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Complex and exotic nuclear geometries are expected to appear naturally in dense nuclear matter
found in the crust of neutron stars and supernovae environment collectively referred to as “nuclear
pasta”. The pasta geometries depend on the average baryon density, proton fraction and temper-
ature and are critically important in the determination of many transport properties of matter in
supernovae and the crust of neutron stars. Using a set of self-consistent microscopic nuclear energy
density functionals we present the first results of large scale quantum simulations of pasta phases
at baryon densities 0.03 ≤ ρ ≤ 0.10 fm−3, proton fractions 0.05 ≤ Yp ≤ 0.40, and zero temperature.
The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact
of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the
Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction
we use the state of the art UNEDF1 parametrization, which was introduced to study largely deformed
nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear sym-
metry energy is simulated by tuning two purely isovector observables that are insensitive to the
current available experimental data. We find that a minimum total number of nucleons A = 2000
is necessary to prevent the results from containing spurious shell effects and to minimize finite size
effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust and
the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry
energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at
T = 0 MeV are shown to get easily trapped in meta-stable states, and possible remedies to avoid
meta-stable solutions are discussed.

PACS numbers: 07.05.Tp, 21.65.Ef, 26.50.+x, 26.60.-c, 26.60.Gj, 26.60.Kp, 97.60.Jd

I. INTRODUCTION

The baryon matter in the Universe organizes itself
based on the short range nuclear attraction and the long-
range Coulomb repulsion. At densities much lower than
the nuclear saturation density, ρ0 ≈ 0.16 fm−3, the nu-
clear and atomic length scales are well separated, so nu-
cleons bind into nuclei that, in turn, are segregated in
a Coulomb lattice. All terrestrial materials as well as
the matter in the outer layers of the neutron star crust
are expected to harbor such sites. However, the density
of matter inside the neutron star crust—as well as in
the regions of supernovæ–has a range that spans several
orders of magnitude. In high-density regions, ρ & ρ0,
which are expected in the core of neutron stars, the
short range nuclear interaction significantly dominates
over the atomic length scales and the matter assumes
a uniform phase. At sub-saturation baryon densities,
0.1ρ0 . ρ . 0.8ρ0, a region expected at the bottom
layers of the inner crust, these two length scales become
comparable, and the matter develops complex and exotic
structures as a result of the so-called Coulomb frustra-
tion. In this case, there is a strong competition between
the Coulomb and the strong interaction, which leads to
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the emergence of various complex structures with simi-
lar energies that are collectively referred to as “nuclear
pasta”. A significant progress has been made in simulat-
ing this exotic region [1–6], since their initial prediction
over several decades ago [7–9]. There are ongoing efforts
aiming to determine the possible shapes of the nuclear
pasta [10], as it is believed that the elastic and transport
properties—such as electrical and thermal conductivities,
shear and bulk viscosities—of nuclear pasta play crucial
role for thermal evolution, magnetic field evolution, rota-
tion, and oscillations of neutron stars [9, 11–14]. More-
over, they can significantly impact neutrino opacities in
the core-collapse supernovæ, which in turn strongly in-
fluences the dynamics of the core collapse and the cool-
ing of proto-neutron stars [3, 15–17]. In this paper we
will investigate large scale quantum simulations of nu-
clear pasta phases at baryon densities 0.03 ≤ ρ ≤ 0.10
fm−3, proton fractions 0.05 ≤ Yp ≤ 0.40, and zero tem-
perature by using a set of self-consistent microscopic nu-
clear energy density functionals, and discuss the role and
impact of the nuclear symmetry energy.

The traditional approach to study nuclear pasta phases
often involves symmetry arguments to determine what
is the most favored structure at a given baryon den-
sity, ρ, temperature, T , and proton fraction, Yp. The
system is then minimized by either adding an external
guiding potential or with some other sorts of biased ini-
tialization that explicitly makes assumptions about the
geometrical shapes of the nuclear pasta. Some exam-
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ple model calculations include the use of the liquid-drop
model [7, 18, 19], Thomas-Fermi and Wigner-Seitz cell
approximations [9, 20–23]. Perhaps some of the most
exotic phases obtained using pre-assumed shapes are
the gyroid and diamond morphologies [19, 24]. There
are other approaches that do not explicitly assume any
shape for the nuclear pasta phase. These include calcula-
tions based on the Thomas-Fermi approximation [20, 25–
27], non-relativistic Skyrme Hartree-Fock methods [28–
31], relativistic density-functional theory [23], relativis-
tic mean field-approximation [32–34], quantum molecular
dynamics (QMD) [1, 2, 35–39] and semi-classical molecu-
lar dynamics (MD) [3–5, 10, 40–46] simulations. Recently
using MD simulations more exotic structures have also
been identified, such as flat plates with a lattice of holes,
termed as “nuclear waffles” [44], and flat plates that are
connected by spiral ramps [45].

