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Abstract

We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion

form factor in the time-like momentum region using the finite-volume technique. We use two

ensembles of 2 + 1-flavor overlap fermion at pion masses mπ = 380 and 290 MeV. By calculating

the I = 1 correlators in the center-of-mass and three moving frames, we obtain the form factor at

ten different values of the time-like momentum transfer around the vector resonance. We compare

the results with the phenomenological model of Gounaris-Sakurai and its variant.
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I. INTRODUCTION

Lattice Quantum Chromodynamics (QCD) has been successful to provide first-principles

calculation of various physical quantities, among which the calculations of the so-called

gold-plated quantities, such as the lowest-lying hadron masses, decay constants and matrix

elements with one hadron or vacuum as the initial or final state, are carried out with con-

trolled errors. On the other hand, there are many interesting physical observables that

are beyond gold-plated. An interesting example is that of transition amplitudes involving

non-QCD initial/final states, such as the amplitudes for ηc, χc0 → γγ [1] and π0 → γγ [2–

6]. Another example is the K → ππ decay [7–9], where the final state consists of multiple

strongly interacting pions. For such cases, the finite-volume correction to the two-body state

must be properly taken into account [10].

For the K → ππ decay, the main efforts have been made to reproduce the physical

amplitude where the center-of-mass (CM) energy of the two pions, E∗, is equal to the kaon

mass mK . In this work, on the other hand, we study a simpler quantity, the time-like pion

form factor, for which the final state contains two pions but its energy E∗ varies in the whole

ππ elastic scattering region.

Physically, the time-like pion form factor describes how an electromagnetic vector current

couples to two pions. We concentrate on the iso-vector part of the electromagnetic current,

which associates with an isospin I = 1 ππ scattering state. The corresponding ππ scattering

phase has been studied by several lattice groups using different techniques [11–17].

Besides the tests of the lattice calculations of multi-particle states, the pion form factor

provides information on the electromagnetic structure of pion. At tree-level, the coupling

of an electromagnetic current to spinless point-like particles is completely determined by

their charge. For the composite particles such as pion, however, one must take account of

their internal structure, which is described by a form factor depending on the momentum

transfer, the so-called electromagnetic form factor. A direct lattice QCD calculation of the

pion form factor can reveal this internal structure of the pion. Experimentally, the time-

like pion form factor can be measured through the process e+e− → π+π−, and it shows a

resonance structure due to the ρ meson. It is therefore interesting to calculate the whole

functional form on the lattice and compare it with the available experimental data.

Previous lattice calculation of the pion form factor has been carried out at Euclidean (or
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space-like) momenta, q2 < 0 [18–24]. At low momenta q2 → 0− the pion charge radius can

be extracted. In this work, we calculate the pion form factor in the time-like momentum

region, which provides a different approach to extract the charge radius from the opposite

direction q2 → 0+.

The method to calculate the amplitudes or the form factors involving two particles in

the final state was originally proposed by [10] and extended to moving frames by [25, 26].

All these works chose K → ππ as the process to study, where the initial state is an on-shell

kaon and the final state consists of ππ in the I = 0 or 2 channel. In [27], it is proposed to

extract the pion form factor from the process γ∗ → ππ, where the initial state is a virtual

photon and the two pions form a P -wave scattering final state in the I = 1 channel. In this

work we adopt this approach and extend it to the moving frames, which allow us to obtain

the form factor in the whole elastic ππ scattering region.

The methods described above and used in our calculation are universal and can be applied

to other physical observables involving two-particle initial or final state. A direct extension

is the time-like scalar form factor of the pion. In this case, the interest is in the I = 0 scalar

channel, where the sigma resonance is relevant. If we consider two particles with unequal

masses, the method may be extended to the Kπ system. The time-like form factor is then

related to the process of semileptonic τ decays τ → Kπντ , where a weak current couples to

Kπ and a resonance K∗ appears in this channel. One may also extend the calculation from

the meson sector to the baryon sector, such as the time-like nucleon form factor associated

with the process e+e− → pp̄.

Since most of the hadrons, such as ρ, K∗ and ∆, are resonances, one should treat them

as a multi-particle system in the lattice calculation. In this regard, our exploratory study

of the time-like pion form factor provides a test of the lattice method and helps to pave

the way towards more challenging calculations with full consideration of more complicated

resonance physics.

This paper is organized as follows. In Section II we introduce some phenomenological

background of the time-like pion form factor. In Section III we discuss on the finite-volume

method used in our calculation. Then, in Section IV we give the construction of the inter-

polating operator and the correlation function. The analysis of lattice results is described

in Section V.
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II. TIME-LIKE PION FORM FACTOR

Hadron production via virtual photon in e+e−-annihilation offers a fundamental test of

QCD. At low energies, the dominant hadronic final state consists of two charged pions. The

total cross section σ(e+e− → π+π−) is given by a square of the modulus of the electromag-

netic pion form factor Fπ(s),

σ(e+e− → π+π−) = σ0(e+e− → π+π−)|Fπ(s)|2, (1)

where σ0(e+e− → π+π−) is the tree-level cross section calculated with scalar QED by as-

suming that the pion is a point-like particle. The QCD corrections are all encoded in the

pion form factor Fπ(s), which describes how a (virtual) photon couples to two pions in the

final state.

The pion form factor is defined by a vector matrix element between the QCD vacuum

and the ππ in- and out-states

〈π+(p+)π
−(p−), in|jemµ (0)|0〉 = +i(p+ − p−)µFπ(s− iε),

〈π+(p+)π
−(p−), out|jemµ (0)|0〉 = −i(p+ − p−)µFπ(s+ iε), (2)

with p± = (E±,p±) the four-momenta of π± and s = (p+ + p−)
2 an invariant mass square

of the two-pion system. The π-state is normalized as

〈πa(p)|πb(q)〉 = 2E(2π)3δabδ(p− q), a, b = +,−, 0. (3)

The hadronic electromagnetic current jemµ is given in terms of three-flavor currents as jemµ =

2
3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs, where u, d, and s refer to the quark fields. One can also write jemµ

in an isospin basis as jemµ = jI=1
µ + 1

3
jI=0
µ − 1

3
jsµ, with

jI=1
µ =

1

2

(

ūγµu− d̄γµd
)

,

jI=0
µ =

1

2

(

ūγµu+ d̄γµd
)

,

jsµ = s̄γµs. (4)

In the isospin symmetry limit, the jI=0
µ and jsµ do not contribute to Fπ(s). Our calculation

is performed in the limit of mu = md, thus the vector current is given by jI=1
µ and the ρ-ω

mixing effects are neglected. To extend the calculation beyond the isospin-symmetric limit,

the disconnected diagrams need to be calculated, which is a subject of future studies.
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The pion form factor Fπ(s) is analytic in the complex s-plane, with a branch cut from

4m2
π to ∞. The unitarity of the scattering matrix implies

〈f, out|jµ|0〉 − 〈f, in|jµ|0〉 = −
∑

n

[〈f, in|n, out〉 − δfn] 〈n, out|jµ|0〉, (5)

where |f〉 stands for the ππ states. In the elastic scattering region, due to the energy-

momentum conservation, the sum over |n〉 is restricted to ππ states as well. The coefficient

(〈f, in|n, out〉−δfn) is then given by ππ scattering amplitude. In the isovector channel, only

the P -wave amplitude t1(s) = (e2iδ1(s) − 1)/2i contributes to the unitarity condition, where

δ1(s) is the P -wave ππ scattering phase. One can then simplify (5) as

ImFπ(s) = t∗1(s)Fπ(s+ iε) = sin δ1(s)e
−iδ1(s)Fπ(s+ iε) (6)

for s < (4mπ)
2. It shows that the complex phase of the pion form factor is equivalent to the

P -wave ππ scattering phase below the inelastic threshold. This result is known as Watson’s

final-state theorem.

