
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Detecting transient gravitational waves in non-Gaussian
noise with partially redundant analysis methods

Rahul Biswas, Patrick R. Brady, Jordi Burguet-Castell, Kipp Cannon, Jessica Clayton,
Alexander Dietz, Nickolas Fotopoulos, Lisa M. Goggin, Drew Keppel, Chris Pankow, Larry

R. Price, and Ruslan Vaulin
Phys. Rev. D 85, 122009 — Published 25 June 2012

DOI: 10.1103/PhysRevD.85.122009

http://dx.doi.org/10.1103/PhysRevD.85.122009


DP11019

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Detecting transient gravitational waves in non-Gaussian noise with partially

redundant analysis methods

Rahul Biswas,1 Patrick R. Brady,2 Jordi Burguet-Castell,3 Kipp Cannon,4 Jessica Clayton,2 Alexander Dietz,5

Nickolas Fotopoulos,6 Lisa M. Goggin,7 Drew Keppel,8, 9 Chris Pankow,2 Larry R. Price,6 and Ruslan Vaulin10

1University of Texas-Brownsville, Brownsville, Texas 78520, USA
2University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA

3Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
4Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario, M5S 3H8, Canada

5The University of Mississippi, University, MS 38677, USA
6LIGO - California Institute of Technology, Pasadena, CA 91125, USA
7University of California San Francisco, San Francisco, CA 94143 USA

8Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany
9Leibniz Universität Hannover, D-30167 Hannover, Germany

10LIGO - Massachusetts Institute of Technology, Cambridge, MA 02139, USA

There is a broad class of astrophysical sources that produce detectable, transient, gravitational
waves. Some searches for transient gravitational waves are tailored to known features of these
sources. Other searches make few assumptions about the sources. Typically events are observable
with multiple search techniques. This work describes how to combine the results of searches that
are not independent, treating each search as a classifier for a given event. This will be shown to
improve the overall sensitivity to gravitational-wave events while directly addressing the problem of
consistent interpretation of multiple trials.

I. INTRODUCTION

A variety of astrophysical sources are capable of
producing transient gravitational-wave signals with suf-
ficient strength to be detectable by ground-based
gravitational-wave detectors such as Laser Interferome-
ter Gravitational-wave Observatory (LIGO) [1]. Such
systems include coalescing compact binaries (CBC) con-
sisting of neutron stars and/or black holes [2]. Currently,
the same experimental data sets are searched by several
analysis methods. These methods use various signal mod-
els and data processing algorithms and may have different
responses to signals and non-Gaussian noise artifacts [3].
Since these searches are not independent, a single, more
powerful result can be obtained by combining the results
of multiple search methods.

The analysis methods can be divided into two classes
by their assumptions about the signal properties. The
first class assumes that the waveforms are well modeled
and typically employs matched-filtering. For this reason,
these methods is referred to as template-based searches.
The second class assumes only basic time frequency prop-
erties about the signals. These methods are referred to
as un-modeled searches. In the template-based searches,
there are often several ways to construct signal models.
This means that if a detectable signal exists in the data, it
may not perfectly match the signal model chosen for the
analysis. For example, the templates may be constructed
using different approximation techniques, or they may
correspond to different parts of the gravitational-wave
signal (e.g. inspiral or ringdown stages of the compact
binary coalescence). The un-modeled searches make min-
imal assumptions about the shape of the signal and
are designed to detect any short outburst of gravita-

tional radiation in a given frequency band. Both search
classes employ algorithms for identifying and discarding
the non-Gaussian noise artifacts. To their advantage, un-
modeled searches are able to detect a wide class of signals.
However, the template-based searches generally achieve
higher detection efficiency for signals matching the tem-
plates.

A gravitational-wave search produces a list of candi-
date events. Re-analyzing the data with multiple meth-
ods may increase the odds of detecting a gravitational
wave. At the same time it has the negative effect of gen-
erating redundant lists of gravitational-wave candidates
and increasing the number of trials, which makes it more
difficult to assess the significance of an event. Sensitivity
domains of many searches overlap, meaning that multiple
searches may detect the same gravitational-wave signal.
The detection efficiency of a given search depends on a va-
riety of factors and it can be difficult to interpret results
of multiple searches.

It is apparent that gravitational-wave searches would
benefit from a procedure to consistently combine results
into a joint detection or model exclusion statement for a
given population of gravitational-wave sources. We ap-
ply the general framework for detection of gravitational
waves in the presence of non-Gaussian noise developed in
our earlier paper [4] to this problem. Treating the output
of each search method as a classifier for gravitational-
wave candidate events, we construct a unified ranking
for all candidate events that is easy to implement and
interpret. We test it by combining candidate events
from four different search methods that analyze simu-
lated gravitational-wave signals from compact binary co-
alescence embedded in the data taken during LIGO’s S4
science run. We find that this procedure is robust and can
be used in ongoing and future searches. Interpretation of



2

the combined results is straightforward. In particular,
the calculation of the posterior probability distribution
or upper limit for the rate of coalescing binaries can be
carried out as it is normally performed for a single search.
The combined upper limit calculation was addressed in
[5], assuming multiple search methods were performed.
We briefly discuss the relationship between the method
suggested in that paper and ours.
The paper is organized as follows. In Section II, we

formulate the problem of combining results from multi-
ple searches and construct a statistic for the joint analysis.
We conclude this section with a discussion of a rate upper
limit calculation for the combined search and its relation
to the method suggested in [5]. In Section III, we test
our procedure by combining results from four different
search methods. We briefly describe each method, the
data, and the model signals. This is followed by details
of the simulations and a discussion of the results. In Ap-
pendices A and B, we derive a formal expression for the
multivariate statistic, which accounts for correlations be-
tween the searches, and analyze the limits of applicability
of our procedure.