For small systems, these studies are often performed in
the unit cell filled with neutrons, protons and electrons
alongside the specific symmetry assumptions and bound-
ary conditions. The pasta matter is then described as a
lattice made of a large number of these unit cells. When
performing numerical studies, it is important to consider
the non-trivial role of the simulation volume. Since only
periodic geometries that fit into the unit cell can be ex-
plored, the simulation space must be sufficiently large to
contain at least one unit cell of the pasta structure. Even
if this condition is fulfilled, finite size effects such as de-
pendence on the geometry of the simulation space [47]
and numerical shell effects [28] may appear. As a re-
sult, the simulation volume needs to be maximized to
ensure that finite size effects are minimal. Advances in
computational power in the last decade have allowed for
sophisticated fully self-consistent calculations by using
Skyrme Hartree-Fock (SHF) calculations at finite tem-
perature [28–31]. Whereas these computations showed a
richer variety of pasta shapes than the original five ge-
ometries [8], consistent with results obtained by the MD
simulations that use significantly larger simulation vol-
umes, they are typically reproduced by assuming various
symmetry arguments or an a priori assumed final pasta
shapes. Moreover, due to the limitation of computational
power, these calculations were often limited to a single
periodic structure, therefore leading to the pasta shapes
that may exhibit significant dependence on the finite size
of the simulation box. Therefore, it is necessary to per-
form quantum simulations with a much larger number
of nucleons to overcome finite size effects, as well as to
minimize various numerical effects coming from differ-
ent symmetry considerations. The progress in the high-
performance computing in recent years allows us to take
further steps in this direction, which is the main topic of
this manuscript. Indeed, the recent decadal nuclear sur-
vey [48] puts forward that “high performance computing
provides answers to questions that neither experiment
nor analytic theory can address; hence, it becomes a third
leg supporting the field of nuclear physics.”

Calculations with more than a few thousand nucleons

so far were only manageable by considerably simplifying
the nuclear interaction. That is what was done in pre-
vious works that study nuclear pasta using classical or
quantum MD simulations. The advantage of MD sim-
ulations lies in their ability to simulate large systems
where the length of the simulation space is several hun-
dred fermis, and therefore significantly exceeds the size
of a unit cell. This allows to study pasta structures that
are less bound to the geometry and boundary conditions
of the simulation volume. However, although MD ap-
proaches can include quantum effects qualitatively, the
nuclear interaction is typically given by a schematic two-
body potential. For self-consistent quantum calculations
that account for Pauli blocking, spin-orbit forces and
nucleon pairing, simulations using microscopic energy
density density functionals (EDF) in the form of SHF
are usually performed. As mentioned above the current
drawback of these methods is their high computational
cost. As a consequence, the size of the system is typically
chosen to be much smaller than the one for MD meth-
ods. By using nuclear configurations that conserve reflec-
tion symmetry in the three Cartesian directions, Ref. [28]
were able to simulate effectively larger quantum systems
by performing the computation only in one octant of the
unit cell. In this study we will not restrict our simulation
with nuclear configurations that assume any kind of spa-
tial symmetries. In particular, we will perform quantum
simulations of nuclear pasta using Skyrme Hartree-Fock
model [49] with no pre-assumed pasta geometries, and we
will address the following main questions:

(a) what is the minimum size of the simulation volume
necessary to minimize finite size effects?

(b) what is the role of nuclear symmetry energy in the
nuclear pasta formation in neutron star crust and
supernovae?

(c) how does the initial configuration of the system im-
pact on the converged pasta structure?

We have organized the paper as follows. In Sec. II
we review the essential details required to simulate nu-
clear pasta. First, we modify the density dependence
of the symmetry energy in the Skyrme force interaction
UNEDF1 by adapting two purely isovector parameters. We
present predictions for the ground state properties of sev-
eral closed-shell finite nuclei using the original and the
modified parametrizations. Then, we discuss the impact
of the grid spacing, accuracy considerations, and opti-
mum simulation runtime. Special attention is paid to
the impact of finite size effects, in which we identify the
minimum simulation volume that contains at least one
period of the pasta structure. In Sec. III we discuss the
outcomes of our results. First, we provide predictions for
nuclear pasta with low proton fractions corresponding to
the crust of neutron stars. Second, we explore a range of
proton fractions corresponding to the matter found in su-
pernovae. Last, we discuss the non-trivial effect of initial
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configurations on the final pasta configuration. Finally,
we offer our conclusions in Sec. IV.

II. FORMALISM

A. Nuclear Interaction and Symmetry Energy

To simulate the nuclear pasta structures we use the
publicly available Skyrme TDHF code Sky3D that solves
the static Skyrme Hartree-Fock equations in a three-
dimensional Cartesian mesh with a damped gradient it-
eration method on an equi-distant grid and without sym-
metry restrictions [49]. For the nuclear pasta simulations
we use periodic boundary conditions that also includes a
homogeneous negative electron background to ensure the
charge neutrality of the system. This so-called jellium
approximation is suitable for the nuclear pasta studies
as they are expected to be present in charge neutral en-
vironments, such as in the inner crust of neutron stars.
A screened Coulomb interaction is not considered, as its
influence should be very small for the box lengths consid-
ered in our study [50]. For a full description of the code
and the Skyrme Hartree-Fock method we refer the reader
to Ref. [49].

