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Abstract

We identify a natural analytic continuation in four dimensions from Minkowski signature to a

signature with two time-like momentum components. For two, three and four-point diagrams whose

external momenta define a scattering plane, this continuation can be implemented as a contour

deformation that leaves dependence on the momenta unchanged. For arbitrary ultraviolet-finite

scalar diagrams it is possible to do two integrals per loop in terms of simple poles in the new

signature. This results in a representation of any such diagram as a sum of terms, each with two

remaining integrals per loop.

1



I. INTRODUCTION

Scattering amplitudes are to a large extent determined by their singularity structure

in the complex planes of external momenta [1, 2]. This feature has been exploited, for

example, to derive a recursive construction for tree amplitudes [3] from singularities at

unphysical momenta, and enables the development of unitarity-based techniques [4, 5] for

the evaluation of loop integrals [6, 7].

For the construction of scattering amplitudes, any diagram in perturbation theory can be

thought of as a multidimensional complex integral, in the first instance by a Wick rotation

from Euclidean space. The rotation effectively changes a free Euclidean Green function,

1/(−k21 − · · · − k2n −m2) to the causal propagator, 1/(k20 − k21 · · · − k2n−1 −m2 + iε). In this

sense, the choice of contour corresponds to a change in the signature of the metric, from all

minus (or plus) to (1, 3).

Thus, the difference between Euclidean and Minkowski Green functions can be thought

of as a difference in the choice of contour integration. It is therefore natural to study other

signatures, corresponding to other choices of contour, in particular, a (2, 2) signature, for

which k2 = k20 + k21 − k22 − k23. In this connection, it is of interest to ask how to construct a

perturbation theory based on this signature as an analytic continuation of Minkowski, and

therefore ultimately Euclidean, perturbation theory.

The symmetries characteristic of (2, 2) signature help relate momentum to twistor spaces

through a Fourier transform [8]. The relationship between perturbation theory in (2, 2) and

Minkowski formulations [9], however, appears to be subtle and not yet fully clarified. Toward

this goal, we will show below that there exists a non-singular analytic continuation for scalar

diagrams, analogous to Wick rotation, from Minkowski to (2, 2) signature that crosses no

singularities. Perhaps surprisingly, singularities in the rotated integrals are avoided by the

same “iε” prescription as with Minkowski signature. Theories with ‘two times’ have also

been studied for their own interest [10, 11], and most of our results below apply when the

number of spatial dimensions is greater than two.

In the process of the transformation from (1, 3) to (2, 2), both internal loop integration

contours and external momenta are continued in terms of a single angular variable. This

naturally takes off shell any external momenta that are on the light cone for Minkowski

signature, except for momenta with no components in the transverse direction that is rotated.
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We observe that for such momenta overlapping collinear-infrared singularities survive the

rotation, and clarify a subtlety in the use of light cone coordinates that can lead to an

apparent vanishing of otherwise nonzero integrals. More generally, for two, three and four-

point functions whose external momenta define a scattering plane, Lorentz invariance always

allows us to choose a frame in which the Minkowski and (2, 2) functions are identical. This

result holds for massive and massless internal and external lines, on shell and off shell.

We begin the explicit development of these results in Sec. II, where we show how to con-

struct perturbation theory for (2, 2) signature by a Wick-like rotation from Minkowski space,

and discuss similarities and differences in the singularity structure of diagrams evaluated in

(1, 3) and (2, 2) signature. In (2, 2) signature it is natural to introduce two sets of light cone

coordinates, and in Sec. III we use this approach to show that after integration over the

two “minus” components of each loop, the remaining 2L-dimensional integrals are over a

finite region, dependent on the external momenta. We also observe that in (2, 2) signature,

perturbative unitarity is realized in two different ways. Restricting ourselves to ultraviolet

finite diagrams, in Sec. IV we derive a representation for an arbitrary (2, 2) scalar diagram

as a 2L-dimensional integral. We go on in Sec. V to derive a compact representation for

one-loop integrals with arbitrary masses and external momenta, and illustrate how infrared

singularities manifest themselves in (2, 2) signature, using our representation for the box

diagram. We close with a summary of our results.

II. FROM MINKOWSKI TO (2, 2)

As indicated above, our guiding criterion for the definition of (2, 2) integrals is that they

be analytic continuations of corresponding integrals in Minkowski space, constructed so

that the continuation manifestly encounters no singularities. In fact, such a construction

can be carried out by a direct generalization of Wick rotation. In this discussion, we restrict

ourselves to scalar integrals only. Like Wick rotation, the construction turns out to be

completely general and rather simple. We give it below, followed by a few consequences.
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A. Defining the integrals

We consider an arbitrary perturbative integral, written in covariant form, with L loops

and N lines of arbitrary mass, possibly with positive imaginary parts, and with external

momenta pj, which may or may not be on shell,

IN,L(pj) = (−i) iL−1
L∏

loops a=1

∫
d4la

(2π)4

N∏
lines i=1

1

k2i (la, pj)−m2
i + iε

. (1)

We take k2 = k20 − k21 − k22 − k23 to start. The first factor of −i on the right hand side

normalizes tree diagrams to be real whenever each vertex is associated with a factor −i and

each line with an i. Here and below, we set the coupling constant to unity. As indicated

in Eq. (1), line momenta are themselves determined by the loop and external momenta,

through linear combinations that can by summarized by matrices ηia and ξij, respectively,

ki = ηiala + ξijpj , (2)

with ηia, ξij = ±1, 0. The integration contours are defined, as usual, by the “iε” prescription,

in which energy integrals pass above the pole at the larger on shell energy for each propagator,

and below the pole at the smaller on shell energy.

We now define a new parameter, θ, and a new function, IN,L(pj, θ), constructed so that

it equals the original diagrammatic integral, (1) at θ = 0,

IN,L(pj, θ = 0) = IN,L(pj) . (3)

The new function is defined in terms of momentum components, as a joint rotation of the

‘one’ components, p1j of all external and l1a of all loop momenta, as illustrated in Fig. 1,

IN,L(pj, θ) = (−i) iL−1
L∏

loops a=1

∫
dl0adl

3
adl

2
a

(2π)4

∫ ∞
−∞

d(l1a e
−iθ)

×
∏

lines i

1(
k0i (l

0
a, p

0
j)
)2 − (ηial1ae−iθ + ξijp1je

−iθ
)2 − (k2i (l2a, p2j))2 − (k3i (l3a, p3j))2 −m2

i + iε
.

(4)

At finite θ, the real and imaginary parts of the denominator of propagator i are given by

Re(k2i + iε) = (k0i )
2 −

(
ηial

1
a + ξijp

1
j

)2
cos(2θ)− (k2i )

2 − (k3i )
2

Im(k2i + iε) =
(
ηial

1
a + ξijp

1
j

)2
sin(2θ) + ε . (5)
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FIG. 1: Rotation of the l1 contour.

