytic solution is known
[18]. Another nonaxisymmetric, nonlinear example is given
in Ref. [19].

1. Linear stream equation

Noting that BzB′z = 1
2 (B2

z )′, any choice of the form

B2
z = a+ bΦ + cΦ2 (26)

will reduce (24) to a linear equation for Φ. Since Φ enters (25)
only via dΦ and Bz , we may without changing F always shift
Φ by a constant, making suitable changes of a and b.

If c is non-zero we may eliminate b by a shift of Φ, in which
case we have

Bz = ±
√
B2

0 + k2Φ2, (27)

for constants B0 and k, and the stream equation becomes the
Helmholtz equation,

∇2Φ = −k2Φ. (28)

The solutions regular at the origin are Bessel functions,

Φm = Jm(kr)eimϕ, (29)

where r, ϕ are cylindrical coordinates and Jm(x) is the Bessel
function of the first kind. The general regular solution is the
real part of a sum

∑
CmΦm over such modes, where Cm

are complex constants. The transverse magnetic fields cor-
responding to Φ0 and Φ1 + Φ−1 are those shown in Fig. 1 (a)
and (b), respectively, multiplied by a cylindrically symmetric
window function.

When v = 0 these solutions satisfy J = B′zB. If the
proportionality factor B′z is a constant, which occurs when
B0 = 0, these are called linear force-free magnetic fields.

with a y-dependent velocity v(y). This results in a force-free solution
with field F = γBxdy ∧ (dz − v dt) and non-vanishing current 3-form
J = −v′γ3Bx dx ∧ dy ∧ (dz − v dt).
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Such fields are of special interest since they have minimal en-
ergy at fixed helicity [20]. The m = 0 solution with B0 = 0
is the solution of Lundquist [21].

If c = 0 and b 6= 0 in (26) then we may eliminate a by
a shift of Φ, yielding B2

z ∝ Φ. The stream equation then
becomes the Poisson equation with a constant source. With
suitable boundary conditions this could be sensible, but note
that it requires that Φ maintain one sign within the domain of
interest.

If c = 0 and b = 0, then Bz is constant, and the stream
equation becomes the Laplace equation,

∇2Φ = 0, (30)

which can be solved by separation of variables or conformal
maps. The solutions regular at the origin are

Φm = rmeimϕ. (31)

The general regular solution is the real part of a sum∑
CmΦm over such modes, where Cm are complex con-

stants. As with the other solutions discussed above, these can
be boosted to obtain other solutions. For any constant v < 1,
the result is a vacuum solution, since the charge and current
densities vanish (see Eqs. (12)-(15)). For variable v, they are
true force-free solutions.

D. Critical surfaces

When v2 = 1 on individual fieldlines but not everywhere,
solutions to the stream equation may be constructed by match-
ing at those field lines, which we call “critical surfaces” fol-
lowing convention for the axisymmetric stream equation. At
such surfaces our stream equation becomes

(∇ψ)2 = BzB
′
z/(vv

′), (32)

which can be viewed as a mixed-type boundary condition for
the second-order equation. Equipped with solutions on either
side of the critical surface (constructed either analytically or
numerically), one may attempt to match the solutions via the
boundary condition (32). In analytic approaches, the condi-
tion would fix free constants or functions, while in numeri-
cal approaches it would be used to iteratively update guesses
for the undetermined functions v(ψ) and Bz(ψ), following
the method of Ref. [22]. Experience with the axisymmetric
stream equation suggests that each critical surface will place
one functional restriction on v(ψ) andBz(ψ), so that two crit-
ical surfaces would uniquely determine both.7

7 The status of the boundary value problem for equations with critical sur-
faces is not completely clear, but heuristic arguments (reviewed e.g. in
Sec. 7.4.2 of Ref. [13]) borne out by numerical experience support this
general picture.

IV. CONFINEMENT

We define the boundary of the jet as the place where the
current jµ becomes zero, and consider three possible scenar-
ios for confinement:

1. external confinement by gas pressure,

2. magnetic confinement by externally sourced B0ẑ,

3. self-confinement (only transverse fields or no fields out-
side)

In the first case we allow the electromagnetic field to be dis-
continuous at the boundary. In the latter cases, on the other
hand, force-free solutions go over smoothly to vacuum solu-
tions, so that no external medium is needed.