For the nuclear interaction we select a state-of-the-art
Energy Density Functional (EDF) of Skyrme type. The
total energy is given by

Etot = Ekin + ESk + EC , (1)

where Ekin is the kinetic energy, ESk is the Skyrme con-
tribution, and EC is the Coulomb contribution. The
Skyrme energy function contains five contributions

ESk = E0 + E1 + E2 + E3 + Els , (2)

which are in detail
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∫
d3r

(
b0
2
ρ2 − b′0

2

∑
q

ρ2q

)
, (3a)

E1 =

∫
d3r

(
b1ρτ − b′1

∑
q

ρqτq

)
, (3b)

E2 =

∫
d3r

(
−b2

2
ρ∆ρ+

b′2
2

∑
q

ρq∆ρq

)
, (3c)

E3 =

∫
d3r

(
b3
3
ρα+2 − b′3

3
ρα
∑
q

ρ2q

)
, (3d)

Els =

∫
d3r

(
−b4ρ∇ · ~J − b′4

∑
q

ρq∇ · ~Jq

)
(3e)

for time-independent calculations, where E0 is known as
the zero-range term, E1 as the effective mass term, E2

as the finite-range term, E3 as the density dependent
term, and Els as the spin-orbit term. Here ρ is the total

particle density, τ is the total kinetic density and ~J is the

total spin-orbit density, and if a subscript q is present it
labels the densities of either neutrons or protons. The
Coulomb energy EC consists of the standard expression
for a charge distribution in its own field plus the exchange
term in the Slater approximation:
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3
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where e is the elementary charge. The parameters α,
bi and b′i, i ∈ {0, 1, 2, 3} are fitted to experimental data.
We chose the UNEDF1 parametrization, whose parameters
were fitted to a selected set of nuclear masses, charge
radii, odd-even mass differences, and the experimental
excitation energies of fission isomers in the actinides [51].
Given that UNEDF1 was introduced to better study largely
deformed nuclei, we find this Skyrme force very suitable
for our studies of nuclear pasta that can take shapes of
strongly elongated nuclei, in particular.

Although the current extensive experimental database
is sufficient to constrain most of the parameters of the
nuclear interaction, many nuclear forces widely disagree
in their description of the isovector channel of the nu-
clear force due to poorly constrained isovector param-
eters. In the realm of nuclear matter this means that
the density dependence of the nuclear symmetry energy
remains poorly determined. Since nuclear pasta is ex-
pected to form in a neutron-rich environment, the role
of the nuclear symmetry energy on the pasta formation
and the pasta phase transition needs to be thoroughly
analyzed. It has been shown by Oyamatsu and Iida that
pasta formation may not be universal in the neutron star
crust and that its existence is intimately related to the
density dependence of the symmetry energy [52], where
the pasta regime was predicted to appear when the den-
sity slope of the symmetry energy is L . 100 MeV (see
Ref. [53] for definitions of symmetry energy parameters).
Recently there have been several studies in the context
of the Thomas-Fermi approximation that analyzed the
impact of density slope of the nuclear symmetry energy
L on the pasta phase structure [27, 54, 55]. In particular,
it was found that whereas models with small value of L
exhibit a variety of pasta structures, most of these struc-
tures are faded away when one considers models with the
large value of L corresponding to the stiff nuclear symme-
try energy. And very recently using the QMD Ref. [56]
has found that the low-density onset of the nuclear pasta
phase is quite insensitive to the density dependence of
the symmetry energy when proton fraction is Yp = 0.3.

Intensive efforts have been devoted to constrain the
density dependence of the nuclear symmetry energy in
recent years from using various approaches (please see
Refs. [57–59] and references therein). These efforts have
recently led to a close convergence of the value of symme-
try energy at saturation being around J ≈ 30 MeV and
its density slope of L ≈ 60 MeV. Nevertheless, the asso-
ciated error-bars from different approaches vary broadly
and the possibility that J and L parameters can be sig-
nificantly different from these currently inferred values



4

cannot be ruled out [59]. For this reason, we have mod-
ified two purely isovector parameters of the UNEDF1 by
following the tuning scheme as described in Ref. [60]. In
particular, we modify the Skyrme parameters x0 and x3
(Table I), that in turn modify the parameters b0, b′0, b3
and b′3 of the EDF (Eqs. (3a) and (3d)) which are given
by

b0 = t0
(
1 + 1

2x0
)

b′0 = t0
(
1
2 + x0

)
b3 = 1

4 t3
(
1 + 1

2x3
)

b′3 = 1
4 t3
(
1
2 + x3

) (5)

in terms of the Skyrme parameters t0, t3, x0 and x3.
The tuning method allows one to generate a family of
model interactions that are almost indistinguishable in
their predictions for a large set of the nuclear ground
state observables that are mostly isoscalar in nature, yet
predict different isovector observables. As a contrast to
the original UNEDF1 model that has a relatively soft sym-
metry energy with L = 40 MeV, we generated a model
that predicts a rather stiff symmetry energy of L = 80
MeV.

In Table I we present the nuclear matter bulk parame-
ters for these two interactions. And in Table II we show
the success of such tuning by presenting predictions for
binding energies and charge radii of several closed shell
nuclei. We also present the corresponding neutron skin
thicknesses rskin of these nuclei. It is worth mentioning
that the measurement of rskin in 48Ca and 208Pb are of
enormous significance due to their very strong correlation
to the slope of the symmetry energy around saturation
density [62–65]. The neutron skin thickness of 208Pb has
been preliminarily measured by the PREX Collabora-
tion at Jefferson Laboratory [66], and will be measured
with higher accuracy by the PREX-II experiment [67] in
2017. An already approved CREX experiment on the
other hand aims to measure the neutron skin thickness
of 48Ca [68]. The calculations of Table II is performed
using the Sky3D code with isolated boundary conditions,
for the Coulomb force. The charge radius is calculated
using the point-proton mean-square radius 〈r2〉pp from
Sky3D and the approximate analytic formula [69]

〈r2〉ch = 〈r2〉pp + 〈R2
p〉+

N

Z
〈R2

n〉+
3

4M2
+ 〈r2〉so , (6)

where 〈R2
p〉 = 0.7658 fm2 and 〈R2

n〉 = −0.1161 fm2 are
the mean-square charge radii of the proton and the neu-
tron, respectively, 3

4M2 = 0.03312 fm2 is the so-called

Darwin-Foldy term, and 〈r2〉so is the relativistic spin-
orbit correction. Notice, that the slope of the symmetry
energy L is closely related to the pressure of pure neutron
matter at saturation density, i.e., L ≈ 3P (ρ0)/ρ0. There-
fore the larger L results in the higher neutron pressure
which leads to greater neutron radii and thicker neutron
skins as neutrons are pushed out against surface tension.