As we vary θ from zero to π
2
, the coefficient of the square of (k1i )

2 in the real part changes

sign, while the imaginary part of each diagram starts at +iε, increases to a maximum at

θ = π
4
, always staying positive, and decreases back down to +iε at θ = π

2
. For fixed values

of the original momenta, pj, the integrand is thus finite over the entire continuation in θ,

and crosses no singularities. The procedure works for any choice of masses, so long as their

imaginary parts are negative.

The result of this procedure, continuation from θ = 0 to θ = π
2
, is a smooth transition from

Minkowski signature, with a single time-like momentum component, to a (2, 2) integral, in

which the 1 component has joined the 0 component as a positive contribution to the invariant

squares of the momenta. This fully-rotated integral is given explicitly by

IN,L

(
pj,

π

2

)
= −

L+1∏
loops a=1

∫
dl0adl

1
a dl

2
adl

3
a

(2π)4

N∏
lines i=1

1

(k0i )
2

+ (k1i )
2 − (k2i )

2 − (k3i )
2 −m2

i + iε
,

(6)

where we have suppressed the linear dependence of line momenta on loops and external lines.

We note that the integrals are defined by the same iε-prescription as in Minkowski space, a

perhaps surprising result. This definition has (at least) two important consequences for the

singularity structure of (2, 2) diagrams, which we develop in the following two subsections.
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B. Signature-invariance of two, three and four-point functions

For two- three- and four-point functions in Minkowski space, we can often go to a frame

where at least one component of spatial momentum is zero for all external lines. For 2 →

2 scattering, for example, this is the normal to the scattering plane. More generally, a

scattering plane can be identified by solving v · pi = 0 for i = 1 . . . 4, which is always

possible because at most three of the vectors are linearly independent. Of course, the vector

v is orthogonal to any linear combination of the pi, L
µ =

∑
aipi. If we can find any such

combination Lµ that is timelike, L2 > 0, v ·L = 0 implies that vµ is space-like. The subspace

normal to v then generalizes the scattering plane defined by physical momenta to the full

class of external momenta any of whose linear combinations is timeline. For any such set of

momenta, if we transform to a frame where vµ is in the ‘one’ direction above, all p1j = 0, and

the rotations of loop momenta can be carried out for fixed (Minkowskian) external momenta

without crossing singularities. Indeed, if the momentum integrals are convergent, Cauchy’s

theorem ensures that the integrals are independent of θ, because the rotation can be treated

as the change of a contour that can be closed at infinity. As a result, for such diagrams, we

have

A(3,1)
n (p1 . . . pn) = A(2,2)

n (p1 . . . pn) , (7)

for n ≤ 4, so long as the extra time-like coordinate is chosen perpendicular to the space

spanned by the pi, which remain in a Minkowskian (1, 2) subspace. Such a choice is always

possible for n ≤ 4. This result applies to scalar diagrams of all orders, any choices of (real)

masses, and for off-shell Green functions as well as on shell amplitudes. Indeed it applies to

diagrams with any number of external lines so long as all p1j = 0. We note that an analogous

invariance applies to Wick rotation for diagrams with all p0j = 0.

Although a simple consequence of analytic continuation, the relation (7) will enable us

to give new representations for loop integrals in (1, 3) signature for two-, three- and four-

point functions in Minkowski space, as special cases of general representations of n-point

functions in (2, 2). These representations will follow from the introduction of double light

cone coordinates in (2, 2) signature, which we will describe in Sec. III. We turn first, however,

to a brief investigation of the singularity structure of (2, 2) integrals.
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C. Singularities in (2, 2)

Starting from the defining equation (6), we can make quite strong statements about the

origin of the singularities of perturbative integrals in (2, 2) signature. In particular, because

they share the same iε prescription with their (1, 3) counterparts, the Landau equations

[1, 12, 13] that help determine singularities in perturbative integrals take the same form for

(1, 3) and (2, 2) signatures, Eqs. (1) and (6). This is most easily confirmed by reviewing

the use of Feynman parameterization to identify possible pinches in loop integrals [1], to

emphasize its signature independence. For the (2, 2) case, for example, we have simply

IN,L

(
pj,

π

2

)
= − Γ(N − 1)

L∏
loops a=1

∫
dl0adl

1
a dl

2
adl

3
a

(2π)4

N∏
lines i=1

∫ 1

0

dαi δ

(
1−

N∑
i=1

αi

)

× 1[∑N
i′=1 αi′ [k

2
i′(la, pj)−m2

i′ ] + iε
]N ,

(8)

the difference from (1, 3) being entirely in the definition of the k2i on the right hand side, and

the argument on the left. Because line momenta ki′ are linear in loop momenta la, the single,

parameterized denominator is quadratic in every loop momentum component lνa, while being

linear in the parameters αi′ . We note that the relative signs of the denominator terms in

this expression are determined uniquely by requiring that the coefficient of the imaginary

term iε be αi-independent. This ensures that whatever component integral we do first has

one Nth order pole in the upper half plane, and one in the lower half plane.

Necessary conditions for the presence of a singularity in (8) are then that those line

momenta ki′ whose coefficients αi′ are nonzero must satisfy

∂

∂lνa

[
N∑
i′=1

αi′ (ki′(la, pj))
2 + iε

]
= 2

N∑
i′=1

αi′ηai′k
ν
i′(la, pj) = 0 , (9)

for every component ν of every loop la, with ηai the matrix that relates loop to line momenta

in Eq. (2) above. These are the same (Landau) equations, whether in (1, 3) or (2, 2). A

singularity also requires, of course, that k2i = m2
i for the relevant lines. Thus, given the

differences in the signatures that define k2i for (1, 3) and (2, 2), there is no immediate corre-

spondence between momentum configurations found in the two cases for the same diagrams.

In particular, it is not obvious whether there is an analog in (2, 2) of the Coleman-Norton
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criterion for singularities [14] in (1, 3), that on shell momenta at a singularity correspond

to a physical scattering process. This would at least require us to develop intuition on

what “physical scattering” means in (2, 2) signature. Nevertheless, although we do not have

such a general criterion for singularities in (2, 2), we can make some significant observations,

finding a wide range of both similarities and differences from (1, 3).

In this connection, we note a simple result on singularity surfaces for Green function

integrals like IN,L(pj, θ), Eq. (8). When the external lines of a diagram are restricted to a

subspace where one component vanishes for all lines,

pνj = 0 , all j , (10)

the corresponding component of all internal on-shell lines must vanish at any pinch singular-

ity. To see this, consider an arbitrary “candidate” pinch surface with a set of on shell lines,

kl, k
2
l = m2

l , some of which have nonzero component kνl . Starting with any line momentum

ki ∈ {kl} with kνi 6= 0, we can follow the flow of positive (or negative) kνi , from line i into

some unique vertex of the diagram, which we label as, say, v0. Let us consider the combi-

nation ki, v0 as the beginning of a path (a “chain”) through the diagram. We continue the

path by picking any line attached to vertex v0 that carries positive ν component out of v0

to some other vertex v1. By momentum conservation, there must be at least one such line.