At low energies the process of P -wave ππ scattering is approximated well by the produc-

tion and decay of the ρ-meson, which is represented by a simple vector-meson-dominance

(VMD) form

F VMD
π (s) =

A

s−m2
ρ

, A = −m2
ρ, (7)

with mρ the ρ-meson mass. The form factor is normalized such that F VMD
π (0) = 1, which is

required by the charge conservation. This form is, however, not very satisfactory since the

instability of the ρ-meson is not taken into account. To include the ππ branch cut, Gounaris

and Sakurai (GS) introduced an analytic form that takes account of the ρ → ππ transition

[28]

FGS
π (s) =

A

s−m2
ρ − Πρ(s)

, A = −m2
ρ −Πρ(0), (8)

where the function Πρ(s) stands for the ρmeson self-energy due to the two-pion loop diagram.

Near the resonance energy, the ρ→ ππ transition amplitude can be parametrized as

〈π+π−, out|ρ, ε, in〉 = gρππ εµ · (p+ − p−)
µ, (9)

through which the ρππ coupling gρππ is defined. The value of gρππ can be estimated with

the experimental measurement of ρ→ ππ decay width

Γρππ =
g2ρππ
6π

k3ρ
m2
ρ

, kρ =
√

m2
ρ/4−m2

π. (10)
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Using the optical theorem, the imaginary part of Πρ(s) can be related to the ρ → ππ

amplitude, or equivalently gρππ, through

ImΠρ(s) = −
g2ρππ
6π

k3√
s
, k =

√

s/4−m2
π. (11)

The real part of Πρ(s) can be related to its imaginary part using a twice-subtracted dispersion

relation. Hence, FGS
π (s) has only two parametersmρ and gρππ. An explicit expression FGS

π (s)

is given in Appendix A. In particular, the s-dependence of P -wave pion-pion scattering phase

induced from the GS model is given in (A8).

As shown in Figure 1, the GS form gives a reasonably good approximation to the ex-

perimental measurements of the scattering phase, but |FGS
π (s)| is about 10% lower near

the resonance peak
√
s = mρ. The deviation may arise from the ρ − ω mixing due to the

isospin breaking effect. In [36] the ω contribution is subtracted from the CMD-2 data and

the peak value of the form factor is only ∼ 3% smaller than the original one, which suggests

that ρ− ω mixing effect is not the only source of the deviation between the GS model and

experimental data. This is further confirmed by our lattice calculation, where the up and

down quark masses are set identical while the peak value of the GS form factor is 27% and

20% smaller than the lattice results at mπ = 380 MeV and 290 MeV, respectively, as shown

later in Figure 13.

One way to make the GS form closer to the experimental data is to include the contri-

butions from higher resonances such as ρ(1450) and ρ(1700) [37, 38]. After doing this, the

extended GS form does agree with the experimental measurements but there are still some

doubts on whether the higher resonances really affect the form factor at the ρ-resonance

peak in the suggested way [36].

Another way to modify the GS form is to focus only on the resonance region s ≈ m2
ρ and

assume the ρ-meson dominance. The matrix elements in (2) are then factorized into two

parts: 〈π+π−, out|ρ, ε, in〉 and 〈ρ, ε, in|jµ|0〉 = gρ,emm
2
ρεµ, where the former one is related to

gρππ by (9) and the latter yields the ρ-meson decay constant gρ,em. Consequently, the form

factor is constructed as [39, 40]

FGS+VMD
π (s) =

A

s−m2
ρ −Πρ(s)

, A = −gρππgρ,emm2
ρ, (12)

where the numerator is given by −gρππgρ,emm2
ρ and the denominator still uses the dressed

ρ propagator. Using gρππ = 5.95(2) and gρ,em = 0.2017(9) extracted from the ρ → e+e−
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FIG. 1: Comparison of the GS model with the experimental measurements of P -wave pion-pion

scattering phase δ1(s) and the modulus of the pion form factor |Fπ|. We use E =
√
s as the label

of x-axis. On the left hand side, circles are from [29], where the scattering phase is extracted from

the reactions π+p → π+π−∆++, while the squares from [30] based on π−p → π−π+n. On the right

hand side, circles, squares and diamonds stand for the data of |Fπ(s)|, complied using the CMD-2

06 [31, 32], SND 06 [33], and KLEO 10 e+e−-data [34], respectively. The blue curve shows the GS

model (A8) and (A6), where the Particle Data Group (PDG) [35] values mπ = 0.1395702(4) GeV

and mρ = 0.7753(3) GeV are inputs and gρππ = 5.95(2) is estimated with the PDG value of Γρ =

0.1478(9) GeV.

decay width as inputs, this formula gives a good description of the experimental data near

the resonance peak but violates the charge conservation condition at s = 0.

Comparing (8) to (12), it is natural to introduce an s-dependent A(s) and write the form

factor as

Fπ(s) =
A(s)

s−m2
ρ − Πρ(s)

= FGS
π (s)

N
∑

n=0

cn(s−m2
ρ)
n. (13)

Here we use a Taylor expansion at s = m2
ρ to describe the behavior of the form factor near

the resonance region. The polynomial terms are introduced to account for the deviation
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between the FGS
π (s) given by (8) and the I = 1 part of the experimental data, which may

arise from the interference between ρ and higher resonances such as ρ(1450) and ρ(1700). The

coefficients cn should respect the charge conservation condition, i.e.
∑N

n=0 cn(−m2
ρ)
n = 1.

In our work, since we calculate the scattering phase and the modulus of the form factor

at several discrete energies, we adopt the form (13) to describe their s-dependence. This

induces a model dependence in our final results for the parameters mρ, gρππ and the charge

radius 〈r2π〉. But the model-dependence will become milder if one collects more data points

at various energies. As the data points become dense, lattice QCD will eventually provide

a complete description of the low-energy time-like pion form factor from the first-principles.

III. FINITE-SIZE METHOD

According to the general idea of [41] for the study of two-body scattering problem on the

lattice, we consider the two-pion system in a box of finite size L.