In Fig. 1 we display the resulting density dependence of
the nuclear symmetry energy for these two interactions.
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FIG. 1. (Color online) Density dependence of the nuclear
symmetry energy for the two models discussed in the text.

The large magnitude of the density slope L ensures that
at sub-saturation densities pertaining to the crust of neu-
tron stars the nuclear symmetry energy acquires smaller
values. Thus for large L it becomes energetically favor-
able for the system to become more neutron-rich at these
densities. For the same reason, the proton fraction Yp in
the system increases, when L is small (soft symmetry
energy).

B. Grid Spacing and Accuracy Considerations

As noted above, in Sky3D the wave functions and
fields are defined on a three-dimensional regular Carte-
sian grid [49]. In particular, in calculating the values of
Table II we used a cubic box with size a = 24 fm and grid
spacing of ∆x = 1.00 fm in each direction. As shown in
Ref. [31], changing the box size to larger values does not
significantly change the total energies of the ground state.
In fact, doubling the box size can add an additional en-
ergy of only less than 0.012%. On the other hand, the
choice of the physical spacing between the grid points can
be more important, especially when the grid spacing is
larger than ∆x = 1.00 fm. The calculations presented in
Table II uses a very fine grid of ∆x = 0.25 fm. However
this comes at a significant cost on computational time.
For accurate results in finite nuclei calculations a typical
value was suggested to be taken as ∆x ≈ 0.75 fm. In-
deed, when we used ∆x = 1.00 fm, the error is less than
0.013%, whereas the calculation speeds up by about 100
times. Ideally, the computation time is expected to scale
as n3, where n is the total number of the grid points
in one direction, n = a/∆x. In Ref. [70], it was shown
that the maximum grid spacing for nuclear pasta calcu-
lations may be taken as large as 1.30 fm. Notice that
the simulation runtime also depends on the number of
nucleons A, and scales approximately as ∼ A2 due to di-
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Model x0 x3 ρ0 ε0 K0 Q0 J L Ksym

UNEDF1 +0.0537569200 −0.1624911700 0.1587 -15.80 220.0 -405.0 28.99 40.00 −179.5
UNEDF1? −0.3237259090 −0.7725758299 0.1587 -15.80 220.0 -405.0 32.87 80.00 −71.42

TABLE I. Bulk parameters characterizing the behavior of neutron-rich matter around saturation density ρ0. Here x0 and x3
are the two pure isovector parameters of the Skyrme force UNEDF1 that have been re-fitted to obtain an interaction with the
stiff symmetry energy, UNEDF1?. The quantities ε0, K0, and Q0 represent the binding energy per nucleon, incompressibility
coefficient, and the “skewness” coefficient of symmetric nuclear matter at ρ0 . Similarly, J , L, and Ksym represent the energy,
slope, and curvature of the symmetry energy at saturation density. All quantities are in MeV, except for ρ0 which is given in
fm−3. A detailed explanation of all these quantities may be found in Ref. [61].

Nucleus Observable Experiment L = 40 MeV L = 80 MeV
16O B/A (MeV) −7.98 −7.56 −7.56

rch (fm) 2.70 2.81 2.81
rskin (fm) — −0.02 −0.02

40Ca B/A (MeV) −8.55 −8.52 −8.52
rch (fm) 3.48 3.50 3.50
rskin (fm) — −0.04 −0.04

48Ca B/A (MeV) −8.67 −8.60 −8.61
rch (fm) 3.47 3.53 3.52
rskin (fm) — 0.18 0.21

90Zr B/A (MeV) −8.71 −8.72 −8.72
rch (fm) 4.27 4.28 4.28
rskin (fm) — 0.08 0.10

132Sn B/A (MeV) −8.35 −8.35 −8.33
rch (fm) — 4.72 4.72
rskin (fm) — 0.25 0.30

208Pb B/A (MeV) −7.87 −7.88 −7.86
rch (fm) 5.50 5.51 5.51
rskin (fm) — 0.18 0.23

TABLE II. Experimental data (where available) and theoret-
ical predictions for the two EDFs for the binding energy per
nucleon, charge radii and neutron skin thickness for several
closed shell nuclei.

agonalization of the Hartree-Fock hamiltonian. Thus for
a fixed average baryon density and fixed physical spacing
between the grid points, doubling the simulation volume
(i.e A → 2A) makes the simulation runtime approxi-
mately 8 times longer.