In this way, we continue the path through the diagram. Because of our assumption (10),

the ν component can never flow out of the diagram, and therefore the path will stay inside

the diagram at each step. If the diagram is of finite order, the path will eventually intersect

itself, by connecting a sequence of vertices,

v0 → v1 → · · · → vn → v0 . (11)

In general, there is more than one such path if the diagram has more than one loop, but

in any case we can pick a loop momentum la that flows precisely around the loop specified

by the sequence of vertices (11). For this loop, all the factors ηia and all the ν components

of lines ki are positive, and the Landau equations (9) cannot be satisfied for nonzero αi.

Therefore, this set of lines, and since they are arbitrary any set of lines with nonzero kνi ,

cannot satisfy the Landau equations and cannot be pinched on shell.

This result shows us that a kinematic range where the two signatures give a similar

singularity structure can be found for 2→ 2 on shell scattering amplitudes,

p1 + p2 → p3 + p4 , p1i = 0 , p0i > 0 . (12)
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For such a process, no pinch surface can have internal lines with a one component, and

the classification of pinch singularities follows the same reasoning as in Minkowski space

[16–18]. It is worth pointing out that in Minkowski space, because the scattering is planar

in the center-of-mass, pinch surfaces are always restricted to a three-dimensional subspace

here as well. Recall that we have observed above that the continuation can be carried out

without changing external momenta in this frame. The only difference in (2, 2) compared

to (1, 3) is that the “normal” to this subspace is now a time-like rather than a space-like

variable. In particular, for fixed angle scattering in massless theories [16–18], pinch surfaces

in (2, 2) reduce to the same “jet”, “soft” and “hard” subdiagrams long known to characterize

these amplitudes in Minkowski space. We will not pursue a further investigation of this case

here, but only note that there is every reason to believe that for gauge theories the basic

factorization properties and infrared structure of massless Minkowski 2 → 2 amplitudes

[17, 18] are the same in (2, 2).

The fundamental similarity between (1, 3) and (2, 2) singularity structure for 2 → 2

amplitudes is certainly the exception, and we need not look far for fundamental differences,

once we relax the condition p1j = 0, for external lines. Indeed, once the number of external

lines exceeds four, this condition restricts us to a subspace of their full momentum space. In

the new signature, a general amplitude has many singularities that are qualitatively different

from those found in Minkowski signature.

A fundamental property of light-like lines in Minkowski space is that the sum of two

positive energy light-like momenta has a positive semi-definite invariant mass, which vanishes

only when the momenta are proportional, that is to say, the lines are collinear. For (2, 2)

signature, in contrast, every light-like momentum, vµ, v0 > 0 defines a one dimensional

subspace of light-like vectors v̄µ with v̄2 = v̄ · v = 0, found by making equal SO(2) rotations

on the pairs (v0, v1) and (v2, v3),

v̄µ =

 R 0

0 R



v0

v1

v2

v3

 , R ∈ SO(2) . (13)

As a result, in (2, 2), the sum of two, non-collinear light-like momenta can also be light-like.

This has consequences for the singularity structure even of tree diagrams, as illustrated by
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FIG. 2: One-to-four scalar process discussed in the text.

Fig. 2. Here we start with the generalized “rest” momentum, qµ = (Q,Q′, 0, 0) in (2, 2)

signature, and we show a lowest-order diagram that produces four lines of momenta

p1 =

(
Q

2
, 0 , 0 ,

Q

2

)
,

p2 =

(
0 ,
Q′

2
,
Q′

2
, 0

)
,

p3 =

(
Q

2
, 0 , 0 ,− Q

2

)
,

p4 =

(
0 ,
Q′

2
,− Q′

2
, 0

)
. (14)

For this set of “outgoing particles”, the virtual lines have (p1+p2)
2 = (p3+p4)

2 = 0, in sharp

contrast to the corresponding diagrams of Minkowski space whenever the outgoing lines are

noncollinear. This suggests that beyond the simplest amplitudes, the concept of “jets”, for

example, would have to be generalized in any complete picture of (2, 2) scattering.

III. LIGHT CONE VARIABLES

We now turn to another interesting feature of (2, 2) integrals that are ultraviolet con-

vergent. In the rotated integral, IN,L(pj,
π
2
), Eq. (6), there is a nice symmetry between the

pairs of components, 0, 3 and 1, 2, and it is natural to introduce two pairs of light cone loop

momentum variables,

k±̃ ≡ k1 ± k2 ,

k± = k0 ± k3 , (15)
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where we have chosen a normalization for which

k2 = k+k− + k+̃k−̃ ,

2k · k′ = k+k′− + k−k′+ + k+̃k′−̃ + k−̃k′+̃ ,

d4k =
1

4
dk+dk+̃dk−dk−̃ . (16)

We use these variables below to develop a procedure for doing 2L integrals in an arbitrary

ultraviolet finite L-loop diagram. Before doing so, we point out one subtle point in making

such a change of variables. This observation applies as well to the use of light cone variables

in (1, 3) to develop, for example, light cone ordered perturbation theory [19].

A. Convergence and light cone variables

Consider the manifestly finite two-dimensional integral, of a self-energy form,

I2
(
p,m2

)
= −i

∫ ∞
−∞

dk1dk0
(2π)2

1

[(k0 + p)2 − (k1 − p)2 −m2 + iε]

1

[k20 − k21 −m2 + iε]

=
1

4πm2
. (17)

Here the two-dimensional “external” momentum is P = (P0, P1) = (p,−p), with p > 0. The

result of this integral is independent of parameter p because P 2 = 0, and readily follows

from standard formulas based on Feynman parameterization and Wick rotation. We can

also evaluate (17) as a pair of complex integrals explicitly in terms of its poles. Each of the

two variables, k0 and k1 encounters four poles, two in each half plane, and we can perform

the integral by closing one contour in either the upper or lower half plane without Wick

rotation.

Now let us try to re-express the integral, Eq. (17) in terms of light cone coordinates,

k± ≡ k0± k1, as in Eq. (15). In this notation, the vector P has P− = 2p and P+ = 0. This,

however, gives

I2
(
m2
)

=
−i
2

∫ ∞
−∞

dk+dk−

(2π)2
1

[k+(k− + 2p)−m2 + iε]

1

[k+k− −m2 + iε]
, (18)

which vanishes because the two poles in the k− integral are always on the same side of

the contour, regardless of the value of k+. This would seem to imply that the self energy

vanishes whenever P+ = 0, a paradoxical result that would extend to four dimensions. On
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the other hand, if we do the k+ integral first, the result is nonzero, because the two poles in

k+ are on opposite sides of the contour for −P− < k− < 0.

The reason for this inconsistency is that the change from Cartesian to light cone variables

involves an exchange of integrals that are not uniformly convergent in this case. To be

specific, suppose we wish to do the k− integral first at fixed k+. We would then first change

variables from (say) k0 to k+ in the original k0, k1 form, Eq. (17) at fixed k1, giving

I2
(
m2
)

=
−i

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk+
1

[(k+ − k1 + p)2 − (k1 − p)2 −m2 + iε]

× 1

[(k+ − k1)2 − k21 + iε]
. (19)

The next step would be to exchange the k1 and k+ integrals, and then change variables from

k1 to k− at fixed k+, giving (18), but this is not possible because the unbounded k1 integral

diverges badly for k+ = 0. We may note, however, that this pitfall does not prevent us from

carrying out rotations in Cartesian coordinates from (1, 3) to (2, 2) as above. The transition

to light cone coordinates is a separate issue.