A. External confinement

In this case we allow for a discontinuity in the field F . The
jump conditions implied by Maxwell’s equations are naturally
formulated in terms of the three-dimensional spacetime vol-
ume across which the jump occurs (App. A3 of [13]). Let
χ(x, y) = 0 be a curve C in the transverse plane that bounds
the jet. Translating C along z and t yields the three-volume S
bounding the jet in spacetime. The pullback of F to S must
be continuous in order to avoid magnetic monopoles on the
entailed current sheet. The simplest case would be to make
the field vanish outside the jet, in which case the pullback of
F to the jet side of S must vanish. From the form of F (3)
we see that vanishing pullback implies dψ ∝ dχ, i.e., ψ must
be constant on the boundary. This is nothing but the statement
that the magnetic field should be tangent to the boundary. If
the field is discontinuous then a surface charge and/or current
is present on the boundary. This may be characterized by a
current 2-form K living on S, and is given by the jump in the
pullback of ∗F (Eq. A23 of [13]).

For a given discontinuous solution F we can ask what ex-
ternal forces are needed to realize that solution. To do so, con-
sider an infinitesimal patch of S and infinitesimally thicken
this patch in the transverse dimension. Then, for each Carte-
sian Minkowski coordinate ν, integrate ∇µTµν = 0 over the
thickened patch, where Tµν includes the stress-energy of the
fields as well as the matter present outside. Integrating by
parts and taking the thickness to zero yields

(Tµνnµ)in = (Tµνnµ)out, (33)

where nµ is the normal vector to S and in/out labels the value
obtained when S is approached from the inside/outside. This
equation now holds at any point of S as a tensor equation (i.e.
without the restriction to Cartesian coordinates).

To determine the consequences of (33) it is convenient to
use the expression (Sec. 3.2.2 of [13])

Tµν = 1
4F

2(hµν⊥ − h
µν) (34)

for the stress tensor associated with any degenerate electro-
magnetic field. Here hµν is the (rank 2) metric on the field
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sheets, and h⊥µν is the (rank 2) metric on the orthogonal sub-
space. The normal covector nµ vanishes when contracted with
any vector tangent to S. Since the fieldlines are tangent to S
and move along S, the field sheets lie in S, and so hµνnµ = 0.
It thus follows from (34) that

(Tµνnµ)in = 1
4F

2nν . (35)

This equation applies on the jet-side of S, and by (33) it must
therefore also hold outside. It indicates that the outside stress-
tensor must have no transverse momentum, no anisotropic
stresses, and must have transverse pressure everywhere equal
to 1

4F
2. A simple way to satisfy these requirements is to

consider a jet where F 2 is uniform on the boundary and sur-
rounded by a uniform isotropic gas with pressure

pgas = 1
4F

2. (36)

The appearance of 1
4F

2 as the (transverse) jet pressure is not
an accident. When F 2 > 0 there is a frame in which the elec-
tric field vanishes, and in that frame 1

4F
2 = 1

2B
2 is the stan-

dard notion of magnetic pressure used in magnetic plasmas.
The boost relating that frame to the frame of the (t, x, y, z)
coordinates is orthogonal to the jet normal direction nµ, so
it does not change the value of the normal pressure. We
note from (4) that the toroidal contribution to the pressure de-
creases as 1/γ2, for a given rest-frame toroidal field, indicat-
ing that a highly boosted jet is more easily confined.

Parenthetically, when F 2 < 0 the field is electrically domi-
nated,8 and the field sheet metric hµν is spacelike. Then (34)
shows that the transverse pressure is still positive. Hence the
quantity 1

4 |F
2| is the relativistic generalization of magnetic

pressure, which we refer to as the electromagnetic pressure.
It vanishes in the null case F 2 = 0 (E2 = B2). Then the ex-
pression (34) for the stress tensor does not apply, and instead
one has Tµν = B2lµlν = E2lµlν , where lµ is the null vec-
tor satisfying lµFµν = 0 and normalized with respect to the
observer 4-velocity uµ by lµuµ = −1.