With the aim to maximize the volume of the nuclear
pasta systems, we explored the optimal value of the phys-
ical grid spacings that allows one to perform nuclear
pasta simulations without the loss of accuracy in ener-
gies. Notice that nuclear pasta phases are expected to
be sensitive to the binding energy differences of as small
as 0.01 MeV per nucleon. In Fig. 2 we display the abso-
lute values of the binding energy per nucleon for a sys-
tem with A = 800 nucleons as a function of the grid
spacing. We initialize our system with all nucleons ran-
domly distributed within the box, and the initial single-
particle wave functions are given as a sum of 27 three-
dimensional Gaussians with widths of σ = 2.5 fm that
are centered at the nucleon coordinates with their closest
images formed due periodic boundary conditions. As ev-
ident from Fig. 2—and as far as the binding energies are
concerned—the accuracy of the results are maintained
within 0.06% for grid spacings of as large as ∆x = 1.50
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FIG. 2. (Color online) The absolute value of the binding
energy per nucleon and the simulation runtime as a function
of the grid spacing ∆x for a system of A = 800 nucleons at
the average baryon density of ρ = 0.0512 fm−3 and proton
fraction of Yp = 0.4.

fm. Moreover, while the corresponding simulation run-
time gets significantly reduced, an appreciable speed up
in the convergence is not observed beyond ∆x > 1.50
fm. And since the number of grid points must be cho-
sen as even numbers to preserve the reflection symmetry,
we ensure that our grid spacings are chosen as large as
possible but not larger than ∆x = 1.50 fm in our pasta
calculations.

In Sky3D the coupled mean-field equations are solved
iteratively. The wave functions are iterated with a gra-
dient step method which is accelerated by the kinetic-
energy damping (see Ref. [49] for details):

ψ(n+1)
α = O

{
ψ(n)
α − δ

T̂ + T0

(
ĥ(n) − 〈ψ(n)

α |ĥ(n)|ψ(n)
α 〉

)
ψ(n)
α

}
,

where T̂ = p̂2/2m is the operator of kinetic energy, O
means orthonormalization of the whole set of new wave
functions, ĥ is single-particle hamiltonian, and the upper
index indicates the iteration number. The damped gra-
dient step has two numerical parameters, the step size δ
and the damping regulator T0. Ref. [49] suggests a value
of δ = 0.1 . . . 0.8 and T0 = 100 MeV should be optimal.
Larger values of δ yield faster iteration, but can run more
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easily into pathological conditions.
In an effort to optimize our simulation we introduced

a variable step size that starts with an initial δ = 0.2 and
is systematically increased by a factor of 1.005 if the new
single-particle energies are smaller than the one from the
previous iteration, otherwise it is decreased by a factor
of 1.250. This ensures in average an about three times
faster convergence than when a constant δ is assumed.

To avoid getting trapped in a metastable state we run
our simulations very long and have chosen our conver-

gence criterion to be ∆εtot = ε
(m)
tot − ε

(n)
tot < −10−4 MeV,

where εtot is total energy per nucleon at a given iteration,
and m = n+10, 000. The total energy of the ground state

is then found as εg.s. = ε
(m)
tot .

C. Finite Size Effects and the Minimum Number
of Nucleons

Having settled on the optimum choice of the grid spac-
ing, in this subsection we explore the role of the finite size
effects on the energetics and geometries of the nuclear
pasta. In Fig. 3 we plotted the isosurface of proton den-
sities for systems with A = 400, 800, 1200, 1600 and 2000
nucleons, respectively, at a fixed average baryon density
of ρ = 0.05 fm−3 and proton fraction of Yp = 0.40. In Ta-
ble III we present the corresponding energetics and max-
imum local densities.

It turns out, that all of these systems are energeti-
cally very close to one another with accuracy of less than
0.0445 MeV in the binding energy per nucleon. Nev-
ertheless, as depicted in Fig. 3 the corresponding pasta
phases assume a seemingly different shape for each case.
Considering that these systems obey periodic boundary
conditions it is not difficult to see that most of them are
in the nuclear waffle state with the exception of A = 800
and A = 1200, where there are additional 3D connec-
tions [44]. The existence of nuclear waffles as perforated
plates was observed by Ref. [44] using MD simulations
and also in [29], where it was denoted as the rod(2)
shape. This phase is expected to lie in the transition
between a phase made up of elongated cylindrical nuclei
and a phase formed of a stack of parallel flat plates. Re-
cently it was shown [31] that if the simulation is initialized
from the single-particle wavefunctions constructed from
a converged MD simulation, the waffle state remains sta-
ble even when quantum mechanical effects are consid-
ered. Even starting from a completely random initial
configuration we confirm that the waffle state is a true
stable nuclear pasta configuration in agreement with the
results obtained by Ref. [29, 44]. Looking more closely at
the individual energy components as given in Table III,
we realize that the highest percentage error comes from
the Coulomb energy contribution. This is because the
Coulomb force has long-range interaction and can extend
much beyond the boundaries of smaller boxes. The indi-
vidual energy terms from Skyrme force have also larger
percentage errors as opposed to the total energy. This is

FIG. 3. (Color online) The appearance of the nuclear waffle
phase at Yp = 0.40, ρ = 0.05 fm−3 for different volume sizes
containing A = 400, 800, 1200, 1600 and 2000 nucleons from
top to the bottom, respectively. The sides of the cubic vol-
umes correspondingly are equal to 20 fm, 25.2 fm, 28.8 fm,
31.7 fm, 34.2 fm. The blue color represents isosurface pro-
ton densities of ρp = 0.9 (Ypρ) and the red color represents
the region with the highest proton density ρmax

p within the
pasta structure, where ρ is the average nucleon density. This
figure and all other similar figures throughout the paper are
generated using the ParaView software [71].
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A Etot Ekin E0 E1 E2 E3 Els EC ρmax
tot ρmax

p

400 −11.8565 18.9389 −94.0201 −0.3275 0.6632 62.3350 −0.2240 0.7780 0.1486 0.0612
800 −11.8164 18.7521 −92.4597 −0.3081 0.7419 61.1158 −0.2592 0.6008 0.1491 0.0613