B. Finite volume

Having pointed out a subtlety associated with the vanishing of external plus momenta,

we can limit ourselves to all nonzero external plus momenta. In this case, we can do all

the minus loop integrals in a given diagram, to get a sum of terms given by the rules of

light cone ordered perturbation theory (LCOPT) [19]. This procedure does not depend at

all on whether or not we have carried out the rotation that takes us from (1, 3) to (2, 2)

signature. For a scalar diagram G (normalized as above so that tree graphs are real) the

LCOPT expression found by integration over minus momenta is related to the covariant

form by

G({pa}) ≡ (−i) iL−1
∫ ∏

loops {l}

d4l

(2π)4

∏
lines k

1

k2 −m2
k + iε

= −
∑

orderings T

∫ ∏
loops {l}

dl+̃dl−̃dl+

4(2π)3

∏
lines {k}

θ(k+)

k+

∏
states {i} in T

1

P−i − si ([k]) + iε
,

(20)
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where P−i =
∑

a∈i p
−
a is the algebraic sum of total incoming and outgoing minus momenta

up to state i, and where

si ([k]) =
∑

lines {k}∈ state i

[k]−

=
∑
k∈i

−k+̃k−̃ +m2
k

k+

≡
∑
k∈i

(
− k−̃rk + µk

)
, (21)

is the sum of all the on shell minus momenta in a specific state. We have written the result

in terms of the (2, 2) signature transverse ‘light cone’ variables formed from kT = (k1, k2) in

Eq. (15), and we define

rk ≡
k+̃

k+

µk ≡
m2
k

k+
, (22)

where the label k identifies both the line momentum and the corresponding mass. The

transition to (2, 2) signature can be carried out before the minus integrals that lead to the

second equality in Eq. (20), or after.

We will first use the invariant integral representation of an arbitrary ultraviolet finite

diagram in Eq. (20) to show that the volume of the l+ integrals is finite after the l− integrals

at fixed l+̃ and l−̃. We will go on to use the light cone ordered form to show that the l+̃

integrals also have a finite volume after the integration over the l−̃ for diagrams that are

ultraviolet finite.

Assume, then, that some plus loop momentum grows without bound in such a way that

it is much larger than the corresponding components of all external momenta. As we shall

see, it is then possible to find a minus loop integral such that all of its poles are in the

same half-plane, either upper or lower. Such an integral gives zero, and because we assume

that the diagrams are well-behaved at infinity, we can choose to do this minus integral first.

We conclude that the integral is non-zero only in a bounded region in plus momentum. To

be specific, let us provide an explicit construction of the loop in question, by an argument

similar to that of Sec. II C above.

The construction begins by identifying the internal line with the largest plus momentum,

which we may call K+
1 > 0. We can choose the orientation of momentum flow so that this
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quantity is positive. Momentum K+
1 then flows into a unique vertex of the diagram, which we

may call V1, and out of a unique vertex V0. Suppose that vertex V1 is an a-point vertex. Since

momentum K+
1 flows in to V1 at least one line must carry a momentum K+

2 ≥ K+
1 /(a− 1)

out of V1. If K+
1 is sufficiently large, this line cannot flow out of the diagram, but must flow

to another vertex, V2, internal to the diagram. Assuming for simplicity that this is also an

a-point vertex, at least one line must carry plus momentum K+
3 ≥ K+

1 /(a−1)2 out of V2. We

repeat the process, following the largest flow of plus momentum, and in each case, we find a

momentum that flows out of the next vertex that is proportional to K+
1 , and which therefore

cannot carry momentum onto an external line when K+
1 is large enough. For any diagram

of finite order, we will eventually encounter a vertex Vm = Vk, with k = 0 . . .m− 2 (m = 2

is not possible for a diagram with no ultraviolet-divergent subdiagrams in four dimensions).

This is the loop we are after.

Exactly the same reasoning would apply to show that the l+̃ integrals also have a finite

volume at fixed l+ and l−. We show next, however, that the l+̃ integration regions are

limited even after the l− integrals are performed. For this, we apply a similar reasoning

to the light cone ordered expression, the second equality in Eq. (20). That is, we assume

that some set of loop momenta, {l+̃a } become large enough that it is possible to find a loop

around which every line carries plus tilde momentum in the direction of the loop. We claim

that in this case, the momentum l−̃b that flows around this loop sees poles only in the lower

(or upper) half plane in Eq. (20), so that its integral vanishes. To show this, we consider

the on shell momentum of the ith line in this loop, of momentum ki. Neglecting external

momenta and masses for large loop momenta, we have

[ki]
− = −k−̃i

k+̃i
k+

= −

(
ηibl
−̃
b +

∑
a6=b

ηial
−̃
a

) (
ηibl

+̃ +
∑

a6=b ηial
+̃
a

)
k+i

, (23)

where as in Eq. (2), ηbi = ±1 around the loop, depending on whether loop lb flows with or

against the defining direction of line momentum ki, and where the sum over a includes all

loop momenta with the exception of lb. To be definite, suppose l+̃b is large and positive. The

condition that each component k+̃i flows in the same direction as loop momentum lb can

then be written as

ηibl
+̃
b +

∑
a6=b

ηial
+̃
a = ηib

∣∣∣∣∣l+̃b +
1

ηib

∑
a6=b

ηial
+̃
a

∣∣∣∣∣ . (24)
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We then have

[ki]
− = −

(
η2ibl
−̃
b + ηib

∑
a6=b

ηial
−̃
a

) ∣∣∣l+̃b + 1
ηib

∑
a6=b ηial

+̃
a

∣∣∣
k+i

, (25)

and the coefficient of l−̃b is always positive for every term in which it appears in the LCOPT

denominators of Eq. (20), since k+i is also always positive. All l−̃b poles are thus in the same

half plane (lower for l+̃b positive), and the integrals vanish so long as the loop appears in at

least two states. This, however, is ensured by our assumption of an ultraviolet-finite scalar

diagram.

C. Unitarity(ies)

The light cone ordered expression (20) for an arbitrary diagram implies the order-by-order

unitarity of perturbation theory, a relation that has been used extensively in showing the

cancellation of infrared divergences in inclusive cross sections [15, 20, 21]. Here we note only

the fundamental identity at the basis of this connection. We consider an arbitrary diagram

G(T ), with a specific light cone order T , and sum over the terms found by setting each state,

si of T on shell in turn, replacing its light cone denominator by a delta function. Each such

substitution we refer to as a “cut” of the diagram. All states before (to the left of) the cut

retain a +iε prescription, and those after the cut (to the right) are given a −iε prescription.

See the left hand side of Fig. 3.