To recap, we have considered the basic requirements im-
posed by terminating the jet discontinuously. If the fields are
to vanish outside the jet then the jet boundary must be a trans-
verse magnetic field line (level set of ψ). In this case an out-
side pressure equal to the local value of 1

4F
2 must push in

on every piece of the boundary. A gas of uniform pressure is
most natural, suggesting that the condition of uniform F 2 be
imposed on the boundary, which corresponds to fixing (∇ψ)2

to be a constant. Prescribing the shape of the boundary in ad-
vance, one should seek solutions of the stream equation such
that ψ and (∇ψ)2 are constant on the boundary.9

8 In the electrically dominated case force-free dynamics is ill-defined, as it
does not admit a well-posed initial value problem [23–25].

9 In elliptic equations one normally only can specify either the value or the
derivative on the boundary. It may be, then, that these conditions cannot in
general be imposed. They clearly can be imposed in the axisymmetric case,
and it is possible that jets externally confined by isotropic pressure must be
cylindrical. In the magnetic or self-confined case nonaxisymmetric jets are
possible, as we demonstrate explicitly below.

B. Magnetic Confinement

We now consider the case where the fields are continuous,
but a uniform magnetic field B0ẑ exists outside the jet. The
boundary conditions for the stream equation are then ∂ψ = 0
and Bz = B0. If Bz varies within the jet, then on account
of Bz = Bz(ψ) the boundary must be a level set of ψ. But
this constitutes imposing both Dirichlet and Neumann condi-
tions, which is likely to overdetermine the problem and may
impose axisymmetry.10 In the axisymmetric case (full cylin-
drical symmetry) it is straightforward, using Eq. (C7), to con-
struct magnetically confined axisymmetric solutions. In the
non-axisymmetric case we can make progress in the special
case where Bz is constant throughout the jet. This case was
considered in Sec. III C 1 in the pure magnetic case v = 0,
which can be variably boosted to obtain the general solution
with v2 < 1. In this case, the stream equation was reduced to
the Laplace equation, whose solutions cannot have compact
support. In the exceptional case v2 = 1, the stream function
may be chosen arbitrarily (and in particular to vanish outside
some boundary). Thus it is trivial to construct nonaxisym-
metric, magnetically confined jets using the light dart solution
(22).

C. Self-confinement

We have discussed jets that are surrounded by gas with
isotropic pressure or by a uniform magnetic field. We now
explore the possibility of jets that are surrounded by neither.
If one imposes Bz = v = 0 at the boundary, then the electric
field and the longitudinal magnetic field vanish outside the jet,
leaving only transverse magnetic field. This field will fall off
with distance from the jet, and can therefore be regarded as
sourced by the jet (rather than as some external field). (We
do not allow electric fields outside the jet since charges would
be attracted, neutralizing the jet.) It is straightforward to con-
struct such solutions in the cylindrical case using Eq. (C7).
(One can choose Bz(r) to vanish outside some radius r0, and
integrate to find Bϕ. The current will then also vanish outside
r0, and Bϕ will be regular at the origin for suitably chosen
Bz .) We see no reason why nonaxisymmetric solutions could
not be constructed as well.

A more extreme version of self-confinement would be a jet
where no fields persist outside. In fact that can happen for null
(F 2 = 0) field configurations. In cylindrical symmetry, (C7)
implies that for null fields we must have Bz = 0, and that
Bϕ = ±Er is arbitrary. This is a special case of the light dart
solution, with Bz = 0 and any ψ of compact support. On the
other hand, no magnetically dominated force-free fields of the
form (3) can have compact support, nor can they even have
finite energy per unit length, as we now demonstrate.

10 In a large class of non-linear elliptic equations it is known that the overde-
termined boundary problem imposes rotational symmetry (in this case it
would be axisymmetry) of the boundary and solution (see [26] and many
subsequent references).
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In the appendix we show using a version of the virial theo-
rem that if a stationary force-free field is translation invariant
in the z direction, and has finite energy per unit length, then
Bz and Ez must vanish. Then magnetic domination implies
that v2 < 1 everywhere (see Eq. (4)), and Laplace’s equation
Eq. (30) applies with Φ real. Since all regular solutions to this
equation diverge at infinity, the field F cannot be compactly
supported, nor can the field have finite energy per unit length.
The slowest growing regular solution to Laplace’s equation
has Φ ∼ r, so the magnetic field energy density does not fall
off with radius, and produces a quadratic divergence in the
energy per unit length.