Given an I = 1 vector-current operator jb = ψ̄(b · γ) τ3
2
ψ one can construct a correlation

function in a finite volume V = L3 as

CV (t) =

∫

V

d3x e−iP·x〈0|jb(x, t)j†b(0, 0)|0〉, (14)

where an unit vector b indicates the polarization direction of the vector current and P is

the total three-momentum. When P 6= 0, b can be set either parallel or perpendicular to

P to make the operator jb belong to a certain irreducible representation of the rotational

group. Since jb has the same quantum number as a two-pion system in the I = 1 channel,

two-pion states appear in the correlator as intermediate states,

CV (t) →
∑

n

|〈0|jb|ππ, n〉V |2e−Ent. (15)

Here the arrow denotes the asymptotic contributions in the large time separations, where

the ππ states of various relative momenta dominate as the lowest energy states.

By studying the time-dependence of the correlator, one obtains two observables from

(15): En and |〈0|jb|ππ, n〉V |2. The discrete energy En contain the information of pion-pion

scattering and can be related to the infinite-volume P -wave scattering phase δ1 by Lüscher

formula [41] and its extension to the moving frames where the total momenta P is non-zero

[25, 26, 42]

nπ − δ1(k) = φP,Γ(q = kL/2π),
√
s =

√

E2
n −P2 = 2

√

m2
π + k2. (16)
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Here, φP,Γ(q) is a known function, irrelevant to the details of the interaction. It only depends

on the moving frame P and the irreducible representation Γ that the operator jb belongs to.

The “momentum” k entering in φP,Γ(q) through q is indirectly determined by the energy En

as shown by the second equation of (16). The formula (16) is widely used in various lattice

calculations of the P -wave pion-pion scattering phase and the studies of the ρ-resonance

properties. The formulae used in this calculation are listed in Appendix B.

Since En can be used to determine the scattering phase δ1, which is the complex phase of

Fπ(s), a natural question arises whether one can relate |〈0|jb|ππ, n〉V |2 to |Fπ(s)|2. Meyer

gave an answer to this question in [27], where he introduced an external vector particle W

which couples to the quarks via an infinitesimal interaction Hint(x) = ejµ(x)W
µ(x). Then,

the matrix element 〈ππ, out|jµ(0)|0〉 is related to the amplitude 〈ππ, out|Hint(0)|W 〉, which
is analogous to the K → ππ transition amplitude 〈ππ, out|LW (0)|K〉. The techniques used

in deriving the Lellouch-Lüscher formula for K → ππ [10] can thus be transplanted to the

case of W → ππ. The main difference is that K → ππ contains a S-wave ππ scattering in

the I = 0 or 2 channel while W → ππ has a P -wave scattering in the I = 1 channel. We

generalize the formula of [27] to the case of general moving frames. The relation between

the finite-volume matrix element |〈0|jb|ππ, n〉V |2 and the square of the modulus of the form

factor in the infinite volume is written as

|Fπ(s)|2 =
γ

g(γ)2

(

k
∂δ1(k)

∂k
+ q

∂φP,Γ(q)

∂q

)

3πs

2k5
|〈0|jb(0)|ππ, n〉V |2, (17)

where s takes the discrete values s = E∗2
n with E∗

n the center-of-mass energy of the state

corresponding to En. γ is a Lorentz boost factor γ = En/E
∗
n and the function g(γ) takes

the value of g(γ) = γ for b ‖ P and g(γ) = 1 for b ⊥ P. In the case of vanishing P, (17)

reduces to the formula in [27].

In the K → ππ decays, the power-law finite-volume corrections are accounted for by

the ππ-states rather than the single K-states. It is therefore simpler to retain the essential

physical aspects of ππ and eliminate the kaon [43]. Following this idea, we make another

demonstration of (17) without introducing the fictitious state W . Some details are given in

Appendix C.
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IV. LATTICE SETUP

In this work we use the 2 + 1-flavor overlap fermion ensembles generated by the JLQCD

collaboration [44]. Using the overlap fermions ensures exact chiral symmetry in the chiral

limit at finite lattice spacings. The calculation is performed at bare quark masses am

= 0.025 and 0.015, that correspond to the pion masses mπ = 380 MeV and 290 MeV,

respectively. Physical kinematics that the ρ meson decays to two pions is realized in both

cases. The Iwasaki gauge action is employed together with the unphysically heavy Wilson

fermions that prevent the topological charge from changing its value during the Hybrid

Monte Carlo simulation [45]. The β value is 4.30, that corresponds to the lattice spacing

a = 0.112(1) fm for both pion masses. To make a full control of systematic effects, having

multiple lattice spacings and performing a continuum extrapolation are important. This

would require further simulation efforts and shall be done in the future. The lattice size is

(L/a)3 × (T/a) = 243 × 48, and the lattice extent L in the physical unit is 2.6 fm, which

roughly satisfies mπL & 4. The effect of fixing topological charge would not be significant

on such large volume lattice [46].

We construct a vector-current operator using two-flavor quark fields ψ̄ and ψ and consider

its Fourier transform

jψ̄ψb (P, t) =
ZV
L3/2

∑

x

e−iP·x
(

ψ̄(b · γ)τ
3

2
ψ

)

(x, t), (18)

where b is a unit vector and b · γ is defined as

b · γ =

3
∑

i=1

biΓ
rot
i , Γrot

i = γi

(

1− aDov(0)

2m0

)

. (19)

Here, we use the rotated gamma matrices Γrot
i to remove the O(a) lattice artifacts from

the interpolating operator. Dov(mq) is the overlap-Dirac operator for the quark mass mq,

and m0 = 1.6 is the (negative) mass parameter to define the kernel of the overlap-Dirac

operator. In the continuum limit a = 0, Γrot
i reduces to the conventional gamma matrix

γi. ZV is the renormalization factor for the vector currents. Its value ZV = 1.39360(48) is

obtained non-perturbatively [47].

Besides the construction using the quark fields, one can also define the vector-current

operator using π+π− meson pairs

j
(ππ,n)
b (P, t) = π+(p1, t)π

−(p2, t)− π+(p2, t)π
−(p1, t), (20)
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where the pion interpolating operator π±(p, t) is defined as

π±(p, t) =
1

L3/2

∑

x

e−ip·x
(

ψ̄Γrot
5

τ±

2
ψ

)

(x, t). (21)

The momenta p1,2 satisfy L
2π
p1,2 ∈ Z

3. The total three-momentum of the two-pion system

is given by P = p1 + p2 and the polarization direction is defined as b = p1−p2

|p1−p2| . The index

n specifies the energy levels corresponding to En =
√

m2
π + p2

1 +
√

m2
π + p2

2.