Each cut in the figure splits the ordered diagram into two ordered sub-amplitudes, G(T )j,l

and G(T )j,r , at fixed loop momenta to the “left” and “right” of the cut, respectively. The

fundamental identity, which holds at fixed values of the all loop momenta l+a , l+̃a and l−̃a , is

G(T )j,r
∗G(T )j,l =

VG−1∑
j=1

(
VG−1∏
i′=j+1

1

P−i′ − si′ − iε

)
2πδ

(
P−j − sj

)(j−1∏
i=1

1

P−i − si + iε

)

= −i

[(
VG−1∏
i′=1

1

P−i′ − si′ − iε

)
−

(
VG−1∏
i=1

1

P−i − si + iε

)]
= −i [G∗ − G] , (26)

where G is the uncut diagram at fixed remaining components of loop momenta and VG the

number of vertices in G. The on shell value of minus momentum for state i is si. The

proof of this relation follows easily from repeated use of the distribution identity, 2πiδ(x) =

15



FIG. 3: A representation of perturbative unitarity, Eq. (26) for an arbitrary diagram G. As shown

in the text, after an integral over loop l− integrals, this relation holds for each light cone ordering

of diagram G at fixed values of all loop l+, and l1, l2 or l+̃ and l−̃ . A similar result holds when all

l−̃ integrals are carried out at fixed l+̃, l+ and l−.

1/(x− iε)− 1/(x+ iε). In this form the integrand of the sum of cut diagrams is related to

the imaginary part of the integrand for the uncut diagram, a generalized form of the optical

theorem, as illustrated by Fig. 3.

At the level of the fundamental identity, Eq. (26), then, unitarity is a property of per-

turbation theory in (2, 2) signature as much as in Minkowski space. In fact, we can derive

light cone ordered perturbation theory just as well by performing the l−̃ integrals as the l−

integrals, deriving an identity of exactly the same form as Eq. (26) for an arbitrary diagram,

but now at fixed loop momenta l+, l− and l+̃. In a sense, then, there is an extra unitarity

relation for (2, 2) compared to (1, 3). We do not have a practical application of this result

to propose at this time.

IV. 2L-DIMENSIONAL REPRESENTATION

The double set of light cone coordinates of Eq. (15) can be used to derive a new repre-

sentation for diagrammatic integrals, based on the linearity of all propagators in the minus

and minus tilde variables. We start with the general scalar integral, Eq. (6), in (2, 2) signa-

ture for an arbitrary diagram with L loops and N lines, assuming that Ng > 2Lg for any

subgraph, g, so that all subintegrals are convergent,

IN,L(pj) ≡ −
∫ L∏

i=1

dl+i dl
+̃
i

2(2π)2
dl−̃i dl

−
i

2(2π)2

N∏
α=1

1

Dα

. (27)
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In the defining normalizations of Eq. (15), the denominators are given by

Dα = (lα − pα)2 −m2
α + iε

≡
(
l+α − p+α

) (
l−α − p−α

)
+
(
l+̃α − p+̃α

)(
l−̃α − p−̃α

)
−m2

α + iε . (28)

Here lα and pα are the combinations of loop momenta li and external momenta pj, respec-

tively, flowing along internal line line α, with momentum kα. In the notation of Eq. (2),

lα = ηαili , pα = ξαjpj , (29)

with ηαi, ξαj = ±1, 0. Making the minus and minus-tilde loop momentum dependence

explicit, we write the denominators as

Dα = A+
αil
−
i + A+̃

αil
−̃
i +Bα , (30)

in terms of coefficients A and B, defined by

A+
αi = (l+α − p+α )ηαi ,

A+̃
αi = (l+̃α − p+̃α )ηαi ,

Bα = (p+α − l+α )p−α + (p+̃α − l+̃α )p−̃α −m2
α

= p2α −m2
α − 2p̂α · l , (31)

where in the second relation for Bα, we define a vector with only minus and minus tilde

components,

p̂µα ≡
(

0+, p−α , 0
+̃, p−̃α

)
. (32)

The linearity of all denominators, (28) in both sets of integration variables {l−i } and {l−̃i }

will allow us to derive an explicit form for each integral IN,L as a sum over choices of 2L on

shell (‘cut’) lines.

Our integrals can be put into a more compact form by introducing a single index to cover

the sum over components and loops,

IN,L(pj) = −
(

1

4(2π)4

)L ∫ 2L∏
k=1

dyk

∫ ∏2L
j=1 dxj∏N

α=1(
∑2L

j=1Aαjxj +Bα + iε)
, (33)

where {xj} ≡ {l−i , l−̃i }, runs over the minus and minus tilde components of all loops and α

over the set of lines. To make our result as explicit as possible, we are free to define

x2i−1 = l−i ,

x2i = l−̃i , (34)
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where i runs from 1 to L. Correspondingly, we may define the remaining 2L integration

variables as

y2i−1 = l+̃i ,

y2i = l+i , (35)

for the set yk. The relabeled coefficients Aαi are then linear functions of parameters y and

can be thought of as defining a matrix. To be explicit, in terms of the coefficients of Eq.

(31), we define

Aα,2i−1 ≡ A+
αi ,

Aα,2i ≡ A+̃
αi . (36)

We may choose to do the integrals in the order y1 · · · y2L, and as we will see, individual terms

in our results depend in a structured manner on the order of integration. The final result,

however, cannot depend on the order.

The essential observation regarding the integral in Eq. (33) is that the singularity struc-

ture of the integrand for each xj is simple poles at every step in the integration procedure,

and that closing on these poles does not affect the limits of the remaining xj, only the yj.

We will choose to perform these integrals by closing contours in each lower half complex

xj-plane. The choice of each pole sets one line on shell, and at the end of 2L integrations we

have a sum of terms in which 2L lines are “cut” in this fashion. Let an arbitrary sequence

of k lines found in this way be labelled Ak, where k = 1 labels the first line set on shell,

and A2L the full set for the sequence. Each set Ak must be such that: (i) its lines carry

k linearly independent loop momenta, and (ii) after any m integrals x1 . . . xm, m ≤ k − 1,

there must be a lower half-plane pole in the next integration variable, xm+1. Let us denote

by A(Ak) the k × k matrix whose elements are Aαj, such that j = 1 . . . k and α ∈ Ak.

The result we are after clearly depends on the values of the xj when k, k = 1 . . . 2L, lines

are set on shell, that is on solutions to a system of 2L linear equations in 2L variables. For

any choice of k lines, where k need not be an even number, these equations are

A(Ak)
α · x+B(Ak)

α + iε ≡
k∑
j=1

A
(Ak)
αj xj +B(Ak)

α + iε = 0 , α ∈ Ak , (37)

where, again, the superscripts identify A(Ak) as a k× k matrix and B(Ak) as a k-component

vector. The matrix, of course, must be non-singular, which is to say that we will find k
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independent poles only if the momenta of these lines are linearly independent. The solution

to Eq. (37) can be represented in terms of its real and imaginary parts xj = X
(Ak)
j + iεY

(Ak)
j ,

j = 1 . . . k as 1

X
(Ak)
j = −

∑
α′

(
A(Ak)

)−1
jα′
B

(Ak)
α′ ,

Y
(Ak)
j = −

∑
α′

(
A(Ak)

)−1
jα′

, (38)

in terms of the inverse of matrix A(Ak). Note the sum over unrepeated index α′ in the ex-

pression for the imaginary part. The solutions in (38) determine the values of the remaining

denominators when all k → 2L denominators are replaced by delta functions. This result

alone does not determine the integral, however, because of theta functions that result from

closing each contour in the lower half-plane in turn. The arguments of these step functions

depend, in general, on the order in which the integrals are carried out.