II. METHOD FOR COMBINING SEARCHES

In this section, we establish a method for combin-
ing results from different gravitational-wave searches per-
formed over the same data. The method builds on the
general approach described in [4]. We construct a uni-
fied statistic for searches by treating each as a separate,
possibly redundant, classifier for a given event.
Each search method aims to classify observational data

into a list of candidate events, ranked by their likelihood
to be a gravitational-wave signal. In the data analysis
process, the data are analyzed and assigned a rank, r, a
real number reflecting the odds that the data contain a
gravitational-wave signal. Ordering time series data by
amplitude is one simple method for ranking candidate
events. The rank (or amplitude) is compared to a pre-
established threshold, a boundary that separates signal-
like data with sufficient confidence. In this way, the pro-
cedure classifies data on a scale from not signal-like to
signal-like. A search method may classify events by com-
plicated consistency tests and noise rejection schemes,
but conceptually any search can be thought of as a map-
ping from the space of data to the space of real numbers
that indicate their rank. We will assume that such a
ranking procedure exists for any search method, i, and
that the result, ri, indicates the likelihood that a signal
is present in a given search.
Different search methods employ a variety of tech-

niques, data processing algorithms and waveform models.
As there are a number of potential gravitational-wave
sources, the search targets may vary as well. Separate
searches may provide different information about a par-
ticular population of sources. Hence, it is important to
extract as much information as possible by combining the

results of various searches. When multiple searches ana-
lyze the same data, the output of each search, ri, can be
further processed to make the most informative detection
or rate limit statement for a population of gravitational-
wave sources. In doing so, it is important to ensure that
there is no loss of detection efficiency when one or more
of the methods has a high false alarm rate or is uninfor-
mative or irrelevant for the targeted source population.
For a given event with rank, ri, one can compute the

posterior probability that it is a gravitational-wave signal,
p(1 | ri). Following the steps outlined in [4], this proba-
bility can be expressed as

p(1 | ri) =
Λ(ri)

Λ(ri) + p(0)/p(1)
, (1)

where the likelihood ratio, Λ(ri), is defined by

Λ(ri) =

∫

p(ri |h, 1)p(h | 1) dh

p(ri | 0)
, (2)

and p(ri |h, 1) is the probability of observing ri in the
presence of the signal h, p(h | 1) is the prior probability
to receive that signal, and p(ri | 0) is the probability of
observing ri in the absence of any signal. The targeted as-
trophysical population of sources is completely described
by p(h | 1), where h denotes all possible intrinsic (e.g.
masses of compact objects in the binary) and extrinsic
(e.g. distance to the source, sky location) source param-
eters.
If an event is identified as a plausible candidate by sev-

eral search methods, p(1 | ri) can be calculated for each
search based on the ranking, ri, the event received. Thus,
information from each search can be directly compared.
The most relevant search results in the highest posterior
probability for a signal to be present in the data. Ac-
cording to Eq. (1), this probability is a monotonically in-
creasing function of the likelihood ratio, Λ(ri). As such,
comparing likelihood ratios is equivalent to comparing
the posterior probabilities, p(1 | ri). Therefore, the likeli-
hood ratio can be used as a unified ranking statistic to
combine the output of all searches.
Strictly speaking, the denominator in Eq. (2) should

contain contributions from all gravitational-wave sources
not included in the targeted population, p(h | 1). We ne-
glect these terms because typically their contribution is
very small. If a population of sources induces a response
very similar to that of the targeted sources, then these
classifiers will not distinguish signals from the two differ-
ent populations. This can lead to an overestimation of
event rates for the targeted population, however no signal
would be missed. Further refinement of the data analysis
techniques or detectors themselves would be required to
distinguish between the signals from these sources.
We define the ranking statistic for the joint search to

be

rjoint = max {Λ(r1),Λ(r2), . . . ,Λ(rn)} , (3)

where maximization is carried out over simultaneous
events. Though this choice does not make use of all
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available information (we neglect correlations between
the classifier’s ranks; see Appendix A for multivariate
treatment of the problem), it does offer some advantages.
It is straightforward to compute Λ(ri) for each search
method and simply take the largest. This has a sim-
ple interpretation: events from each search are compared
based on the ratio of sensitivity of the method to the tar-
geted sources and the search’s false alarm rate. The event
that is most likely to be a gravitational wave is kept. As
a result, the searches are combined according to the best
classifier for each event. Events classified by noisy, insen-
sitive searches receive a low likelihood-ratio ranking and
therefore do not contaminate the overall sensitivity of the
analysis. We further discuss the limits of applicability for
this ranking statistic in Appendix B.

As in the case of a single search method, the result of
combining searches using the maximum likelihood-ratio
statistic, Eq. (3), is a list of events. They can be treated
as the output of a single search, with their significance
evaluated by estimating the background. In the next sec-
tion, we discuss how to do this. Having a single list of
events allows for straightforward interpretation of results.
The most significant events can be further studied and
possibly promoted to the list of detected gravitational-
wave signals. The posterior probability distribution or
the upper limit on the rate of coalescence can be calcu-
lated following any of the methods developed for a single
search [6–8].