We can modify the two-pion interpolating operator (20) by separating the two-pion op-

erators at different time slices

j
(ππ,n)
b (P, t) =

1

2

[

π+(p1, t1)π
−(p2, t2) + π+(p1, t2)π

−(p2, t1)
]

− 1

2

[

π+(p2, t1)π
−(p1, t2) + π+(p2, t2)π

−(p1, t1)
]

, t1,2 = t± δt. (22)

By swaping p1,2 → p2,1 or π± → π∓ we have j
(ππ,n)
b → −j(ππ,n)b , which verifies that the

operator defined in (22) is parity-odd and isospin-odd. The reasons to use (22) in our

calculation are two-fold: First, we use the all-to-all propagator [48] in our calculation. When

the two pions are put on the same time slice, a different stochastic source for each pion

is required to avoid unphysical contributions, but in our implementation [21], only one

stochastic source is used for each time slice. Therefore we separate the two pions at different

time slices to avoid the unwanted contributions. Second, by separating with a distance of 2δt,

the correlation between the two pion-operators is reduced. As a consequence, the precision

of the correlator can be improved. For example, in the case of P = 0, the error of the

effective energy is reduced by a factor of three by introducing a separation of δt/a = 1. We

examine also the case of δt/a = 2 and 3, but the change is not very significant. A drawback

of using a large δt is that it enhances the excited-state effects because the minimum time

separation between pion fields in j
(ππ,n)
b (P, t) and j

(ππ,n)
b (P, 0) is t−2δt rather than t. In this

calculation we simply use δt/a = 1. As indicated in [49], separating the two pion-operators

can also be useful in the calculation of the I = 0 pion-pion scattering, where it reduces the

noise dramatically from the disconnected diagram.

With the vector-current operator jψ̄ψb or j
(ππ,n)
b , one can construct operators in the irre-

ducible representations of the cubic group (and reflections) using the standard procedure of

the character projection

jq(Γ,P, t) =
dΓ
NG

∑

R̂∈G

χ∗
Γ(R̂)j

q

R̂b
(P, t), (23)
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No. P G Γ j
(ππ,n)
b : [p1, p2] jψ̄ψb : b

1© (0, 0, 0) Oh T−
1

[(1, 0, 0), (−1, 0, 0)] (1, 0, 0)

[(0, 1, 0), (0,−1, 0)] (0, 1, 0)

[(0, 0, 1), (0, 0,−1)] (0, 0, 1)

2© (0, 0, 1) D4h A−
2 [(0, 0, 1), (0, 0, 0)] (0, 0, 1)

3© (1, 1, 0) D2h B−
1 [(1, 1, 0), (0, 0, 0)] 1√

2
(1, 1, 0)

4© (1, 1, 1) D3d A−
2 [(1, 1, 1), (0, 0, 0)] 1√

3
(1, 1, 1)

5© (1, 1, 0) D2h B−
2 [(1, 0, 0), (0, 1, 0)] 1√

2
(1,−1, 0)

TABLE I: 1©, ..., 5© identify the operators used in this calculation. P denotes the total three-

momentum in units of 2π/L. G is the cubic rotational group defined in (24). Since the reflection

operator is involved, G is a parity doubled little group associated with momentum P. Γ stands for

the irreducible representation of group G. T−
1 is a three-dimensional representation while others

are one-dimensional. For a given Γ, one can construct the operators using (23). In our calculation,

these interpolating operators can be simplified as j
(ππ,n)
b and jψ̄ψb . The j

(ππ,n)
b are specified using

the momenta p1 and p2 in units of 2π/L. The jψ̄ψ
b

can be determined by the polarization b. Note

that, although the operators 1© and 2© contain the jψ̄ψb with the same polarization b = (0, 0, 1),

the different total momentum P makes them belong to the different representations of different

groups.

where q = ψ̄ψ or (ππ, n), and NG =
∑

R̂∈G 1. The notations follow those of [13, 50]. Here

the symmetry group G is introduced as the set of all lattice rotations and reflections R̂. In

the case of P = 0, G reduces to the full cubic group Oh. For P 6= 0, on the other hand,

G spans a subspace of Oh, under which the momentum P is invariant or changes only by a

minus sign

G =

{

R̂ ∈ Oh

∣

∣

∣

∣

R̂P = P or R̂P = −P

}

. (24)

Γ is the irreducible representation of the group G, while dΓ and χΓ(R̂) are the dimension and

character of Γ. The character projection makes the operator jq(Γ,P, t) belong to a given

representation Γ.

In a general moving frame with nonzero P, the operator jψ̄ψb with b ‖ P forms a basis of

a one-dimensional representation of G. For the operators belonging to the other represen-

tations, we take b and P such that b ⊥ P. In general, jq(Γ,P, t) defined in (23) is a linear
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j
(ππ,n)
b → j

(ππ,n)
b :

p1

p2

−p1

−p2

− − − + +

j
(ππ,n)
b → jψ̄ψb :

p1

p2

−P − jψ̄ψb → j
(ππ,n)
b :

−p1

−p2

P −

FIG. 2: Quark contractions for three- and four-point correlation functions. The momenta ±p1,2

are used to indicate the single pion field. ±P are used to specify the jψ̄ψb field.

combination of a few jqb with different polarization b, but with our choice these interpolating

operators can be simply given by a single jqb. We list the operators used in our calculation

in Table I.

Using the operators 1©, ..., 5© in Table I, for each set of {jψ̄ψb , j
(ππ,n)
b }, we can construct

a 2× 2 correlation matrix with its matrix elements defined through

Cq,q′(t) =
1

T

T−1
∑

t0=0

〈

jqb(P, t+ t0) j
q′

b (P, t0)
†
〉

, q, q′ = ψ̄ψ or (ππ, n). (25)

The quark contractions for three- and four-point correlation functions are shown in Figure 2

Then the variational method [51] allows us to isolate the ground state and first excited state

from the correlation matrix. From each of the five operator sets, we can calculate two energy

eigenvalues, so that we obtain the scattering phase and the pion form factors at ten discrete

energies. As shown in (25), we perform a time translation average to reduce the statistical

noise of the correlators. This requires the quark propagator inversions at each time slice.

For P = 0, we average the correlators using the three operator sets in 1©, since T−
1 is a three-

dimensional representation. For P 6= 0 we average the correlators carrying total momentum

P with those carrying momenta R̂P (R̂ ∈ Oh), since these correlators are equivalent under

the symmetry. This requires various momentum insertions in the propagator inversions.

All these requirements are fulfilled by using the all-to-all propagators generated by JLQCD

collaboration.

Here we briefly describe the construction of the all-to-all propagator [48, 52] by the

JLQCD collaboration [21]. The quark propagator D−1(x, y) can be explicitly composed
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using the eigenmodes of the hermitian Dirac operator

H(x, y) = γ5D(x, y), D−1(x, y) = H−1(x, y)γ5,

H(x, y)un(y) = λnun(x) ⇒ H−1(x, y) =
∑

n

1

λn
un(x)u

†
n(y), (26)

where H(x, y) is a hermitian matrix with its color and spinor indices omitted for simplicity.