We will now show that in the notation of Eq. (38), the result of doing the 2L xj integrals

in (33) is given by

IN,L = −
(
−1

4(2π)2

)L ∑
A2L

∫ 2L∏
k=1

dyk θ

(
detA(Ak−1) F

(Ak)
αk (y1 . . . yk)

detA(Ak)(y1 . . . yk)

)

× 1

det(A(A2L))

1∏
β/∈A2L

(Aβ ·X(A2L) +Bβ + iε(1 + Aβ · Y (A2L)))
. (39)

The product of theta functions depends, as suggested above, on the order of integration.

For the kth integration, we find

F (Ak)
αk

= 1 +
k−1∑
j=1

A
(Ak)
αkj

Y
(Ak−1)
j , (40)

where αk is the index of the kth line put on shell, as above A(Ak) is the k×k matrix associated

with the first k lines, and where Y
(Ak−1)
j is the solution for the imaginary part of xj given

in (38) when the first k − 1 lines are put on shell. It should be noted that in the sum over

sequences A2L there are many terms that differ only in sign and integration region. The

sign comes from the determinant of A(A2L). Note the response of the imaginary parts to the

selection of poles, as analyzed in the context of “loop-tree” dualities for Minkowski integrals

[22–24].

1 Here we assume that all masses are real. The generalization to masses with positive imaginary parts is

immediate.
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For an inductive proof of Eq. (39), we start by noting that that the role of the yj is

entirely passive. We need therefore only consider the proof of

JN,l (Aαi, Bα) ≡
∫ ∏l

j=1 dxj∏N
α=1(

∑l
j=1Aαjxj +Bα + iε)

= − (−2πi)l
∑
Al

l∏
k=1

θ

(
detA(Ak−1) F

(Ak)
αk (y1 . . . yl)

detA(Ak)(y1 . . . yl)

)

× 1

det(A(Al))

1∏
β/∈Al(Aβ ·X

(Al) +Bβ + iε(1 + Aβ · Y (Al)))
,

(41)

for arbitrary l. The case of l = 1, JN,1 is easily verified, and for any l, we can use the relation

JN,l (Aαi, Bα) =

∫
dxl JN,l−1 (Aαi, Bα + Aαlxl) , (42)

in which the xl integral of JN,l is absorbed into the B’s for JN,l−1. Now assuming the result

(41) for l − 1, and using (38), we have

JN,l (Aαi, Bα) = − (−2πi)l−1
∫
dxl

∑
Al

l−1∏
k=1

θ

(
detA(Ak−1) Fαk(y1 . . . yk)

detA(Ak)(y1 . . . yk)

)
1

det(A(Al))

×
∏

β/∈Al−1

[(
Aβl − Aβj

(
A(Al−1)

)−1
jα′
Aα′l

)
xl

+ Bβ − Aβj
(
A(Al−1)

)−1
jα′
B

(Al−1)
α′ + iε

(
1 − Aβj

∑
α′

(
A(Al−1)

)−1
jα′

)]−1
.

(43)

To this expression, we apply an elementary identity, applicable to any nonsingular, (n +

1) × (n + 1) matrix, M (n+1) defined by Mi,j, i, j = 1 . . . n + 1 in terms of its submatrix

M
(n)
a,b ≡Ma,b, a, b = 1 . . . n,

detM (n+1)

detM (n)
= Mn+1,n+1 −

n∑
i=1

n∑
j=1

Mn+1,i

(
M (n)

)−1
i,j
Mj,n+1 . (44)

This is readily proved using the relation of the inverse of a matrix to minors of its deter-

minant. Applying Eq. (44) to the coefficient of xl in (43), the form of Eq. (41) for JN,l is

then simply the sum of residues found by closing the xl integral in the lower half plane. By

identifying l with 2L, Eq. (39) follows directly.

20



In fact, the identity (44) can be applied again, to the imaginary and real parts of (39),

to provide an alternative expression for the integrand in eq. (39) entirely in turns of the

matrices Aαi and vectors Bα. For each sequence Ak, we find in the remaining denominators,

β,

Aβ ·X(Ak) +Bβ =
1

detA(Ak)

∣∣∣∣∣∣∣∣∣∣∣∣

A
(Ak)
α11

· · ·A(Ak)
α1n Bα1

...
...

...

A
(Ak)
αk1

· · ·A(Ak)
αkk

Bαn

Aβ1 · · ·Aβk Bβ

∣∣∣∣∣∣∣∣∣∣∣∣
≡

G
(Ak+1)
β

detA(Ak)
. (45)

We have a similar form for the arguments of the theta functions in Eq. (39),

F
(Ak+1)
β =

1

detA(Ak)

∣∣∣∣∣∣∣∣∣∣∣∣

A
(Ak)
α11

· · ·A(Ak)
α1k−1 1

...
...

...

A
(Ak)
αk1

· · ·A(Ak)
αkk

1

Aβ1 · · ·Aβk 1

∣∣∣∣∣∣∣∣∣∣∣∣
≡

H
(Ak+1)
β

detA(Ak)
. (46)

We can thus reinterpret the result of the xi integrals, Eq. (39) as

IN,L = −
(
−1

4(2π)2

)L ∑
A2L

∫ 2L∏
k=1

dyk θ

(
H

(Ak)
αk

detA(Ak)

)(
detA(A2L)

)N−2L−1
×

∏
β/∈A2L

1

G
(A2L+1)
β + iεH

(A2L+1)
β

, (47)

where, as the notation indicates, the determinants G and H are of (2L + 1) × (2L + 1)

matrices, determined in each case by the coefficients of on shell lines, and of each remaining,

uncut line β. In this expression the entire integrand is specified by determinants of elements

Aαi and Bα. These coefficients, in turn, given in (31), are linear functions of the plus and

plus tilde loop momentum components in addition to external momenta and masses. Note

that for k = 1, the theta function corresponds to the condition that the pole in the first

integral, over loop momentum l−1 , be in the lower half-plane, so that, because the set A1

consists of one line only, say i, we have

H(A1)
α1

≡ 1 ,

detA(A1) =
(
l+i − p+i

)
ηi1 , (48)

with no sum on i in the second expression. The integrand in Eq. (47) is a rational function of

the remaining 2L components, yj. Individual denominators labelled by index β may involve
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powers of up to order 2L + 1 in these variables, although by examining the one-loop case

below, we will see that the power can be lower.

Eq. (47) is our final result for ultraviolet finite scalar integrals in (2, 2). For any such

diagram, 2L < N−1, so that the number of integrations remaining is fewer than the number

of Feynman parameter integrals for the corresponding diagram, at the price of having a sum

of terms. In these expressions, the finiteness of the remaining integration regions, shown in

Sec. III B above, is not manifest. It results from cancellations between different terms at

each stage in the integration. We will give an example in the next section, where we study

the one-loop case.