The “no-go theorem” for magnetically dominated self-
confined jets was proved here using conservation of the stress-
energy tensor and the stream equation, both of which fol-
low from the force-free condition on the electromagnetic
field. This result can also be established by an argument
using the force-free condition more directly, which is simi-
lar to the argument used to establish the “no closed poloidal
loop theorem” for stationary axisymmetric magnetospheres in
Sec. 7.5.1 of [13]. We present this alternate proof in Appendix
B since the technique may be of interest in its own right.

Finally, we add that it may be of interest to consider config-
urations whose energy per unit length diverges logarithmically
with the outer radius, like the magnetic energy of an infinite
line current. This divergence would be rendered finite by end
effects, so such a configuration could potentially be of phys-
ical interest. As an example, the cylindrical flux rope of [17]
has log-divergent energy; however, not only the field, but also
the current density fails to have compact support: Bϕ ∼ 1/r,
Bz ∼ 1/r2, jz ∼ 1/r2 and jϕ ∼ 1/r3. This field may be
boosted to a jet with the same falloff behavior.

V. LIGHT DART JETS

In this paper we have derived a stream equation for trans-
lation invariant nonaxisymmetric jets, discussed its solutions,
and considered some boundary conditions of physical interest.
An exceptional case that appeared is the choice v2 = 1, which
we call a light dart. The light dart field (22) is force-free for
constant Bz and any choice of ψ = ψ(t± z, x, y), and in par-
ticular for ψ of compact support. If Bz is taken to vanish then
we have a fully self-confined jet, which evades our theorem by
being null (F 2 = 0), rather than magnetically dominated.11

11 The current density in a magnetically dominated plasma approximated by a
force-free solution is typically thought of as arising from particles moving
primarily along magnetic field lines on small spirals. This picture does not
directly apply to null fields, since there is no local Lorentz frame in which
the field is purely magnetic, so it is less clear whether a null force-free
solution can be supported by particles at all. The particles must move self-
consistently in the null field in the appropriate approximation. This might
be possible with ultra-relativistic charged particles of a single sign moving
along the null direction. Alternatively, a null current can arise from charges
of opposite signs moving with different velocities, but such a distribution
seems less realistic for an astrophysical jet.

If Bz does not vanish then the light dart jet is magnetically
dominated, but requires an external confining agent. One may
either take Bz to extend outside the jet (magnetic confine-
ment) or have Bz go to zero discontinuously (external con-
finement). In the latter case the jet is surrounded by an an
azimuthal current sheet and requires an external pressure of
1
4F

2 = 1
2B

2
z to support it.

One particular setting in which light dart jets do seem to
appear is in the “Wald configuration” [27] of a black hole
immersed in an external magnetic field. Vacuum solutions
are known analytically for any inclination angle between spin
and magnetic field [28], while force-free solutions have been
obtained numerically [5, 29, 30]. The force-free simulations
seem to produce a stationary, asymptotically translation in-
variant jet. If this is the case, then the asymptotic solution
should fall into our class.

Indeed it appears that the jets of [5] are well approxi-
mated by light darts. More specifically, numerical data pro-
vided to us by Luis Lehner shows that Ey/Bx differs from
unity only at the tenth of a percent level in the jet, so that
v = 1 + O(10−3). Note that v = 1 follows from the as-
sumptions of constant Bz and stream function ψ of compact
support (see discussion in Sec. IV B). These assumptions are
natural to a first approximation for a Wald configuration, and
help explain why the special case v = 1 appears numerically.