The upper limit calculation for multiple searches de-
scribed in [5] differs from our method. In [5], searches
are treated as counting experiments and the upper limit
on the rate of events is calculated using the total number
of events above some fixed threshold and Poisson statis-
tics. To apply this method when multiple searches are
performed, a prescription is needed for determining how
many events each search should contribute to the total
count. In [5] events are classified by combinations of
searches that generated them. The problem is reduced
to the choice of foliation by a family of exclusion surfaces,
S(ζ), of the space of the number of events in each cate-
gory, Nq, where q runs through all possible combinations
ofm (m ≤ n) out of n searches. In the paper, the authors
suggest and discuss several plausible choices of linear sur-
faces, S(ζ), that lead to different upper limits. By con-
struction, the maximum likelihood ratio, Eq. (3), ensures
that the total number of events each search contributes
on average to the joint search is proportional to the ratio
of its efficiency to detect the targeted signals to its back-
ground. This construction is closely related to the “single
combination” option of [5], in which only the most sensi-
tive search contributes to the upper limit. Note though,
that in our method the most sensitive search is deter-
mined during the analysis on event by event basis. This
relieves an analyst from determining before hand which
of the searching methods is the most sensitive. Often sen-
sitivity is a very complicated function of signal’s parame-
ters and there might not be a single most sensitive search
method that covers all signals. In this case, one would

have to split the signal parameter space into subdomains,
within which a single most sensitive search method exist,
and carry out the upper limit calculation for each of the
domains independently. In practice, this may prove to be
a formidable task. The maximum-likelihood ratio proce-
dure is universal and is almost trivial to implement, as
we show it the next section. Its other important advan-
tage is accounting for background noise present in each
of the search methods. The choice between the methods
is based not only on their sensitivity but also their sus-
ceptibility to the noise artifacts. In [5], the authors also
mention the necessity to include information about the
background to achieve more optimal upper limits.
The maximum likelihood construction ignores correla-

tion between the searches. The optimal way to account
for it is to define the multivariate likelihood-ratio ranking
described in Appendix A. Unfortunately, implementing
this ranking for more that two search methods is not
feasible. Also, we argue that in most practical situa-
tions the net positive effect of correlations is small. The
multivariate likelihood-ratio, Eq. (A1), defines the opti-
mal exclusion surfaces, S(ζ), for the upper limit calcu-
lation method of [5]. These surfaces generally are non-
linear and, therefore, do not directly correspond to any
of the choices considered in [5]. The closest in spirit is
the “efficiency-weighted combination” suggested by the
authors of [5], where contributions from each combina-
tion of the search methods are weighted proportionally to
their sensitivity to signals. Using notation of [5] and ac-
counting for noise contribution, the corresponding exclu-
sion planes are defined by the normal vector k ≡ (ǫq/bq),
where ǫq is the probability of a signal to be detected by
the qth combination of the searches and bq is the number
of background events in this combination.

III. TESTING THE MAXIMUM

LIKELIHOOD-RATIO STATISTIC WITH

NON-GAUSSIAN DATA

The maximum likelihood-ratio statistic, Eq. (3), pro-
vides a natural way to combine results of several search
methods into a single joint search. It possesses several
attractive qualities and is expected to result in no loss of
efficiency in the most practical situations (see Appendix
B for discussion of this). Still, it is important to verify
this in conditions that mimic the strong non-Gaussian
noise that is encountered in the search for gravitational
waves in real data. To simulate a real life application
of our procedure, we employ four search methods that
are currently used to detect gravitational waves from co-
alescing binaries with the LIGO and Virgo observatories.
We analyze simulated signals inserted in the data from
LIGO’s fourth scientific run (S4) and combine results of
these analyses using the maximum likelihood-ratio statis-
tic. We estimate the efficiency of the combined search in
detecting these signals in the typical LIGO noise and
compare it to the efficiencies of the individual searches.
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A. Data and signals

We insert simulated signals into data collected between
February 24 and March 24, 2005, during LIGO’s S4 run.
The data was taken by three detectors: the H1 and H2 co-
located detectors in Hanford, WA and L1 in Livingston,
LA. Several searches for gravitational waves were per-
formed in these data, but no gravitational-wave candi-
dates were identified [9–11]. For this work, 15 days of
triple coincidence data were used, which is the sum of all
times during S4 when all three detectors were simultane-
ously operating in science mode.
Our signals include three kinds of binaries: neu-

tron star–neutron star (BNS), neutron star–black hole
(NSBH) and black hole–black hole (BBH) binaries. We
use non-spinning waveforms to model signals from these
binaries. For BNS, these are post-Newtonian wave-
forms [12–22], Newtonian order in amplitude and second
order in phase, calculated using the stationary phase ap-
proximation [13, 20, 21] with the upper cut-off frequency
set by the Schwarzschild innermost stable circular orbit
(ISCO). Signals from all other binaries are approximated
by the effective one body numerical relativity (EOBNR)
waveforms [15, 23–33]. The former waveforms describe
only the inspiral phase of the coalescence, whereas the
latter also include merger and ringdown phases.
The simulated signals are injected into non-overlapping

2048-second blocks of data. To improve the statistic, mul-
tiple signal populations are inserted in the data and in-
dependently analyzed. Signals are split into three cate-
gories by total mass of the binary: 2–6 M⊙, 6–100 M⊙,
and 100–350 M⊙. The lowest mass range includes only
BNS systems. Within each mass range, signals are dis-
tributed uniformly in distance or the inverse of distance.
The BNS range covers 1–20 Mpc while other systems
reach from 1–200 Mpc. In order to represent realistic
astrophysical population with probability density func-
tion scaling as distance squared, the simulated signals
are appropriately re-weighted and are counted according
to their weights. All other parameters of the signals have
uniform distribution. In total, there are 943, 2245, and
2237 signals injected within each mass category, respec-
tively.