V. ONE LOOP DIAGRAMS

We now turn to the application of our basic (2, 2) result, (47) to one loop diagrams.

We begin with a one loop diagram of any order, with completely arbitrary real masses and

external momenta. We will not attempt to perform the remaining two integrals, but will be

able to identify certain interesting general features. Following this, we confirm the presence

of double-logarithmic behavior in a sample (2, 2) box diagram.

A. The general one loop diagram in (2,2) notation

For the case L = 1 in Eq. (47), the sum over sets of cut lines, A1 and A2 is simply a

sum of ordered choices of lines, say α1 = i and α2 = j, which we will denote by A1 = Ai
and A2 = A(ij). With the labeling of momenta specified in Eq. (31), the first index, α1 = i

denotes the line set on shell by the integral over loop component x1 = l−, while α2 = j

identifies the line set on shell by the integral over x2 = l−̃, in the notation of Eq. (34). In

these terms, we find, using (48), for L = 1,

IN,1 =
1

4(2π)2

∑
i,j

∫
dl+ θ

(
1

l+ − p+i

)∫
dl+̃θ

(
H

(A(ij))
αj

detA(Aij)

)

×
(
detA(A(ij))

)N−3 ∏
β 6=i,j

1

G
(A(ijβ))

β + iεH
(A(ijβ))

β

, (49)

where A(ijβ) in the superscripts of determinants G and H corresponds to A2L+1 in (47). To

illustrate the method, we evaluate the remaining determinants in the expression. These are
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from the 2× 2 matrices, A(A(ij)),

detA(A(ij)) =

∣∣∣∣∣∣l
+ − p+i l+̃ − p+̃i
l+ − p+j l+̃ − p+̃j

∣∣∣∣∣∣ = (l+ − p+i )(p+̃i − p+̃j )− (l+̃ − p+̃i )(p+i − p+j ) , (50)

and H
(A(ij))
αj ,

H
(A(ij))
αj =

∣∣∣∣∣∣l
+ − p+i 1

l+ − p+j 1

∣∣∣∣∣∣ = p+j − p+i , (51)

and the two 3× 3 matrices, G
(A(ij))

β ,

detG
(A(ij))

β =

∣∣∣∣∣∣∣∣∣
l+ − p+i l+̃ − p+̃i Bi

l+ − p+j l+̃ − p+̃j Bj

l+ − p+β l+̃ − p+̃β Bβ

∣∣∣∣∣∣∣∣∣
= Bi detA(A(jβ)) −Bj detA(A(iβ)) + Bβ detA(A(ij)) , (52)

and H
(A(ij))

β ,

detH
(A(ij))

β =

∣∣∣∣∣∣∣∣∣
l+ − p+i l+̃ − p+̃i 1

l+ − p+j l+̃ − p+̃j 1

l+ − p+β l+̃ − p+̃β 1

∣∣∣∣∣∣∣∣∣ = (p+β − p
+
i )(p+̃β − p

+̃
j )− (p+β − p

+
j )(p+̃β − p

+̃
i ) .

(53)

Recalling that the Bi are linear in loop momenta, we see that the denominators β in Eq.

(49) are of power two jointly in l+ and l+̃, rather than three.

In order to write our result in a more compact form, we introduce an antisymmetric

product

{v, w} ≡ v+w+̃ − w+v+̃ . (54)

In this notation, the general one-loop scalar integral becomes

IN,1 =
1

4(2π)2

∑
i,j

∫
dl+ θ

(
l+ − p+i

) ∫
dl+̃θ

(
{l, pi − pj}+ {pi, pj}

p+j − p+i

)
({l, pi − pj}+ {pi, pj})N−3

×
∏
β 6=i,j

1
1
2

∑
{a,b,c}={i,j,β} εabcBa ({l, pb − pc}+ {pb, pc}) + iε{pβ − pi, pβ − pj}

≡ 1

4(2π)2

∑
i,j

∫
dl+ θ

(
l+ − p+i

) ∫
dl+̃θ

(
l+̃ − l+rpi−pj +

{pi, pj}
p+j − p+i

)
ωji(l

+, l+̃) , (55)
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where in the second equality we have evaluated the theta function for the l+̃ integral, using

the notation of Eq. (22), and have defined ωji as the integrand that results from taking the

ith pole for the l− integral, and the jth pole for l−̃. The ε symbol reflects the antisymmetry

of determinant G
(A(ij))

β , Eq. (52), in indices i, j and β, corresponding to line momenta ki, kj

and kβ. We now note that for fixed i, the subsequent l+̃ integral vanishes if all its poles are

in the lower half plane, which leads to the identity,∑
j 6=i

ωji(l
+, l+̃) = 0 . (56)

This enables us to rewrite IN,1, (49) as

IN,1 =
1

4(2π)2

∑
i

∫ ∞
p+i

dl+
∑
j 6=i

∫ ∞
l+rpi−pj−

{pi,pj}

p+
i
−p+
j

dl+̃ ωji(l
+, l+̃) −

∫ ∞
σ(l+)

dl+̃ωji(l
+, l+̃)


=

1

4(2π)2

∑
i

∑
j 6=i

∫ ∞
p+i

dl+
∫ σ(l+)

l+rpi−pj−
{pi,pj}

p+
i
−p+
j

dl+̃ ωji(l
+, l+̃) ,

(57)

where σ(l+) is a completely arbitrary function of l+ (possibly a constant), which must be

chosen the same for every pair i, j.

We can simplify this expression further by using that in Eq. (57), the integrand ωji is

fully antisymmetric under the exchange of pi and pj, that is,

ωji(l
+, l+̃) = −ωij(l+, l+̃) . (58)

Equation (57) can thus be rewritten as a sum over (1/2)N(N − 1) ordered pairs of terms,

with fixed limits on the l+ integrals, and linear one-sided limits for the l+̃ integrals,

IN,1 =
1

4(2π)2

∑
i

∑
j 6=i

θ(p+j − p+i )

∫ p+j

p+i

dl+
∫ l+rpi−pj−

{pi,pj}

p+
i
−p+
j

σ(l+)

dl+̃

× ({l, pi − pj}+ {pi, pj})N−3∏
β 6=i,j

[
1
2

∑
{a,b,c}={i,j,β} εabcBa ({l, pb − pc}+ {pb, pβ}) + iε{pβ − pi, pβ − pj}

] ,
(59)

where we observe again that because of the identity (56), the result is independent of our

choice of σ(l+). The integration region is illustrated in Fig. 4.
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FIG. 4: Region of integration (shaded) corresponding to Eq. (59) in the l+, l+̃ plane. For the case

shown, the parameter rpi−pj is negative, corresponding to a negative slope in the lower limit of the

l+̃ integral. Positive slopes and negative intercepts are also possible. As explained in the text, the

boundary σ is arbitrary.