To use the light dart solution (22) to model the jet, it re-
mains to select an appropriate stream function to match the
behavior of the transverse fields. The stream function is un-
constrained in a light dart, so this matching could be done to
arbitrary accuracy at a given value of z. However, it appears
that we can get a rather decent match using the lowest order
eigenfunctions of the Laplacian consistent with the symmetry
of the problem,

ψ = ψ0[cosαJ0(kr) + sinαJ1(kr) sinϕ], (37)

where α is the angle between the black hole spin and the
asymptotic magnetic field. The quantities defining the prob-
lem are Bz , the black hole mass M , the dimensionless black
hole spin parameter a, and α. The jet is generated by unipo-
lar induction by the spinning black hole in the magnetic field,
so the amplitude ψ0 should scale primarily as the angular ve-
locity of the black hole ΩH(M,a) times the flux through the
effective conducting region, which includes the horizon and
perhaps a current sheet generated in the equatorial plane near
the black hole. Since the area of this region scales as M2 (in
units with G = 1), this motivates the ansatz

ψ0 = ψ̃0ΩHBzM
2, k = k̃/M (38)

for the amplitude and the inverse length scale k of the spa-
tial variation within the jet, with dimensionless functions
ψ̃0(a/M) and k̃(a/M). The form (37) describes the jet re-
gion only, and should be smoothly cut off outside. The aligned
(α = 0) and orthogonal (α = π/2) cases are plotted in Fig. 1.
These match quite well with Fig. 6 of [5], and there is sim-
ilar qualitative agreement for intermediate alignments (Luis
Lehner, private communication).

Using Eq. (16) and some identities for Bessel functions, we
find total power within a radius r0 = x0/k for the jet (37) to



8

be

P (α) = ψ2
0

[
1
4x

2
0

(
1 + cos2α

) (
J0(x0)2 + J1(x0)2

)
− x0 cos2αJ0(x0)J1(x0)− 1

2 sin2αJ1(x0)2
]
.

(39)

The numerical results for the dependence of P (0) on the spin
parameter a, and for P (α) at the spin values a = 0.1, 0.7, are
displayed in Fig. 4 of [5]. The observed spin dependence of
P (0) is fit very closely by that of Ω2

H . If we assume that both
ψ̃0 and x0 = kr0 are independent of a/M , then the spin de-
pendence of (39) is purely via Ω2

H , in agreement with the nu-
merical results. Good agreement for P (α)/P (0) is achieved
if we adopt for x0 the first zero of J1(x), x0 ≈ 3.83. Then
the α dependence is purely via the factor (1 + cos2 α), which
is in fact the functional form used by [5] for an analytical fit
to their numerical data. Thus the simple form (37), together
with a smooth cutoff at some jet boundary, seems capable of
reproducing all of the main features of the numerical results.

Light dart jets do not appear to be restricted to Wald-type
configurations. For example, the externally-confined jets stud-
ied in [31], modeling the jets that arose in numerical simula-
tions [2], are in the light dart class. This follows from Eq. (25)
of [31], Er = Bϕ, which shows that v = 1 in their model.

In these examples the light dart jet has non-zero longitudi-
nal magnetic field Bz . We conclude the paper with a specu-
lation about the case Bz = 0, which has a null field and can
self-confine. Many AGN jets extend for enormous distances
(more than one hundred kiloparsecs) with degree scale open-
ing angles, and it is a challenge to understand this astonishing
level of confinement and straightness. Proposed explanations
involve the pressure of the ambient intergalactic medium, a
surrounding backflow of shocked gas, transverse expansion of
the jet, and shear-induced stabilization (e.g., [32–34]). To this
list we can add the peculiar possibility of null, or rather nearly-
null Poynting jets, which are confined by virtue of a balance
between electric tension and magnetic pressure. More work is
required before this could be considered a viable explanation.
In particular, the existence and stability of a supporting charge
distribution must be established. In the meantime, it is amus-
ing to think that Bateman’s light darts, conceived by him as a
model of light quanta, may actually describe kiloparsec-scale
relativistic plasma jets.
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Appendix A: Virial theorem

In this appendix we prove a relativistic virial theorem for
force-free plasmas with both generic three-dimensional shape
and for configurations with translation invariance in one direc-
tion. The three-dimensional result is well-known and has been
established for general plasma systems (e.g., [35–38]). Such
theorems are easily proved in component langauge in Carte-
sian coordinates for flat spacetime, but here we work with co-
variant objects insofar as possible, in order to elucidate what
spacetime properties are required for the theorems to hold.