B. Search methods

Four search methods, each representing one of the stan-
dard searches for transient gravitational-wave signals in
LIGO and Virgo data, are used to perform this joint anal-
ysis. Brief descriptions of the search methods are given
below. The first three are template-based searches, while
the last one does not rely on any specific signal model.
The low-mass CBC pipeline targets binaries with to-

tal mass below 35 M⊙. The data from each interfer-
ometer are match-filtered with a bank of non-spinning
post-Newtonian waveforms [12–22] covering binary mass
combinations with total mass in the range 2–35M⊙. The

template waveforms are calculated in the frequency do-
main using the stationary phase approximation [13, 20,
21] to Newtonian order in amplitude and second PN
order in phase. The waveforms are extended up to
the Schwarzschild ISCO. When the signal-to-noise ra-
tio (SNR) time series for a particular template crosses
the threshold of 5.5, a single-interferometer trigger is
recorded. These triggers are required to pass waveform
consistency and coincidence tests with triggers from other
interferometers. The surviving triggers are ordered by
a ranking statistic and form a ranked set of candidate
events. For detailed descriptions of this pipeline and re-
cent search results, see [11, 34–37].

The high-mass CBC pipeline is similar to its low-mass
counterpart, however it is designed to target binaries with
total mass between 25–100 M⊙. The EOBNR family of
templates used in a high-mass search has waveforms cov-
ering the evolution of a coalescing binary from late inspi-
ral to ringdown. Other than the choice of templates, the
analysis is quite similar to the low-mass search. The high-
mass CBC pipeline was used to search for gravitational
waves from binary black holes in the S5 LIGO data [38].

The ringdown pipeline was developed to search for
gravitational-wave signals corresponding to the post-
merger phase of the binary coalescence. After two com-
pact objects merge, a single, highly perturbed black hole
forms and radiates energy while it settles down to a sta-
ble Kerr solution. The pipeline constructs its template
bank from the dominant, l = 2 and m = 2, black hole
quasi-normal modes characterized by a single frequency
and quality factor. The template bank used in the ring-
down search spans the most sensitive part of the LIGO
frequency band, 50 Hz–2 kHz. Quality factors between
2–20 are used, corresponding to a range for the final black
hole spin between non-spinning and â = 0.994. As with
the other search methods previously described, candidate
events are ranked after being detected by multiple inter-
ferometers and passing several consistency tests. This
pipeline was used to search for gravitational waves in the
S4 data [9].

CoherentWaveBurst is a gravitational-wave burst anal-
ysis pipeline designed to detect signals from transient
gravitational-wave sources. It uses minimal information
about the signal model, instead using the cross-correlated
excess power from the gravitational-wave signal across a
network of interferometers [39]. The pipeline enforces
the signal hypothesis by maximizing a likelihood func-
tional that describes the expected signal response of an
impinging gravitational wave given its source location
in the sky combined over the network of interferome-
ters [40]. Triggers are generated from the interferom-
eter network by combining time-frequency maps using
wavelet transformations of the interferometer time-series
data. From these maps, the likelihood of a trigger is
calculated by the pipeline from the correlation of the
whitened data streams weighted by the network’s an-
tenna patterns. This pipeline was used in the LIGO
S4 [41] and LIGO/Virgo S5/VSR1 [42, 43] searches for



5

un-modeled short duration transients, as well as searches
for black hole binaries [44].
We note that our analysis does not include the most

recent innovations developed to improve the efficiency of
each of these pipelines. In particular, we do not cate-
gorize the candidate events by the template mass and
coincidence type – a novelty introduced in the low- and
high-mass CBC pipelines during the analyses of S5 LIGO
data and the S5/VSR1 data from LIGO and Virgo. Also,
we use the default settings for the S5 analysis (S4 for
the ringdown search) for numerous pipelines’ parameters
without attempting to re-tune them. We choose to per-
form simulations without the most up-to-date and fully
tuned versions of the pipelines to save time. This is justi-
fied because our algorithm for combining searches is igno-
rant of the inner-workings of each pipeline. This makes
the combined search robust against small changes in the
individual analysis algorithms. For our purpose, it is suffi-
cient to use somewhat simplified versions of the pipelines,
as we do not expect these results to change dramatically
when incremental changes occur as the pipelines evolve.

C. Algorithm for combining searches

The procedure for combining candidate events identi-
fied by different classifiers is straightforward and based
on Eq. (3). The first step is the calculation of the likeli-
hood ratio, Λ(ri), defined by Eq. (2), for every event. No-
tice that since the numerator depends on the population
of signals through p(h | 1), Λ(ri) is not just a trivial re-
scaling of a rank assigned by a classifier to an event. The
likelihood ratio estimates the significance of each event
in the context of a gravitational-wave detection from the
targeted population of sources specified via p(h | 1) and
p(ri |h, 1). As a result, events are ranked by the odds
of being produced by the classifier in response to the
targeted signals, rather than noise. Depending on the
population of sources, some classifiers may not provide
any useful information. In that case, events provided by
such classifiers receive a very low likelihood ratio rank
and are effectively removed from the search. This is a de-
sirable feature that makes the procedure robust against
nuisance classifiers.
In order to compute the one-dimensional likelihood

ratio given in Eq. (2), we need to measure the clas-
sifiers’ response to the gravitational-wave signals inter-
posed over noise and to background noise only. For the
latter, we use a common background estimation tech-
nique for gravitational-wave searches — shifting recorded
data from the non-colocated interferometers in time with
respect to each other [11, 34–37]. If the shift is much
longer than the gravitational-wave travel time between
the detector sites (≈ 10 ms for a Hanford-Livingston
detector pair), then the resulting time-shifted data are
guaranteed to contain no coherent gravitational-wave sig-
nals. These data, when analyzed by the classifier, rep-
resent the background of the search. In the low-mass

CBC, high-mass CBC, and ringdown pipelines, we per-
form 2000 forward-in-time shifts of the L1 data with time
steps of 7 seconds relative to H1 and H2. The Coherent
WaveBurst search uses 100 forward-in-time shifts of the
L1 data with 5-second time steps. Each time-shifted data
set produces an independent sample of the background.
The time-shifted data are analyzed and all background
events are recorded.