1200 −11.8320 18.9109 −93.6282 −0.3226 0.6640 61.9873 −0.2340 0.7905 0.1497 0.0619
1600 −11.8609 19.0713 −94.8028 −0.3240 0.7245 63.0520 −0.2606 0.6787 0.1515 0.0630
2000 −11.8520 18.8880 −93.4096 −0.3150 0.7394 61.8989 −0.2639 0.6103 0.1529 0.0645

TABLE III. Various contributions to the total energy of the system are given in units of MeV for nuclear pasta configurations
with different number of nucleons, A, at a fixed average baryon density of ρ = 0.05 fm−3 and proton fraction of Yp = 0.40. To
make a meaningful comparison between these systems, energies per nucleon are presented only. Also the maximum local total
density ρmax

tot is given, as well as the maximum local proton density, ρmax
p , within the pasta structure in units of fm−3.
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FIG. 4. (Color online) Proton fractions as a function of
baryon density for a uniform neutron-star matter in two mod-
els discussed in the text. Also shown is the proton fractions
at few fixed average baryon densities obtained directly from
nuclear pasta simulations (diamonds).

primarily due to the fact that the ground state is, by def-
inition, obtained by minimizing the total energy. There-
fore individual terms can have different values stemming
from the competition between nuclear and electric forces
and as a result of their overall effort to minimize the
ground state energies. Thus, although the final ground
state energies are close to one another, the final shape of
the nuclear pasta depends on the system size as a result
of such competition. Following Fig. 3 where we obtained
at least two pasta structures for a system with an aver-
age baryon density of ρ = 0.05 fm−3, in the next part of
our discussions we assume systems containing A = 2000
nucleons.

III. RESULTS

A. Neutron Star Crust: Yp = 0.05

Every simulation described here has A = 2000 nucle-
ons. These nucleons are initially randomly positioned

within a cubic box with sides a = 3
√
A/ρ and corre-

sponding initial single-particle wave functions are con-
structed by folding Gaussians over each nucleon. We
present and discuss our results for a fixed proton fraction
of Yp = 0.05. This condition mimics the matter content
in the neutron star crust. For a proper description of
the neutron-star matter, one must obtain proton frac-
tions self-consistently by using the condition of chemical
equilibrium:

µn = µp + µe , (7)

where µq is the chemical potential of species q = n,p, e
for neutrons, protons and electrons, respectively. Assum-
ing a uniform nuclear matter in beta-equilibrium we find
that both interactions predict proton fractions to be less
than 5% at densities of 0.03 fm−3 < ρ < 0.10 fm−3 where
the emergence of nuclear pasta is expected, see Fig. 4.
In this figure we also display proton fractions at a few
fixed baryon densities which were obtained directly from
the nuclear pasta simulations. For this we fixed the pro-
ton number at Z = 14 and varied the neutron number,
N = A−Z, in search for the value of A that satisfies the
condition (7). Notice that this search is quite exhausting
as far as the simulation computing times are concerned.
Moreover, for realistic results one must choose proton
numbers to be Z � 14. We reserve to carry out such sim-
ulations in the future. However, we would like to point
out that whereas at densities close to saturation the pro-
ton fractions closely match that obtained from a uniform
matter distribution, at lower sub-saturation densities the
realistic proton fractions can be larger due clustering ef-
fects as hinted by the left arrow in Fig. 4. The ques-
tion of whether exotic structure phases can develop in a
proton-deficient environment was critically analyzed by
Ref. [41]. In particular, they found an interesting behav-
ior displayed in the structure factor S(q) that could be
indicative of significant structural changes in the system.
Nevertheless, it was concluded that no clear evidence ex-
ists either in favor or against the formation of the nuclear
pasta at the neutron crust. To our knowledge, no other
full quantum numerical simulations have been carried out
with proton fractions less than Yp = 0.1.

In Fig. 5 we plot the isosurface of proton densities
for models with both soft, L = 40 MeV, and stiff,
L = 80 MeV symmetry energies. At the lowest den-
sity of ρ = 0.03 fm−3 considered in our simulations, we
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FIG. 5. (Color online) Isosurface of proton densities are plotted for the two model discussed in the text over the range of baryon
densities at a fixed proton fraction of Yp = 0.05. The total number of nucleons are fixed at A = 2000 and the side of the cubic
box varies from 40.55 fm down to 27.14 fm, corresponding to average baryon densities of 0.03 ≤ ρ ≤ 0.10 fm−3, respectively.
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ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y ?
p (%)

0.03 UNEDF1 1.731 0.0217 0.1437 786 8.24
UNEDF1? 0.481 0.0225 0.1376 508 6.70

0.04 UNEDF1 2.118 0.0300 0.1316 788 8.25
UNEDF1? 0.801 0.0312 0.1275 581 7.05

0.05 UNEDF1 2.522 0.0369 0.1285 810 8.40
UNEDF1? 1.212 0.0405 0.1232 674 7.54

0.06 UNEDF1 2.937 0.0456 0.1222 848 8.68
UNEDF1? 1.715 0.0490 0.1132 770 8.13

0.07 UNEDF1 3.356 0.0537 0.1111 874 8.88
UNEDF1? 2.292 0.0594 0.1034 902 9.11

0.08 UNEDF1 3.778 0.0631 0.1061 926 9.31
UNEDF1? 2.962 0.0711 0.0975 978 9.78

0.09 UNEDF1 4.229 0.0753 0.1079 978 9.78
UNEDF1? 3.732 0.0828 0.0924 1122 11.39

0.10 UNEDF1 4.716 0.0870 0.1071 978 9.78
UNEDF1? 4.601 0.0939 0.1021 1218 12.79

TABLE IV. Some bulk properties of nuclear pasta with av-
erage proton fraction of Yp = 0.05. Here Nf represents the
number of free neutrons and Y ?