Consider any system in flat spacetime with a conserved
energy-momentum tensor T ab, so that for any vector field ξa

we have the identity ∇a(T abξb) = T ab∇aξb. If ξa gener-
ates a spatial dilatation in some Lorentz frame (for example
ξµ = (0, xi) in Minkowski coordinates) then (with a suitable
normalization) it satisfies ∇(aξb) = γab, with γab the spatial
metric, and the identity becomes ∇a(T abξb) = T abγab. That
is, the spatial trace of the stress tensor is the source of the di-
latation current. Integrating over a spacetime region R, we
thus have ∮

∂R
T abξb dΣa =

∫
R
T abγab, (A1)

where the spacetime volume element is implicit in the integral
over R. This is a form of the virial theorem. It can be used
as follows to show that there are no compactly supported, sta-
tionary configurations of force-free plasma.

In the Lorentz frame in which the system is stationary,
choose a spatial region V extending beyond the support of the
stress tensor, and generate a spacetime regionR by translating
V through some time interval. Then the entire boundary inte-
gral on the left vanishes, because the initial and final time slice
contributions cancel and the rest of the boundary lies outside



9

the support of T ab. It follows that
∫
R T

abγab = 0. The spa-
tial trace of the electromagnetic stress energy tensor is equal
to the energy density, T abγab = 1

2 (E2 +B2) ≥ 0, so the only
way the integral can vanish is if the fields vanish everywhere.
This derivation can be upgraded to apply to a non-force-free
plasma, since the additional term involving the spatial trace of
the particle stress tensor is nonnegative as well.

For a stationary system that is also translation invariant in
the spatial z direction, a similar identity can be established as
follows. Let ξa now be a dilatation in the two spatial dimen-
sions transverse to the z direction, satisfying ∇(aξb) = hab,
with hab the two-dimensional transverse spatial metric. This
yields an identity like (A1) with hab in place of γab. Now
choose the region R to be a transverse spatial area A, trans-
lated in both the z and the time directions, and suppose that
T ab has no support outside A. It follows that

∫
R T

abhab = 0.
The transverse spatial trace of the electromagnetic stress en-
ergy tensor is T abhab = 1

2 (E2
z + B2

z ) ≥ 0, so the fields must
have vanishing z-components. In the text, we combine this
information with the force-free conditions and the assumption
of magnetic domination to conclude that in fact all the fields
must vanish in that case.

The condition of compact support can be weakened to just
require finite total energy. Consider a boundary ∂V or ∂A at
fixed spherical or cylindrical radius r. The unit normal na to
the boundary and ξa are both radial, and ξa = rna so the inte-
grand of the surface integral in the virial theorem is∼ T rrrD,
whereD = 3 for the spherical radius andD = 2 for the cylin-
drical radius. Finite energy for D = 3, and finite energy per
unit length for D = 2, require T ttrD → 0. The electromag-
netic field stress energy tensor satisfies |T rr| < T tt, so finite
energy implies that the surface integral in the virial theorem
vanishes as r → ∞. Thus no finite energy stationary force
free configurations exist, and any translation invariant solution
with finite energy per unit length must have Bz = Ez = 0.
The cylindrical solution of [17] comes close to violating this:
it has nonzero Bz yet its energy per unit length diverges only
logarithmically with the outer radius.

Appendix B: Alternate proof of no self-confined, magnetically
dominated jet

In this appendix we give an alternate proof of the fact that,
for a field of the form (3), the magnetic field cannot vanish
outside a compact region in the x-y plane. Every smooth such
field strength can be represented using a smooth stream func-
tion ψ(x, y) (the global existence of which is ensured by the
Poincaré lemma), which vanishes outside a compact region.
The force-free condition is equivalent to the statement that
the two 3-forms dφ1,2 ∧ ∗F are closed. Their integral over
any closed 3-surface therefore vanishes, provided that surface
bounds a 4-volume in which they are everywhere regular. We
apply this to the Euler potentials (2), integrating dφ2∧∗F over
a closed 3-surface formed by translating two closed loops in
the x-y plane through intervals ∆z and ∆t, and closing off at
the ends of these intervals by filling in the regions between the
two loops. Under the assumption of z and t translation invari-

ance, the contributions to the integral at opposite ends of the
intervals cancel, leaving only the integrals over the 3-surfaces
swept out by the two loops. Choosing one of the loops to lie
everywhere outside the support of the field, its contribution to
the integral vanishes as well. If the other loop is a streamline
of constant ψ, then the integral over the corresponding con-
stant ψ surface must therefore vanish by itself. If dψ 6= 0
everywhere on the corresponding streamline, and if v is any
vector field satisfying v · dψ = 1, that integral is equal to the
integral of v · (dψ ∧ dφ2 ∧ ∗F ) = 1