For background events, it is significantly easier to es-
timate the cumulative probability density function (cdf),
P (ri | 0) =

∫∞

ri
p(r′i | 0) dr

′
i, than the probability density

function (pdf), p(ri | 0). Each background data set rep-
resents an independent trial observation of duration, T .
Therefore, for a trigger, ri, the ratio of the number of the
trial observations that produced a trigger with the rank
r′i ≥ ri to the total number of trial observations provides
an estimate of the probability, PT (ri | 0), of the classi-
fier producing an equally or higher ranked event in the
analysis of noise alone. This probability is a monotonic
function of P (ri | 0) and experiment duration, T ,

PT (ri | 0) = 1− (1− P (ri | 0))
T/T0 , (4)

where T0 is the duration of a unit experiment, which can
be classified by a single rank, ri. The scale for T0 is
set by the duration of the gravitational-wave signal, the
time scale on which data samples can be considered un-
correlated. In practice, given that all methods analyze
the same amount of data, the two probabilities PT (ri | 0)
and P (ri | 0) are equivalent for the purpose of ranking
the candidate events since one is a monotonic function
of the other. Computation of the background cdf curve,
PT (ri | 0), is a trivial task. First, the single event with
the highest rank from every background data set is cho-
sen. Then, for any value of ri, one simply counts the
number of these events with rank r′i ≥ ri, divided by
the total number of background data sets. In this way,
the background cdf curves are calculated for each search
method.

In order to measure the response of each search method
to the targeted gravitational-wave signals and calculate
the numerator in Eq. (2), several populations of simu-
lated signals are injected into the data and processed
by the pipelines. For each search method, events identi-
fied with the injected signals are recorded along with the
parameters of the signals. As with background events,
it is much easier to compute the cdf, P (ri | 1), of the
signals. For an event with rank ri, this probability is
approximated by the ratio of the number of injected sig-
nals with rank r′i ≥ ri to the total number of injected
signals. Using this algorithm we compute cdf curves,
P (ri |Sj , 1), for each search method, i, and mass cate-
gory of the simulated signals, Sj : 2–6 M⊙, 6–100 M⊙,
and 100–350M⊙, which represent the intended targets of
the low-mass CBC, high-mass CBC, and burst/ringdown
pipelines, respectively.

Having pre-computed the background and signal cdf
curves, the algorithm for combining the analysis pipelines
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can be summarized in the following two steps. First, ev-
ery event, ri, produced by the ith classifier is assigned the
log-likelihood-ratio ranking given by

L(ri |Sj) = ln

[

P (ri |Sj , 1)

PT (ri | 0)

]

, (5)

in which the ratio of pdfs in Eq. (2) is approximated
by the ratio of cdfs. For the sake of brevity in what
follows we omit the “log” from the ranking name and
refer to L(ri |Sj) as the likelihood-ratio ranking. Sec-
ond, all events from all classifiers are mixed together and
clustered, retaining events with the highest likelihood-
ratio ranking, L(ri |Sj), within the specified time window.
These events form the final list of gravitational-wave can-
didates. The time window is approximately equal to
the autocorrelation time for an average signal injected
in the data. In our simulations, we set it to 10 seconds.
Events separated in time by more than 10 seconds are
uncorrelated and therefore may correspond to different
signals [11, 34–37]. This last step effectively implements
maximization in Eq. (3) over the likelihood ratio for co-
incident events identified by multiple search methods.
We expect the cdf approximation used in Eq. (5) to

be fair in the context of our simulations. Injection
and background distributions are one-dimensional, mono-
tonic functions of rank. They generally fall off as some
negative power of rank. Detectable signals lie on the
tail of the background distribution. Under these condi-
tions, the difference between using the pdf or cdf in the
likelihood ratio is insignificant. Nevertheless, we should
stress that this may not be the case in general and proper
estimation of signal and background probability distribu-
tions may be required.
Before proceeding to the discussion of simulation re-

sults, we note that L(ri |Sj), defined by Eq. (5), depends
on the population of injected signals, Sj . Therefore,
events identified by the classifiers in each search must be
re-processed according to the algorithm described above
for each population of sources, Sj .

D. Simulation results

After multiple search methods are used on the data in-
jected with gravitational-wave signals, the events selected
by each search are processed with the algorithm sketched
in the previous subsection. To estimate the background
for the combined search, we again perform time shifts of
the L1 data with respect to data from H1 and H2. Al-
though the time shifts performed in III C are independent
for each classifier, the time shifts must be synchronized
for all classifiers when estimating the background for the
combined search. For this purpose, 100 5-second time
shifts of the L1 data are performed with respect to the
H1 and H2 data. The background sample is processed
with the same algorithm as the main data.

As previously mentioned, we consider three target pop-
ulations of compact binaries, categorized by their total

FIG. 1. Visible volume versus false alarm rate for binary
neutron stars. The shaded area around a curve represents its
1σ Poisson error. The “Combined” and the “Low Mass CBC”
curves coincide, whereas all other curves drop to near zero in
visible volume.

mass: the binary neutron stars with total mass 2–6 M⊙,
the compact binaries with total mass 6–100 M⊙, and
the binaries with total mass 100–350 M⊙. These de-
fine three independent searches. The data with injected
signals from each category are analyzed independently.
The resulting events are ranked by the likelihood ranking,
Eq. (5), with Sj being one of the considered target popu-
lations. The background events are ranked and combined
in the same way, providing an estimate of the background
for the combined searches.