In principle, Eq. (59) could be the starting point of an explicit calculation, but in any

case an arbitrary one-loop diagram can be reduced to box diagrams [25]-[29], which are

known for any choices of masses [30]-[38]. Our emphasis here is rather on the extension of

the formalism to the new signature.

B. Double logs in a (2,2) box

We have already argued that four-point amplitudes are insensitive to the choice of

Minkowski or (2, 2) signature. To illustrate this point, let us show how double-logarithmic

integrals arise in the one-loop box with a suitable choice of massless internal and external

lines, directly from the (2, 2) result, Eq. (59) with N = 4.

We consider the scalar box, Fig. 5 describing a pair production process in “deep-inelastic

scattering” kinematics,

p+ q → K1 +K2 , (60)
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where incoming line p is massless, two outgoing lines are massive,

p2 = 0 ,

q2 < 0 ,

K2
1 = K2

2 = M2, (61)

and where the process is initiated by a space-like momentum transfer, q. In the notation of

Eq. (28) and Fig. 5, we have we have four line momenta, l − pi, with

p1 = 0 ,

p2 = p ,

p3 = p+ q ,

p4 = K1 . (62)

We assign a mass M to the propagator carrying momentum l−K1, while other propagators

are taken as massless,

I4,1({pi},M) = −i
∫

d4l

(2π)4
1

l2 + iε

1

(l − p)2 + iε

1

(l − p− q)2 + iε

1

(l −K1)2 −M2 + iε
.

(63)

In Minkowski space and with the momenta chosen as above, this integral has a double-

logarithmic infrared behavior when the loop momentum l becomes proportional to p

(collinear singularity) with vanishing energy (soft singularity), and no other sources of double

logarithms. Without fully evaluating the diagram, Fig. 5, let us see how a double-logarithmic

behavior emerges in the (2, 2) integral.

The term that has double-logarithmic behavior in Eq. (59) for this diagram in (2, 2)

signature is the choice ki = l, kj = l − p, that is, the term with the mass shell poles of the

two lines that become parallel. To be definite, we label kβ1 = l− p− q, kβ2 = l−K1. With

the routing of momenta shown in the figure, Bi = 0 and pi = 0, so that the relevant term in

(59) is

I
(l,l−p)
4,1 =

1

4(2π)2

∫ l+1

0

dl+
∫
dl+̃θ ({l, p}) {l,−p}

× 1

−Bl−p{l, l −K1}+Bl−K1{l, l − p}+ iε{p,K1}

× 1

−Bl−p{l, l + q}+Bl−q−p{l, q − p}+ iε{p, p+ q}
, (64)
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FIG. 5: Box diagram

where we have replaced indices d on the Bd by the corresponding momenta, kd. The coeffi-

cients of the Bkd are given by

{l, pi − pj} = {l,−p}

= p+l+̃ − l+p+̃

= l+p+ (rl − rp) , (65)

where we have have used the notation of Eq. (22) for rl and rp. This antisymmetric combina-

tion vanishes both when loop momentum l is proportional to the massless momentum p, so

that rl = rp, and when l+ vanishes. These are the collinear and soft limits from Minkowski

analysis, and the limits for l+ and l+̃ are just at these points. The numerator factor vanishes

linearly in both the collinear and soft limits, but the denominators with momenta l − K1

and l − p− q behave as

− Bl−p{l,−K1} + Bl−K1{l,−p} = − u1 (l+)2 (rl − rp) + · · ·

− Bl−p{l,−p− q} + Bl,−p−q{l, l − p} = s p+l+(rl − rp) + · · · , (66)

respectively, with s ≡ (p+q)2 and u1 ≡ 2p ·K1, where neglected terms are higher order in l+

and/or rl−rp. In deriving these results, we have used that p2 = 0 implies p+̃/p+ = −p−/p−̃.

Now changing variables from l+̃ to rl, we find near the end-points a double-logarithmic

integral,

I
(l,l−p)
4,1 = − 1

4(2π)2
1

u1 s

∫
0

dl+

l+

∫
rp

drl
rl − rp

. (67)
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It is straightforward to check that no other term in the sum over poles has an end-point

singularity at rl = rp, and hence a collinear singularity.

We can compare the result (67) to the double-logarithmic integral in Minkowski signature,

which appears by taking the energy pole at l0 =

√
|~l|2 in Fig. 5. In that case, in the limit

that cos θpl → 1, where θpl is the angle between ~l and ~p, we find

IDL = − 1

4(2π)2
1

u1 s

∫
0

d|~l|
|~l|

∫ 1 d cos θpl
1− cos θpl

, (68)

with the same double-logarithmic behavior as (67) up to a change of variables.

In the above calculation, we have not discussed regulation of infrared-divergent integrals.

The simplest regulation for the example above is to take p21 < 0, but with gauge theories

in mind it is natural to ask whether dimensional regularization is possible. Although our

approach to (2, 2) signature is closely linked to four dimensions, there is in fact nothing to

keep us from dimensionally regulating. The interpretation is particularly straightforward

for infrared regulation, which requires ε = 2−D/2 < 0, with D the number of dimensions,

taken greater than four. We thus imagine adding −2ε dimensions to the four dimensions

spanned by our coordinates l± and l±̃.

While a full discussion of dimensional regularization for multi loop diagrams would take

an extensive analysis, we will content ourselves here with the observation that if we label the

momenta of the extra dimensions as l⊥, and keep the external momenta in four dimensions,

all of the analysis leading to our one loop result, Eq. (59), for example, is unchanged. The

effect of dimensional regularization is simply to add a term −l2⊥ to every squared mass

term in the denominators of (59), Bα → Bα − l2⊥ in Eq. (31), and to introduce an overall

integration over the “extra” dimensions of the form

2πε

Γ(ε)

∫ ∞
0

dl⊥ l
−2ε−1
⊥ , (69)

acting on the modified integrand, where the prefactor represents the angular volume. In

the limit ε→ 0, the zero of the angular integration is balanced by the (infrared) pole from

the radial integral. For infrared finite integrands, the net result is unity for ε = 0, but for

divergent integrals as in Eq. (67), the result is infrared regulated after the l⊥ integration.
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VI. SUMMARY AND CONCLUSIONS

We have studied scalar perturbation theory in (2, 2) signature, and have identified a

natural analytic continuation from Minkowski signature, which crosses no singularities and

can be used to define diagrams with arbitrary external momenta. The resulting integrals

have a standard “iε” prescription for the definition of contours in the presence of propagator

singularities. This enables us to appeal to standard Landau analysis to identify pinches

of momentum integrals, and singularities in external momenta. The singularities in (2, 2)

are in general quite different than those in (1, 3) signature. An exception is when external

momenta are restricted to a plane in Minkowski space; in this case the contour rotation to

(2, 2) signature does not change the integral.

For diagrams that are fully ultraviolet finite (in all subdiagrams), we can introduce two

sets of light cone variables, all four of which are linear in all denominators. We have derived a

general expression for such an L-loop N -line integral as the sum of 2L-dimensional integrals

using (2, 2) integration. Whether these expressions can be of use in the practical evaluation

of higher-loop scalar integrals is a subject for further investigation.
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