λn is the nth eigenvalue and un(x) the associated eigenvector. However, it is not realistic

to calculate all the eigenmodes. So we decompose the propagator into low- and high-mode

contributions using a projection operator Plow(x, y) =
∑Nλ

n=1 un(x)u
†
n(y)

H−1(x, y) = H−1
low(x, y) +H−1

high(x, y),

H−1
low(x, y) = H−1(x, z)Plow(z, y) =

Nλ
∑

n=1

1

λn
un(x)u

†
n(y),

H−1
high(x, y) = H−1(x, z)(δz,y − Plow(z, y)). (27)

We use only the low-lying eigenmodes and supplement them with the remaining high-mode

contributions calculated with a stochastic method

H(x, y)φr,d(y) = (δx,z − Plow(x, z))ηr,d(z) ⇒ H−1
high(x, y) =

1

Nr

Nr
∑

r=1

Nd
∑

d=1

φr,d(x)η
†
r,d(y),(28)

where r = 1, · · · , Nr indicates the complex Z2 stochastic sources and d = 1, · · ·Nd spec-

ifies the dilutions in spin, color and space-time positions. Combining the low modes and

high modes together yields the so-called all-to-all propagator. In our analysis we use 50

configurations for each ensemble. For each configuration, we use Nλ = 240, Nr = 1 and

Nd = 3 × 4 × T/2 = 288. For more details of the all-to-all propagator technique, we refer

readers to [21, 48, 52].

V. ANALYSIS

A. Removal of the around-the-world effects

Before applying the variational technique for the sets of correlators, we first remove the

so-called around-the-world effect, which arises due to the finite time extent T in the lattice

calculation. This effect modifies the time-dependence of single pion correlator 〈π(t)π(0)〉 as
e−Eπt + e−Eπ(T−t), with the around-the-world contribution e−Eπ(T−t). In the calculation of

the pion-pion scattering, it can cause a discernible effect especially near t ∼ T/2 [53–55].
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To find out how the around-the-world effects deform the correlator, we insert a complete

set of eigenstates into the correlators in (25) as

Cq,q′(t) =
∑

m,m′

〈m|jqb|m′〉〈m′|jq′†b |m〉e−Em(T−t)e−Em′ t

=
∑

n

〈0|jqb|ππ, n〉〈ππ, n|j
q′†
b |0〉

(

e−Eππ,n(T−t) + e−Eππ,nt
)

+
∑

p1,p2

〈π|jqb|π〉〈π|j
q′†
b |π〉

(

e−Eπ(p2)(T−t)e−Eπ(p1)t + e−Eπ(p1)(T−t)e−Eπ(p2)t
)

+ · · · .

(29)

In the last equation, the first term represents the physical contribution from the lowest

energy states |m(m′)〉 = |0〉 and |m′(m)〉 = |ππ, n〉. The second term is the around-the-

world contribution, which arises by setting |m(m′)〉 = |π(p1)〉 and |m′(m)〉 = |π(p2)〉. Note
that the interpolating operator jq,q

′

b carries a three-momentum P. The momenta p1, p2

and P satisfy the momentum conservation. The largest contamination thus comes from the

terms with p1 = 0 and p2 = P or p1 = −P and p2 = 0.

To reduce the bulk of these around-the-world effects, we construct a modified correlator

through

C̄q,q′(t) = Cq,q′(t)− Cq,q′(t +∆t)
cosh [∆E(T/2− t)]

cosh [∆E(T/2− (t +∆t))]
, (30)

where ∆E = Eπ(P)−Eπ(0). With too small ∆t a cancellation between Cq,q′(t) and Cq,q′(t+

∆t) makes the modified correlator noisy, while too large ∆t yields larger intrinsic noise due

to large time separation t+∆t. As a compromise, we take ∆t/a = 6.

B. Extracting the eigenstates

After removing the around-the-world effects, we apply the variational method [51] to ex-

tract the energy En and the matrix element |〈0|jqb|ππ, n〉V |2 from the correlation matrix. The

procedure is as follows. We first build the correlation matrix using the modified correlator

in (30). By constructing a ratio of the correlation matrix

R(t, tR) = C̄− 1

2 (tR)C̄(t)C̄
− 1

2 (tR), (31)

and solving the eigensystem of

R(t, tR)Bn = Dn(t, tR)Bn, n = 0, 1 (32)
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one can determine the eigenvalues Dn(t, tR) and the normalized eigenvectors Bn for t > tR.

Since R(t, tR) is a Hermitian matrix, the eigenvectors Bn form an orthogonal system, i.e.

B†B = 1. Then, Dn(t, tR) is related to the energy eigenvalues of the ππ scattering states

through

Dn(t, tR) = Dn(t)/Dn(tR), (33)

with the function Dn(t) defined as

Dn(t) =
(

e−Ent + e−En(T−t))
(

1− cosh [En(T/2− (t+∆t))] cosh [∆E(T/2− t)]

cosh [En(T/2− t)] cosh [∆E(T/2− (t+∆t))]

)

. (34)

Since ∆E and ∆t are known, Dn(t) is a function of only En and t. Using the lattice data of

Dn(t, tR) as inputs, one can determine En.

Note that the eigenvectors of R(t, tR) can also be given by C̄
1

2 (tR)A
−1, with An,q defined

as An,q = 〈ππ, n|jq†b |0〉V . A relation between B and A is then established through

Bq,n = Xn

[

C̄
1

2 (tR)A
−1
]

q,n
⇒

[

C̄− 1

2 (tR)B
]

q,n
= Xn

[

A−1
]

q,n
(35)

with a coefficient Xn to be determined. B†B = 1 leads to |Xn|2 = D−1
n (tR). Making use of

the relation (35), we obtain

[

B†C̄− 1

2 (tR)C̄(t)
]

n,q
= X∗

nDn(t)An,q

⇒ Dn(tR)|An,q|2 =
∣

∣

∣

∣

[

B†C̄− 1

2 (tR)C̄(t)
]

n,q

∣

∣

∣

∣

2

D−2
n (t, tR). (36)

Since Dn(t, tR) and B are known, (36) can be used to extract Dn(tR)|An,q|2. By putting the

evaluated value of En into (34), one can remove Dn(tR) and determine |An,q|2.
In practice, with a given reference time tR, we determine En by fitting the data ofDn(t, tR)

to (34) and obtain Dn(tR)|An,q|2 (q = ψ̄ψ) from (36). A fitting window of t ∈ [tR + a, tR +

6a] is used in our analysis. We gradually increase tR until the values of χ2/dof in the

correlated fits are under control. Here χ2/dof is not a unique criterion to determine the

fitting window. We also check the tR dependence to make sure that the effective mass does

not have systematically decreasing behavior. Besides, given a pion mass, we try to have

a consistent tR for different type of correlators, since they have the same vector channel

spectral weight function and the excited states will have similar effects on the correlators.

tR is chosen in a conservative way even at which χ2/dof does not take its minimal value.