To compare combined searches with the individual
search methods, we compute their sensitivities to the
signals in the presence of typical background. We sum-
marize this in Figures 1–3, which show curves of visi-
ble volume versus false alarm rate for each of the search
methods and for the combined search. For each point on
these curves, the calculation proceeds as follows. First,
using background events, we determine the value of the
rank corresponding to a given false alarm rate. Next, the
efficiency as a function of distance to the source, ǫ(D),
is estimated by the fraction of the signals at distance D
ranked above that value. This efficiency is then converted
to the visible volume.

The binary neutron star search is a case study in which
only one of the classifiers, namely the low-mass CBC
pipeline, is effective in detecting the particular type of
gravitational-wave signal. All other classifiers are de-
signed to detect either black hole binaries or short du-
ration bursts and are inefficient in detecting the long
inspiral signal sweeping through the whole LIGO fre-
quency band. This is properly accounted for in the
likelihood-ratio ranking, which is very low for all events
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FIG. 2. Visible volume versus false alarm rate for CBC with
total mass 6–100 M⊙. The shaded area around a curve repre-
sents its 1σ Poisson error.

FIG. 3. Visible volume versus false alarm rate for CBC with
total mass 100–350 M⊙. The shaded area around a curve
represents its 1σ Poisson error.

from these other classifiers. The only events not de-
weighted are those from the low-mass CBC pipeline. As a
result, the combined search is equivalent to the low-mass
CBC search in this case. The sensitivity curves for both
searches, shown on Figure 1, coincide. This shows that
our algorithm is robust against uninformative, nuisance
classifiers.
The picture changes dramatically for compact binaries

in the medium mass range, shown in Figure 2. In this
case, the efficiency of the low-mass CBC pipeline is neg-

ligible in comparison to the other classifiers. In this cate-
gory, the Coherent WaveBurst pipeline has the best over-
all sensitivity. Further inspection reveals that the high-
mass CBC pipeline is the most sensitive of the three in
the 6–50M⊙ mass region, whereas the ringdown pipeline,
despite being subdominant, tends to detect signals with
high mass ratio that are either missed or not ranked high
enough by the other pipelines. Thus, in this case, all but
one classifier contribute detected signals to the combined
search (the “×–×” curve on Figure 2). This is a desired
effect of incorporating the detection sensitivities of differ-
ent pipelines, which results in a more sensitive and robust
combined search.

We observe similar effects for the high-mass binaries,
although this is not obvious from Figure 3. The figure
shows the Coherent WaveBurst pipeline dominating over
the ringdown or the high-mass CBC pipelines. The sensi-
tivity curve of the combined search tends to be just above
the Coherent WaveBurst curve and occasionally drops
below it. However, these drops are well within the er-
ror bars. The detailed investigation shows that the high-
mass CBC and the ringdown pipelines still contribute
detections of extra signals missed by the Coherent Wave-
Burst pipeline. In particular, the ringdown pipeline has
the highest sensitivity of all searches in the 270–350 M⊙

region. Most of these extra signals are in the near or
mid range zone (less then 100 Mpc) and therefore do not
contribute as much to the total visible volume as those
at far distances. As a result, overall gain for the com-
bined search is not that significant when compared to
the Coherent WaveBurst search alone. Moreover, occa-
sionally, due to background fluctuations, the threshold
for the combined search fluctuates upward, which results
in a loss of a few distant signals detected by the Coher-
ent WaveBurst pipeline. The loss of visible volume asso-
ciated with these signals is not compensated by the gain
of efficiency in the mid range. We should note that the
measurement of detection efficiency for signals beyond
150 Mpc has large uncertainties due to low counts for de-
tected signals. Therefore, the actual loss of efficiency in
this case may be overestimated.

For demonstration of these effects and further insight,
we plot cumulative 50% efficiency contours on the dis-
tance/total mass plane for signals to be detected above
the threshold, Figure 4. The threshold is set by the lowest
measured false-alarm rate of 0.28 events per year (corre-
sponding to the left most point on the sensitivity curves
in Figures 1–3). In Figure 4, the contour for the combined
search envelops contours of the other pipelines. Further-
more, we calculate the corresponding visible volume for
the joined search and plot its ratio to the visible volume
of the most sensitive pipeline in each mass bin, shown in
the lower pane of Figure 4.
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FIG. 4. The upper pane shows the cumulative 50% efficiency
contours at false-alarm rate of 0.28 events per year. The com-
bined search contour envelops the single classifier contours
from above. The lower pane shows the plot of the ratio of the
visible volume of the combined search to the visible volume
of the most sensitive classifier in each mass bin. Having a ra-
tio greater than one indicates that the combined search gains
sensitivity across the entire mass range.

IV. CONCLUSIONS

We consider the problem of combining outputs of par-
tially redundant search methods analyzing the same data
in the context of gravitational wave searches. We suggest
that the likelihood ratio, Eq. (2), provides a natural uni-
fied ranking for the candidate events identified by the
search methods. It has a straightforward interpretation
— events from each method are ranked according to the

ratio of the method’s sensitivity to its background. After
forming the joined list of candidate events, calculation of
the posterior probability distribution or an upper limit
on the rate of gravitational-wave emissions can proceed
exactly as it would for a single search method. There-
fore, there is never a problem consistently accounting for
multiple trials in the analysis. If the combined search
is interpreted as a counting experiment, the procedure
for calculating the upper limit from multiple searches
is similar to that suggested in [5]. In that case, classi-
fiers contribute in proportion to their sensitivities. Addi-
tionally, our method accounts for information about the
classifier’s background, which is important when dealing
with experimental data containing non-Gaussian noise
artifacts.