p = Z/(A−Nf) is defined as the
effective proton fraction of the pasta structure. All densities
are given in units of fm−3.

observe a combined total of 8 spherical and deformed
nuclei, unequal in size, in both models. Their location
is randomly distributed within the box and do not form
a lattice structure of any kind. Notice that such density
already corresponds to a deeper layer of the inner crust.
The transition from the outer crust to the inner crust is
predicted to occur at about ρ > 0.00024 fm−3 [72, 73].
Whereas at the top layer of the inner crust one expects
a Coulomb crystal of neutron-rich nuclei immersed in a
uniform electron gas and a dilute neutron vapor [41], at
ρ = 0.03 fm−3 the neutron vapor becomes much denser,
and the crystalline structure is already destroyed. These
so-called gnocchi phase could be said to form a liquid-like
(or amorphous) structure with an approximate average
charge of 〈Z〉 ≈ 12.5. This likely is because the system
is not equilibrated. These nuclei are well separated from
one another, and their sizes and shapes are mostly dic-
tated by the Coulomb repulsion between protons and the
surface energy of the system, which are almost identical
in both cases. The corresponding total energies per nu-
cleon in these two models are surprisingly different (see
Table IV). This difference primarily comes from the zero-
range term E0 and density dependent term E3, whose
values strongly depend on x0 and x3 Skyrme parame-
ters, respectively [74]. Physically, a large slope param-
eter L means that the symmetry energy at low densi-
ties is small, thus nuclei can easily become neutron-rich.
On the other hand, the symmetry energy at ρ = 0.03
fm−3 is larger for a model with small value of L, thus it
becomes energetically favorable for the system to main-
tain larger proton fractions. We further examined the
single-particle energies and have found that the number
of free neutrons, Nf , identified as the number of neutrons
with positive single-particle energies, is indeed smaller for
L = 80 MeV than L = 40 MeV, see Table IV. Thus the
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FIG. 6. (Color online) Effective proton fractions Y ?
p (top

panel) and free neutron fractions Yn,f (bottom panel) are plot-
ted as a function of total average baryon density for the two
models discussed in the text.

system became effectively neutron-rich with an effective
proton fraction Y ?p = Z/(A − Nf) being smaller in the
former.

As the average baryon density increases to ρ = 0.04
fm−3, the nuclei come closer, get fused and merge into
super-elongated nuclei of rod-like structure, see Fig. 5.
Whereas all of the 8 nuclei got merged to 3 rod-like struc-
tures in the model with the soft symmetry energy, only 1
rod-like structure and 5 nuclei are observed in the model
with L = 80 MeV, thus harboring a coexistence of two
structures: spherical nuclei and super-elongated nuclei
of rod-like behavior. Note again that this result is likely
due to the system being not equilibrated. At even higher
density of ρ = 0.05 fm−3, the former now has 2 rod-like
structures only, whereas the latter has 3 rod-like struc-
tures and 2 nuclei within the simulation box. The corre-
sponding effective proton fractions rise in both models,
meaning there are more free neutrons in the system now
(see Table IV). Since the symmetry energy rises faster as
a function of density in the model with L = 80 MeV, the
effective proton fraction also gets boosted further as ev-
idenced by the results shown on Table IV and displayed
in Fig. 6.

At ρ = 0.06 fm−3, in UNEDF1, the rod-like structures
now start getting fused in the perpendicular direction.
As density is increased to ρ = 0.07 fm−3 rods get further
fused and the system is comprised of a continuous crest-
like structure (recall that the system is periodic). On
the other hand, at ρ = 0.06 fm−3, the phase co-existence
between rods and nuclei continue to exist in UNEDF1?,
whereas at ρ = 0.07 fm−3, we observe a combination of
P -surface [75] and a flat plate, also known as the lasagna
phase. This means that pure rod-like structures in mod-
els with the stiff symmetry energy can only exist within
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FIG. 7. (Color online) Density contrast ∆ρ within the pasta
simulation box as a function of the average baryon density ρ
for various proton fractions Yp for models with L = 40 MeV
(solid) and L = 80 MeV (dashed). System is considered as
uniform when ∆ρ = 0, otherwise it is pasta-rich.

a very narrow region of densities. Correspondingly, only
a very thin layer of such pasta can exist in the neutron
star crust.

At ρ = 0.08 fm−3 in both systems we observe hollow-
tubes, also known as the bucatini phase. More neutrons
become free than bound. The corresponding effective
proton fractions, Y ?p , and free neutron fractions, Yn,f =
Nf/A, as a function of density are plotted in the left and
right panels of Fig. 6.

Finally, we observe spherical bubbles, also known as
the Swiss cheese phase, at densities of ρ = 0.09 fm−3

and ρ = 0.10 fm−3. The sizes of spherical bubbles get
smaller as the density increases and also depend on the
two models considered above.