In this way, we set tR/a = 8 for mπ = 380 MeV and tR/a = 9 for mπ = 290 MeV. The
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mπ = 380 MeV mπ = 290 MeV

No. E∗
n δ1 (◦) |Fπ(s)| E∗

n δ1 (◦) |Fπ(s)|

1©
876(7) 133.6(2.8) 41.0(5.7) 796(12) 111.9(3.9) 14.8(1.9)

1203(8) 174.1(3.9) 1.64(.14) 1134(13) 157.8(7.0) 1.60(.26)

2©
817(3) 4.95(.10) 9.28(.42) 671(4) 3.16(.25) 3.65(.14)

947(10) 158.1(3.0) 7.23(.29) 875(19) 140.1(5.2) 7.36(.85)

3©
848(9) 15.73(.87) 19.9(4.0) 718(8) 8.3(1.1) 5.35(.34)

987(10) 163.1(2.8) 3.95(.35) 936(31) 139.3(8.2) 4.83(.21)

4©
913(19) 18.9(5.4) 13.0(4.2) 750(34) 14.3(6.5) 7.6(1.9)

1047(32) 152(23) 4.2(3.2) 1054(101) 133(31) 3.78(.62)

5©
871(12) 52.7(5.6) 41.6(5.9) 813(13) 21.8(5.0) 14.3(1.3)

1040(10) 164.9(3.5) 3.26(.29) 964(21) 150.1(6.8) 3.73(.31)

TABLE II: Center-of-mass energy E∗
n, P -wave pion-pion scattering phase shift δ1 and the modulus

of the pion form factor at the pion masses mπ = 380 MeV (left block) and 290 MeV (right). E∗
n

are given in units of MeV.

fit results are shown in Figures 3–12 for each mass and the operator choices 1©, ..., 5©. In

the left panel, the effective masses for the two lowest energy states are shown together with

the fit results (gray bands). We fix tR/a = 8 or 9. The effective mass at t + a/2 means

an energy obtained from the equation that Dn(t+ a)/Dn(t) = Dn(t+ a, tR)/Dn(t, tR). The

right panel represents the effective amplitude Dn(tR)|An,q|2 as a function of t. The gray

bands show the fitted value and the fitting range. At the t = tR, the data point for the

amplitude is missing because R(t, tR) defined in Eq. (31) is a unit matrix and thus contains

no information for the amplitude. Although the signal quality depends on the mass and

channel, energy eigenstates are clearly identified for all channels.

C. Results

We convert the energy eigenvalues En (n = 0 and 1) for each operator choices, i.e. the

momentum configuration, into the center-of-mass energy E∗
n using the dispersion relation.

Then, inserting E∗
n into the Lüscher’s formula (16) yields the P -wave scattering phase shift
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FIG. 3: Effective energies and amplitudes for the operator set 1© and mπ = 380 MeV.
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FIG. 4: Same as Figure 3, but for the operator set 2© and mπ = 380 MeV.
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FIG. 5: Same as Figure 3, but for the operator set 3© and mπ = 380 MeV.
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FIG. 6: Same as Figure 3, but for the operator set 4© and mπ = 380 MeV.

19



4 6 8 10 12 14
t / a

0.5

0.6

0.7

0.8

0.9

1

1.1

χ2
/dof=0.8,  aE

0
=0.6181(56)

χ2
/dof=1.2,  aE

1
=0.6974(47)

π(1,0,0)π(0,1,0)  j
b
(1,1,0)

0

2e-06

4e-06

6e-06

8e-06

1e-05
χ2

/dof=0.6, D
1
(t

R
)|A

1q
|
2
=2.13(40) 10

-6

4 6 8 10 12 14
t / a

1.2e-05

1.4e-05

1.6e-05

1.8e-05

2e-05
χ2

/dof=0.6, D
0
(t

R
)|A

0q
|
2
=1.216(35) 10

-5

FIG. 7: Same as Figure 3, but for the operator set 5© and mπ = 380 MeV.
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FIG. 8: Same as Figure 3, but for the operator set 1© and mπ = 290 MeV.
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FIG. 9: Same as Figure 3, but for the operator set 2© and mπ = 290 MeV.
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FIG. 10: Same as Figure 3, but for the operator set 3© and mπ = 290 MeV.
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FIG. 11: Same as Figure 3, but for the operator set 4© and mπ = 290 MeV.
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FIG. 12: Same as Figure 3, but for the operator set 5© and mπ = 290 MeV.
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FIG. 13: Upper panels: Scattering phases calculated using the Lüscher formula (16) together with

the fits to the GS form (A8). Lower panels: Modulus of the pion form factor calculated using the

Lellouch-Lüscher formula (17) together with the GS-model curves (blue dashed) and the fits to

(13) (red solid). Circles, squares, diamonds, triangles-up and triangles-left data points correspond

to the operator sets 1©– 5© given in Table I, respectively.

δ1. The results for E∗
n and δ1 are shown in Table II. We neglect the KK̄ multi-channel

effects since the largest energy E∗
n listed in Table II is only slightly higher than 2mK .

In the upper panels of Figure 13 we plot the scattering phase δ1 at various energies E∗
n.

To study the energy dependence of δ1, we fit the lattice data to the GS model (A8). We

find that this model gives a rather good description of the lattice data. Through the fit, we

can extract the gρππ coupling and the ρ-resonance mass mρ, which are listed in Table IV.

Such way to determine the ρ-resonance mass is different from the conventional method to

obtain the effective mass from a two-point correlation function. We can make a comparison

of mρ given in Table IV and the effective mass of operator choice 1© given in Table II. As
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mπ = 380 MeV mπ = 290 MeV

c0 c1 c2 c0 c1 c2

1.273(51) 0.31(10) -0.07(17) 1.195(47) 0.29(19) -0.00(27)

TABLE III: Coefficients c0, c1 and c2 of the model (13). c1 and c2 are determined by fitting the

lattice data of (|Fπ(s)/FGS
π (s)| − 1)/s to the polynomials c1 + c2(s − 2m2

ρ) and c0 is determined

by charge conservation condition: c0 + c1(−m2
ρ) + c2(−m2

ρ)
2 = 1. c1 and c2 are given in units of

GeV−2 and GeV−4, respectively.

the pion mass decreases, the effective mass becomes smaller than the mρ extracted from

the scattering phase. This is consistent with our expectation, since at the physical pion

mass, the effective mass of the ground ππ state shall be significantly lower than the physical

ρ-meson mass. To see this trend more clearly, we still need to improve precision or to use

lighter pion mass.

Near the resonance region, some data points deviate from the fit curve significantly. This

might be due to the rapid change of the scattering phase in the resonance region. Namely,

some systematic effects in the determination of the energy eigenvalues may translate into a

big shift in the scattering phase and cause a deviation from the fit curve. For instance, in our

calculation we use only 2× 2 correlation matrix, which might not be enough to completely

eliminate the excited-state effects.