2F
2v · ε, where ε is the

spacetime volume form (see Eq. (A7) of [13]). But if the field
is magnetically dominated (F 2 > 0) then the integral of F 2v·ε
cannot vanish (since its pullback to the constant ψ surface is
nowhere vanishing), and we reach a contradiction. Thus there
can be no closed streamline with dψ 6= 0 everywhere. If every
streamline has a point where dψ = 0, then one can move be-
tween streamlines without changing ψ, so dψ = 0 everywhere
and the field is therefore trivial.

Appendix C: Cylindrical symmetry

To relate our formalism to more common approaches as-
suming axisymmetry, we now discuss the special case in
which the field is axisymmetric in addition to being translation
invariant and time independent. In particular, the spatial sym-
metry is cylindrical. We first work out the relation between
the standard axisymmetric description and the translation in-
variant description of the previous section. Next we present
another standard description of this case and some particular
well-known solutions.

When F · ∂ϕ 6= 0 (i.e., when there is nonzero poloidal
magnetic field) a stationary, axisymmetric, degenerate, reg-
ular Maxwell field may be written (cf. Eq. (64) of [13]) as

F =
−I
2πr

dr ∧ dz + dΨ ∧ (dϕ− ΩF dt). (C1)

Here Ψ is the magnetic flux through a loop of constant r and
z, I = I(Ψ) is the electric current through the loop, and
ΩF = ΩF (ψ) is the angular velocity of magnetic field lines
(as defined by the field sheets). In cylindrical symmetry all
quantities are functions of r alone (if we assume the field is
regular on the axis), and Eqs. (3) and (C1) respectively be-
come

F = Bz(r)dx ∧ dy + ψ′(r)dr ∧ (dz − v(r)dt) (C2)

=
−I(r)

2πr
dr ∧ dz + Ψ′(r)dr ∧ (dϕ− ΩF (r)dt), (C3)

(the prime here denotes derivative with respect to r). The re-
lationship is therefore

Bz(r) =
Ψ′(r)

r
, ψ′(r) =

−I(r)

2πr
, (C4)

ψ′(r)v(r) = Ψ′(r)ΩF (r). (C5)

In particular we see that the total current within a radius r is
2πrψ′(r). Thus if a cylindrical jet is to have no net current it



10

must terminate with ψ′(r) = 0. Another useful relationship is

ΩF (r) =
ψ′(r)v(r)

rBz(r)
. (C6)

A jet launched by a rotating conductor (such as a pulsar or
an accretion disk) will have ΩF (r) determined by the angular
velocity of the conductor at the footpoint of the corresponding
magnetic field line.

In the cylindrical case the derivatives with respect to ψ in
the stream equation (21) can be expressed as (1/ψ,r)d/dr.
Thus multiplying the stream equation by ψ,r converts it to a
first order ordinary differential equation involving the electric
and magnetic fields,

dB2
z

dr
+

1

r2

d

dr

[
r2(B2

ϕ − E2
r )
]

= 0. (C7)

Solutions to this (standard) equation can be found simply by
choosing two of the field components and integrating to find
the third [e.g., 2, 3, 31].

Appendix D: Boosted field line construction

In the text we observed that if the substitution dψ → γdΦ
is made in the stream equation with v2 < 1, the equation be-
comes that for a purely magnetic field with Euler potential Φ.
This reveals that all solutions with v2 < 1 arise from boost-
ing the pure magnetic solution (3) in a Φ-dependent fashion,
i.e. independently boosting the field lines. In this Appendix
we attempt to expose why this works by doing the calculation
step by step beginning with the boosted field, rather than just
via the substitution in the stream equation.