We test our procedure by simulating a search for grav-
itational waves from compact binary coalescence in the
data from LIGO’s S4 science run. We combine outputs
from four search methods — the low-mass CBC, high-
mass CBC, ringdown, and Coherent WaveBurst analysis
pipelines — analyzing data with injected gravitational-
wave signals from compact coalescing binaries in a wide
range of masses. We find that our algorithm is robust
against nuisance pipelines — those that are not sensitive
to the targeted gravitational-wave sources. Moreover, the
combined search proves to have greater or comparable
sensitivity to any individual pipeline. In the simulations,
we observe that the pipelines we use contribute different
events to the total count of detected signals, thus increas-
ing robustness and the overall probability of detecting
gravitational waves from coalescing binaries. This effect
is especially pronounced for sources in near to mid range
distances. Overall, our simulations show that searches
for gravitational waves from coalescing binaries can ben-
efit from combining results of multiple analysis methods
by means of the likelihood-ratio statistic.
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Appendix A: Multivariate likelihood-ratio statistic

The maximum likelihood-ratio procedure described in
Section II does not account for potentially useful infor-
mation contained in the correlations between classifiers.
In this section, we derive the formal expression for the
multivariate statistic that is optimal by construction and
includes all available information. We discuss some of its
properties and its relation to the maximum likelihood-
ratio statistic, Eq. (3).
In the absence of internal thresholds, each classifier

assigns a rank, ri, to every data sample. In this case,
the vector of ranks, ~r ≡ (r1, r2, . . . rn), can be interpreted
as the reduced experimental data, and the problem of
combining searches is analogous to a detection problem.
The general problem of detection in the presence of ar-
bitrary noise was discussed in detail in [4]. Here, we
state the final result and refer the interested reader to [4]
for derivation and further discussion. The optimal solu-
tion, assuming the Neyman-Pearson criteria that requires
the maximization of the signal detection probability at
a fixed rate of false alarms, ranks data samples by the
likelihood-ratio detection statistic. For n classifiers, this
takes the form

Λ(r1, r2, . . . , rn) =

∫

p(r1, r2, . . . , rn |h, 1)p(h | 1) dh

p(r1, r2, . . . , rn | 0)
,

(A1)
where h stands for a gravitational-wave signal,
p(r1, r2, . . . , rn |h, 1) is the probability distribution for
the vector of detection statistics (r1, r2, . . . , rn) in the
case when the gravitational-wave signal h is present in
the data, p(r1, r2, . . . , rn | 0) is the analogous distribution
for the noise, and p(h | 1) is the distribution of signal
parameters for the targeted population of gravitational-
wave sources.

The joint likelihood ratio, Eq. (A1), includes the out-
put from all classifiers and by construction provides the
optimal ranking. We can simplify the expression in
Eq. (A1) by noting that for n = 2,

Λ(r1, r2) =

∫

p(r1, r2 |h, 1)p(h | 1) dh

p(r1, r2 | 0)

=
1

2

(

∫

p(r1 | r2,h, 1)p(h | 1)Λ(r2,h) dh

p(r1 | r2, 0)

+

∫

p(r2 | r1,h, 1)p(h | 1)Λ(r1,h) dh

p(r2 | r1, 0)

)

,

(A2)

and extending linearly for n > 2.
In practice, computing the conditional probabilities in

Eq. (A2) can be a nontrivial task. Moreover, as the num-
ber of classifiers increases, computing the necessary condi-
tional probabilities becomes a less and less viable option
and it is necessary to develop an approximation. The
maximum likelihood-ratio procedure can be regarded as

such even though it does not follow from the multivari-
ate expression (A1) in a straightforward way. In order to
find a relation between the two, it is useful to consider
the limiting cases of Eq. (A2). First, assume there is
no correlation between the measurements made by each
classifier. In that case, p(ri | rj,h, 1) = p(ri |h, 1) (and
similarly for the denominators), so that

Λ(r1, r2) =

∫

Λ(r1,h)Λ(r2,h)p(h | 1) dh ≈ Λ(r1)Λ(r2) .

(A3)

Factorization in the last step is justified because only
one of the classifiers exhibits a non-trivial response in the
presence of a signal in the data. As a consequence, the
un-marginalized likelihood ratio, Λ(r,h), for that classi-
fier is a function of the signal, h, sharply peaked around
the true parameters of the signal, whereas the other like-
lihood ratio is almost constant.

At the other extreme, consider the case of two strongly
correlated classifiers. Then

∫

p(r1, r2 |h)p(h | 1) dh

p(r1, r2 | 0)
=

δ(r1 − r2)
∫

p(r2 |h)p(h | 1) dh

δ(r1 − r2)p(r2 | 0)

= Λ(r1) .

(A4)

Both cases can be easily generalized for n > 2 classifiers.

When classifiers are strongly correlated, the maximum
likelihood ratio is trivially equivalent to (A4). In the op-
posite case, the absence of correlation between the classi-
fiers implies their complementarity. If one classifier iden-
tifies a significant event, the others do not. This means
that typically only one of the likelihood ratios in the prod-
uct in Eq. (A3) will be significantly different from unity.
Therefore, in this case, picking the maximum of the single
classifier likelihood ratios or calculating their product has
similar effect. Based only on these extreme situations, it
is difficult to determine how good of an approximation
the maximum likelihood ratio is in the intermediate case.
Nevertheless, we conjecture that the truly useful infor-
mation can only be in correlations between the classifiers
using incomplete, but complementary, information about
the signal (e.g. template-based searches using inspiral
and merger or ringdown waveforms). Even in this situa-
tion, the inclusion of correlations should be a next-order
effect.