With the values of |An,q|, we determine the modulus of the pion form factor |Fπ(s)|
using the Lellouch-Lüscher formula (17). In this formula, a derivative of scattering phase

is required. Here we use the GS description of the scattering phase (A8). The results for

|Fπ(s)| are given in Table II. In the lower panels of Figure 13, |Fπ(s)| is shown as a function

of energy. As mentioned before, the simple GS form (8) (using the lattice results of mρ

and gρππ in Table IV as inputs) shown by the dashed curve gives too small values near the

resonance region compared to our lattice data.

We then use the modified form (13) to describe the lattice data. The difference between

the form (8) and (13) can be written as

|Fπ(s)|
|FGS
π (s)| − 1 =

N
∑

n=0

cn
(

(s−m2
ρ)
n − (−m2

ρ)
n
)

= s
(

c1 + c2(s− 2m2
ρ) + · · ·

)

. (37)

In Figure 14 we show the data of (|Fπ(s)/FGS
π (s)|−1)/s as a function of s. The data points
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FIG. 14: Difference between the lattice data of |Fπ(s)| and the GS form (8). The data for

(|Fπ(s)/FGS
π (s)| − 1)/s are plotted as a function of s together with the fit to the polynomial

c1 + c2(s− 2m2
ρ).

seem to be well described by a straight line up to statistical fluctuations. We therefore

fit them to the form c1 + c2(s − 2m2
ρ). The fitting results for c1 and c2, together with c0

determined from charge conservation, are given in Table III. Within current statistics, the

values of c2 are consistent with 0 for both pion masses, and it is not necessary to pursue

higher polynomial terms with cn>2. Putting c0, c1 and c2 into (13), we draw the fit curves

for |Fπ(s)| in Figure 13. By including the polynomial terms, the curves match the lattice

data. Note that we have imposed the charge conservation condition when obtaining the

values of cn in Table III. If we don’t impose this constraint and fit with a free c0, we find

for c0 + c1(−m2
ρ) + c2(−m2

ρ)
2 = 1.08(14) at mπ = 380 MeV and 1.12(16) at mπ = 290 MeV.

The charge conservation condition is well reproduced by our lattice data.

As a by-product of this calcuation, we evaluate the pion mean-square charge radius

25



lattice mπ = “380 MeV” mπ = “290 MeV”

mπ [MeV] 378.6(7) 291.8(1.1)

mρ [MeV] 875(7) 819(14)

gρππ 5.85(19) 5.78(23)

(time-like) 〈r2π〉 [fm2] 0.377(38) 0.392(41)

(space-like) 〈r2π〉 [fm2] 0.334(10)(+00
−32) 0.366(19)(+00

−42)

TABLE IV: Numerical results for mπ, mρ, gρππ and 〈r2π〉 at mπ = 380 MeV (left) and 290 MeV

(right). The time-like 〈r2π〉 are evaluated using Eq. (38). The space-like 〈r2π〉 are compiled using

the space-like form factor, where the first error is statistical and the second one originates from the

choice of the parameterization form of the q2 dependence of Fπ(q
2) (linear, quadratic, VMD with

polynomial corrections).

(isovector part only) through

〈r2π〉 = 6
∂|Fπ(s)|
∂s

∣

∣

∣

∣

s=0

= 6

(

− 1

f0

(

b

4
+

1

3π

)

+ c1 + c2
(

−2m2
ρ

)

)

, (38)

using the modified GS form. The first term arises from the GS model with b and f0 defined

in (A7). The second and third terms are the polynomial corrections. The results for 〈r2π〉 are
listed in Table IV, where they are compared with the calculation in the space-like momentum

transfer on the same gauge ensembles [56, 57]. The central values of the time-like data seem

systematically larger than the space-like ones but still consistent within the statistical errors.

VI. CONCLUSION

In this work, we calculate the complex phase and the modulus of the pion form factor

in the time-like momentum region. We perform the calculation at two pion masses mπ =

380 MeV and 290 MeV and at a lattice spacing of a = 0.11 fm on Nf = 2+ 1-flavor overlap

fermion configurations generated by the JLQCD collaboration.

In the elastic scattering region, the complex phase of Fπ(s) is given by the P -wave pion-

pion scattering phase, thus can be evaluated using the standard Lüscher’s finite-volume

formula. We obtain the results at ten different values of s from one setup in the center-of-

mass frame and four in the moving frames. From the energy dependence of the scattering

phase, we extract the gρππ coupling constant and the ρ-resonance mass mρ.
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Lattice calculation of the modulus of the pion form factor was originally proposed in [27],

and here we extend the method to general moving frames and perform the actual calculation

using the all-to-all propagator technique. We obtain a clear signal of the form factor and

phase indicating the vector meson resonance. The lattice data for |Fπ(s)| are not consistent
with the simple GS model. To address this discrepancy we introduce a simple polynomial

correction to the GS form, which describes the lattice data quite well.

Though we focus on the calculation of the matrix elements 〈0|jψ̄ψb |ππ〉V , which can be

directly related to |Fπ(s)|, the information hidden in the matrix elements of the jππb -current

insertion can also be useful for the study of the resonance properties [58–60].

As an exploratory study, our work demonstrates the feasibility of calculating the pion

form factor in the time-like region using lattice QCD. It is still challenging to make a precise

comparison to the experimental e+e− data, since we need to calculate the form factor at the

physical pion mass, extract much more data points and control the errors both statistically

and systematically at the level of experimental precision.
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Appendix A: Gounaris-Sakurai Model

Using the twice-subtracted dispersion relaion, one can relate the real part of Πρ(s) to its

imaginary part through

ReΠρ(s) = c0 + c1s+
s2

π
P
∫ ∞

4m2
π

ds′
ImΠρ(s

′)

s′2(s′ − s)
, (A1)
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where P denotes the principal value of the integral. Inserting (11) into the dispersion

relation, one has

ReΠρ(s) = c0 + c1s+
g2ρππ
6π

(

k2h(
√
s)− s

3π
+
m2
π

π

)

, (A2)

where the function h(
√
s) is given by

h(
√
s) =

2

π

k√
s
ln

(√
s+ 2k

2mπ

)

, (A3)

for s > 4m2
π. Using the conditions

ReΠρ(s)

∣

∣

∣

∣

s=m2
ρ

= 0,
dReΠρ(s)

ds

∣

∣

∣

∣

s=m2
ρ

= 0, (A4)

one can determine the constants c0 and c1 and find for

ReΠρ(s) =
g2ρππ
6π

(

k2(h(
√
s)− h(mρ))−

2k2ρ
mρ

h′(mρ)(k
2 − k2ρ)

)

. (A5)

This finally results in the GS form factor as

FGS
π (s) =

f0

k2h(
√
s)− k2ρh(mρ) + b(k2 − k2ρ)− k3√

s
i

(A6)

with

b = −h(mρ)−
24π

g2ρππ
−

2k2ρ
mρ

h′(mρ),

f0 = −m
2
π

π
− k2ρh(mρ)− b

m2
ρ

4
. (A7)

Here we use the same notations as in [61].