We begin with the observation that, for any smooth map λ
on spacetime M , the pullback λ∗F of a degenerate electro-
magnetic field F satisfying the covariant Faraday law dF = 0
is another such field, since pullback preserves the wedge prod-
uct and commutes with the exterior derivative. In general,
unless λ is a conformal transformation, λ∗F is not a force-
free field, since pullback does not commute with Hodge dual.
That is, the new current d ∗ (λ∗F ) is not equal to the pullback
λ∗(d ∗F ) of the old current. The case at hand provides an ex-
ception: although the pullback of the current is not the current
of the pullback, they differ by a term whose contraction with
the field vanishes.

Consider a stationary, z-translation invariant force-free so-
lution

F = dΦ ∧ (dψ2 + dz) = Bz dx ∧ dy + dΦ ∧ dz, (D1)

with Φ = Φ(x, y) and ψ2 = ψ2(x, y), and subject it to a
Φ-dependent boost λ[v(Φ)] in the z-direction,

λ(x, y, z, t) = {x, y, γ(z − vt), γ(t− vz)}. (D2)

The action of this boost on the basis 1-forms is

λ∗dx = dx,

λ∗dy = dy,

λ∗dz = γ(dz − v dt) + λz,Φ dΦ,

λ∗dt = γ(dt− v dz) + λt,Φ dΦ, (D3)

so the pullback of F is given by

λ∗F = dΦ ∧ [dψ2 + γ(dz − v dt)]. (D4)

Note that the dΦ term in λ∗dz does not contribute, since dΦ∧
dΦ = 0, so the value of the pullback λ∗F at each point is the
same as for a Lorentz transformation. Introducing the notation

Ldz = γ(dz − v dt) and Ldt = γ(dt− v dz), (D5)

we have the exterior derivative relations

d(Ldz) = v′γ2Ldt ∧ dΦ,

d(Ldt) = v′γ2Ldz ∧ dΦ, (D6)

where v′ = v,Φ, and the duality relations

?(Ldt) = −Ldz, ?(Ldz) = −Ldt, (D7)

where ? is the Hodge dual on the t-z subspace. [In establish-
ing (D6) we have used (γv)′ = γ3v′.]

The boosted field is

FL ≡ λ∗F = dΦ ∧ (dψ2 +Ldz) = Bzdx ∧ dy + dΦ ∧Ldz,
(D8)

the dual field strength is

∗FL = Bzdt ∧ dz + ?dΦ ∧ Ldt, (D9)

and the current 3-form JL = d ∗ FL is

JL = dBz ∧ dt∧ dz+ d ? dΦ∧Ldt+ v′γ2 ? dΦ∧Ldz ∧ dΦ.
(D10)

The last term is proportional to ?dΦ ∧ FL, so it does not con-
tribute to the force-free conditions. (It contains both factors of
FL. Put differently, its contribution to the current four-vector
is orthogonal to FL.) The derivative v′ therefore plays no
role, so the force-free conditions are the same as they would
have been for a Lorentz-transformed field, and thus (thanks to
Lorentz invariance of the Hodge dual) they are the same as for
the original field (D1).

Explicitly, the force-free conditions are that the wedge
product of JL with the factors dΦ and dψ2 + Ldz of FL
(D8) vanish. Ignoring the third term of (D10) since it will not
contribute anyway, the first condition, JL ∧ dΦ = 0, implies
dBz ∧ dΦ = 0, i.e. Bz = Bz(Φ), as in the purely magnetic
case. (The 3-form d ? dΦ ∧ dΦ vanishes since both factors
are constructed using only dx and dy.) The second condition,
JL ∧ (dψ2 + Ldz) = 0, implies

dBz ∧ dψ2 ∧ dt ∧ dz + d ? dΦ ∧ Ldt ∧ Ldz = 0. (D11)

Since detL = 1 we have Ldt ∧ Ldz = detLdt ∧ dz =
dt ∧ dz, so (D11) is precisely the same equation as would
arise for the original, pure magnetic field (D1). The stream
equation is therefore unchanged by the field line boost. Since
dBz ∧ dψ2 = B′zBzdx ∧ dy and d ? dΦ = ∇2Φdx ∧ dy, it is

∇2Φ + ( 1
2B

2
z )′ = 0, (D12)

in agreement with (24).
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