Appendix B: Maximum likelihood-ratio statistic

One can gain further insight into the statistic defined
by Eq. (3) by mapping the ranks, ri, to their likelihood ra-
tios, Λi(ri). The mapping is defined by Eq. (2). The data

space of the combined search is ~Λ ≡ (Λ1,Λ2, . . . ,ΛN ).
For the ith classifier, the probabilities of detection and of
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false alarm are given by

P i
1 =

∫

Θ(Λi − Λ∗

i ) p(~Λ | 1)p(1) d~Λ (B1)

P i
0 =

∫

Θ(Λi − Λ∗

i ) p(
~Λ | 0)p(0) d~Λ . (B2)

and for the combined search by

P̃1 =

∫

Θ
(

max(~Λ)− Λ∗

c

)

p(~Λ | 1)p(1) d~Λ (B3)

P̃0 =

∫

Θ
(

max(~Λ)− Λ∗

c

)

p(~Λ | 0)p(0) d~Λ , (B4)

where Λ∗
i and Λ∗

c are detection thresholds determined
from the threshold value for the false alarm probability,
P ∗
0 , which is the same for all classifiers.
The efficiency of the combined search is expected to

be, at the very least, no less than the efficiency of any of
the classifiers being used (P̃1 ≥ P i

1). This is a necessary
condition for the maximum likelihood-ratio procedure to
be applicable. To get a better understanding of what
this condition implies and when it is expected to hold,
consider the simple case of combining a pair of classifiers.
This can be generalized in a straightforward way to arbi-
trary number. The data space, in this case, is a positive
quarter in the (Λ1,Λ2) space. The lines of constant likeli-
hood ratio, Λi, are horizontal or vertical lines. The lines
of constant joint likelihood ratio, given by Eq. (A1), can
be complicated curves even in the (Λ1,Λ2) plane and de-
fine the optimal detection surfaces. The corresponding
surfaces for the maximum likelihood-ratio statistic form
a square, centered at the origin, with sides parallel to
the Λ1 and Λ2 axes. This configuration is visualized on
Figure 5, where Λ∗

1 (vertical dashed line), Λ∗
2 (horizon-

tal dashed line), and Λ∗
c (dotted line) are the thresholds

corresponding to a particular value of the probability of
false alarm, for single and combined searches respectively.
Detection regions for each classifier consist of all points
for which the argument of the theta function in the ex-
pressions for detection and false alarm probabilities, Eqs.
(B1) and (B2), is positive. The detection region for the
ith classifier is defined by the condition Λi > Λ∗

i . All data
points in the plane satisfying this condition are counted
as detection of a signal. The detection region for the
combined search defined by Eqs. (B3) and (B4) consists
of the points satisfying two conditions: Λ1 > Λ∗

c and
Λ2 > Λ∗

c . Recall that the false alarm probability for all
searches is the same, which implies that

∫

Vi

p(Λ1,Λ2 | 0) d~Λ =

∫

Vc

p(Λ1,Λ2 | 0) d~Λ , (B5)

where Vi and Vc denote the detection regions for either
of the individual searches and for the combined search
respectively. This implies that Λ∗

c > Λi — the threshold
for the combined search is higher than the threshold for
any of the individual pipelines. Indeed, if it was not true,
then Eq. (B5) could not be satisfied since Vi ⊂ Vc. This

would correspond to moving the vertical dashed line to
the right of the solid square in Figure 5, as an example for
classifier Λ1. Thus, the diagram shown in Figure 5 repre-
sents the only allowed configuration. Continuing with the
classifier Λ1, one can identify the set of points gained by
the combined search, V+, which are points not included
in V1, and the set of points lost, V−, those belonging to
V1 but not to Vc. Both sets are shown in Figure 5 as
shaded regions. It is clear that the efficiency of the com-
bined search will be greater or equal to the efficiency of
the classifier Λ1 if and only if

∫

V+

p(Λ1,Λ2 | 1) d~Λ ≥

∫

V
−

p(Λ1,Λ2 | 1) d~Λ . (B6)

Note that at the same time
∫

V+

p(Λ1,Λ2 | 0) d~Λ =

∫

V
−

p(Λ1,Λ2 | 0) d~Λ , (B7)

by virtue of Eq. (B5). Thus, Eq. (B6) states that the
joint likelihood for the points in V+ must be (on aver-
age) greater than or equal to the joint likelihood for the
points in V−. For this case, exchanging V+ for V− re-
sults in a positive gain. It is not unjustified to expect
that Eq. (B6) would be satisfied in most practical situa-
tions. After all, according to the classifier Λ2, points in
V+ have a better chance of being a signal than those in
V−, because Λ2 for any point in V+ is greater than Λ1

for any point in V−. In effect, when combining searches
using the maximum likelihood-ratio approximation, one
exchanges points from V− with decent Λ1 and low Λ2 in
favor of points in V+ with low Λ1 but high Λ2. Consider
an extreme case when the classifier Λ2 is not informative.
The probability of getting a high likelihood ratio in the
absence of the signal is very low. Then, the total proba-
bility

∫

V+
p(Λ1,Λ2 | 0) is negligible, effectively making V−

a null set. This implies robustness of the approximation
against nuisance, non-informative classifiers. The above
steps can be mirrored for the classifier Λ2, resulting in
the same conclusions.
In conclusion, we should stress that, although condi-

tion (B6) does not hold in general, it is expected to be
satisfied when combining well designed classifiers that
are sufficiently different to be able to complement each
other’s detection efficiencies. These are the typical cases
that arise in practice.
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FIG. 5. The detection thresholds can be visualized for individ-
ual and combined searches in the (Λ1,Λ2) space. For individ-
ual searches, the detection threshold appears as the vertical
dashed line (Λ∗

1) and horizontal dashed line (Λ∗
2). The Λ∗

c

threshold is the dotted line. The shaded regions represent
the data points gained, V+, and lost, V−, by the combined
search when referencing a search performed with Λ1.
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