Using the Watson’s theorem, it is natural to find for the P -wave pion-pion scattering

phase
k3√
s
cot δ1(s) = k2h(

√
s)− k2ρh(mρ) + b(k2 − k2ρ). (A8)

Near the resonance energy
√
s ∼ mρ, one has

k3√
s
cot δ1(s) = − 24π

g2ρππ
(k2 − k2ρ) +O((

√
s−mρ)

2). (A9)

This approximation reproduces the effective range formula, which was proposed in [62] and

commonly used in previous lattice QCD studies [11–17] to describe the s-dependence of

the scattering phase. Note that both the GS model and effective range formula account
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for the leading-order Taylor expansion term at
√
s = mρ and thus have no control of the

s-dependence for
√
s≫ mρ. In [17], various barriers were set for large s but with the given

statistics different parameterizations are not distinguishable. Considering the fact that the

current calculation mainly collects the data near the resonance energy, we simply adopt (A8)

in our analysis.

Appendix B: Lüscher’s formula used in this calculation

Given the total momentum P and irreducible representation Γ, the ways to construct the

function φP,Γ(q) are given in [41] for the center-of-mass frame and in [42] for the general

moving frames. Here we simply give the expressions for φP,Γ(q), which are defined through

tanφP,Γ(q) = − γπ3/2q

Zd,Γ(q)
, P =

2π

L
d (B1)

with no ambiguity by setting φP,Γ(0) = 0 and requiring a continuous dependence of φP,Γ(q)

on q. The denominator Zd,Γ(q) is given by

Zd
00, for d = (0, 0, 0), Γ = T−

1 ,

Zd
00 +

2√
5
q−2Zd

20, for d = (0, 0, 1), Γ = A−
2 ,

Zd
00 − 1√

5
q−2Zd

20 + i
√
3√
10
q−2(Zd

22 −Zd
22̄), for d = (1, 1, 0), Γ = B−

1 ,

Zd
00 − 1√

5
q−2Zd

20 − i
√
3√
10
q−2(Zd

22 − Zd
22̄), for d = (1, 1, 0), Γ = B−

2 ,

Zd
00 +

√
2√
15
q−2

(

(−1− i)Zd
21 + (1− i)Zd

21̄ + iZd
22 − iZd

22̄

)

, for d = (1, 1, 1), Γ = A−
2 .

(B2)

In the above expression, Zd
lm is a short-hand notation for the zeta function Zd

lm(1; q
2), which

is defined through

Zd
lm(s; q

2) =
∑

n∈Pd

Y∗
lm(n)

(|n|2 − q2)s
, (B3)

with

Ylm(r) = rlYl,m(Ωr), Ylm̄(r) = rlYl,−m(Ωr) (B4)

and

Pd =

{

n

∣

∣

∣

∣

n = ~γ−1(m+
1

2
d), for m ∈ Z

3

}

. (B5)

Zd
lm(s; q

2) is divergent for s ≤ l
2
+ 3

2
and need to be analytically continued in a numerical

calculation. An analytically continued form of Zd
lm(1; q

2) is given in [50] and confirmed by
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[63] with detailed derivations.1

Appendix C: Lellouch-Lüscher formula in the P -wave ππ scattering

The demonstration of (17) follows closely [43].

In the infinite volume limit, the correlator CV (t) turns to be

CV (t) =

∫

V

d3x e−iP·x〈0|jb(x, t)j†b(0, 0)|0〉

−−−→
V→∞

1

(2π)3

∫

d3p1

2E1

d3p2

2E2
δ(3)(p1 + p2 −P)|〈0|jb(0)|ππ〉|2e−(E1+E2)t

=
1

(2π)3

∫

dE

∫

d3p1

2E1

d3p2

2E2

δ(3)(p1 + p2 −P)δ(E −E1 − E2)|〈0|jb(0)|ππ〉|2e−Et.

(C1)

In a general moving frame, the center of mass is moving with velocity v = P/E and the

momenta pi and p∗
i (center-of-mass momentum) are related to each other by the standard

Lorentz transformation

p1 = ~γ(p∗
1 + vE∗

1), p2 = ~γ(p∗
2 + vE∗

2)

E1 = γ(E∗
1 + v · p∗

1), E2 = γ(E∗
2 + v · p∗

2), (C2)

where we have defined

γ =
1√

1− v2
, ~γp = γp‖ + p⊥, ~γ−1p = γ−1p‖ + p⊥, (C3)

with p‖ =
p·v
|v|2v and p⊥ = p− p‖. Note that the measure d3pi

2E
and delta function δ(4)(p1 +

p2 − P ) are Lorentz invariant and satisfy

d3pi
2Ei

=
d3p∗

i

2E∗
i

, δ(4)(p1 + p2 − P ) = δ(4)(p∗1 + p∗2 − P ∗), P ∗ = (E∗, 0). (C4)

However, the amplitude 〈0|jb(0)|ππ〉 is not invariant and transforms as

〈0|jb(0)|ππ〉 = i(p1 − p2) · b Fπ(s)

= i[~γ(p∗
1 − p∗

2)] · b Fπ(s)

= ig(γ)(p∗
1 − p∗

2) · b Fπ(s), (C5)

1 In [63], the zeta function is defined using Ylm(n) rather than its complex conjugate.
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with g(γ) = γ for b ‖ P and g(γ) = 1 for b ⊥ P.

Inserting (C4) and (C5) into (C1), we have

C(t) −−−→
V→∞

1

(2π)3

∫

dE

∫

d3p∗
1

2E∗
1

d3p∗
2

2E∗
2

δ(3)(p∗
1 + p∗

2)δ(E
∗ −E∗

1 − E∗
2)|〈0|jb(0)|ππ〉|2e−Et

=
1

(2π)2
2

3

∫

dE g(γ)2
k3

E∗ |Fπ(s)|
2e−Et, (C6)

with s = E∗2 = 4(m2
π + k2).

On the other hand, when taking a large volume limit in (15), the summation over discrete

energy states will change to a continuum integral

∑

n

→
∫

dE ρV (E), ρV (E) =
dn

dE
=

1

π

d(δ1 + φP,Γ)

dE
=

E

4πk2

(

k
∂δ1
∂k

+ q
∂φP,Γ

∂q

)

, (C7)

where we have used the Lüscher’s quantization condition (16). The correlator is now given

by

CV (t) −−−→
V→∞

∫

dE ρV (E)|〈0|jb|ππ, n〉V |2e−Ent. (C8)

Comparing (C8) and (C6) we obtain the relation (17). Strictly speaking, the equivalent

integral does not mean the equivalent integrand. Besides, in the demonstration we have

used the Lüscher’s quantization condition, which is only valid in the elastic scattering region.

However, the integrals given by (C8) and (C6) cover also the inelastic scattering region. To

make a more rigorous demonstration, one can extend the approach of [27] to the moving

frames by requiring that the W particle carries the nonzero momentum. This is very similar

to the extension of the Lellouch-Lüscher formula [10] to the moving frames [25, 26].
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