Particularly interesting is to observe the density con-
trast, ∆ρ = ρmax

tot −ρmin
tot , within the nuclear pasta systems

described above. Here ρmax
tot and ρmin

tot are the maximum
and the minimum local baryon densities within the sim-
ulation volume. In particular, ρmax

tot is the baryon den-
sity at the central regions of pasta structures, whereas
ρmin
tot is the baryon density of the free neutron gas. The

larger value of ∆ρ suggests that the system organized
itself into complex clusters, whereas ∆ρ = 0 means the
system is uniform. Considering Table IV and Fig. 7 we see
that a soft symmetry energy exhibits a pasta-rich system
throughout the neutron star crust, whereas the clustered
matter transforms quickly into the uniform matter when
the symmetry energy is stiff (see Table IV).

ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y ?
p (%)

0.03 UNEDF1 −0.668 0.0159 0.1485 638 14.68
UNEDF1? −1.537 0.0167 0.1423 394 12.45

0.04 UNEDF1 −0.519 0.0206 0.1382 630 14.60
UNEDF1? −1.436 0.0239 0.1334 438 12.80

0.05 UNEDF1 −0.330 0.0265 0.1275 642 14.73
UNEDF1? −1.258 0.0303 0.1310 496 13.30

0.06 UNEDF1 −0.137 0.0325 0.1256 654 14.86
UNEDF1? −1.018 0.0393 0.1157 566 13.95

0.07 UNEDF1 0.051 0.0399 0.1197 666 14.99
UNEDF1? −0.713 0.0466 0.1126 644 14.75

0.08 UNEDF1 0.252 0.0474 0.1136 698 15.36
UNEDF1? −0.363 0.0591 0.1009 770 16.26

0.09 UNEDF1 0.457 0.0623 0.1089 770 16.26
UNEDF1? 0.068 0.0825 0.0989 878 17.83

0.10 UNEDF1 0.688 0.0956 0.1073 830 17.09
UNEDF1? 0.597 0.0975 0.1045 926 18.62

TABLE V. Some bulk properties of nuclear pasta with an av-
erage proton fraction of Yp = 0.10. Average and local baryon
densities are given in units of fm−3.

B. Proto-Neutron Stars and Matter in Supernova

In cold neutron stars proton fractions of larger than
Yp > 0.05 can only occur at high densities and very low
densities. At high densities pertaining to the core of the
star the matter is uniform and no nuclear pasta phase
is therefore expected. Similarly, at very low densities
applicable to the outer crust, nucleons bind into nuclei
that are then segregated in a crystal lattice. However, the
low-density regions that contain proton fractions between
0.10 < Yp < 0.40 can be present in dense proto-neutron
stars (PNS) that are born subsequent to the core-collapse
supernova explosion. The PNS is cooled primarily by
neutrino emission which is driven by neutrino diffusion
and convection within the PNS after the core bounces.
It is therefore interesting to understand the role of the
neutrino-matter interaction in the dynamics of the super-
nova explosion. The spectrum of neutrinos emerged from
neutrino-sphere can be observed using the current and
future terrestrial detectors as soon as the next galactic
or near-galactic supernova goes off. This spectrum can
provide a valuable information about the structure of the
nuclear matter in these regions [76].

1. Systems with Yp = 0.10

In proto-neutron stars, neutrinos are trapped for tens
of seconds in the hot and dense nuclear medium [77]. As
neutrinos diffuse out of the PNS, the proton fraction in
this beta equilibrium thermal matter also evolves. There-
fore it is useful to explore a large range of proton fractions
in the nuclear pasta formation. Notice that we use zero
temperature in all of our simulations, whereas in reality,
the temperature in the supernova environment can be
from a few MeV to as high as kBT = 10 MeV and even
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FIG. 8. (Color online) Isosurface of proton densities are plotted using the same presciription as in Fig. 5 except now the proton
fraction of the system is Yp = 0.10.
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FIG. 9. (Color online) Four periodic copies of pasta structure
with Yp = 0.10, ρ = 0.05 fm−3 for model with L = 80 MeV are
put together for a simulation box posed at a different angle for
better visualization. The box dimensions are 68.4×68.4×34.2
fm, and the isosurface of proton density at ρp = 0.02 fm−3 is
plotted.

more.
At low densities, both models again feature similar ge-

ometries (see Fig. 8). We observe 8 elongated nuclei ran-
domly located within the simulation box. The size of
these structures vary from one another, and the average
charge of an individual structure is 〈Z〉 ≈ 25. These
structures significantly differ from the unstable neutron-
rich nuclear isotopes with the same proton number. For
example, the most neutron-rich terrestrial radioactive
Mn isotope (with Z = 25) known today has N = 44 neu-
trons. Surprisingly, the Coulomb frustration at ρ = 0.03
fm−3 enables the formation of elongated nuclei with an
average neutron number of N ≈ 145 (L = 40 MeV) or
176 (L = 80 MeV). The concentration of free neutrons
at this density now strongly depends on the interaction
model (see Table V). Although a significant fraction of
neutrons carry positive kinetic energies, the overall en-
ergy of the ground state in this system remains negative.

At ρ = 0.04 fm−3, both models exhibit a very similar
geometry: two nuclei within the simulation box fuse to-
gether to form one long rod-like structure. Thus a total
of four superdeformed rod-like nuclei are formed. As the
density increases, at ρ = 0.05 fm−3, we observe that rod-
like structures arrange themselves in a net-like structure
for the model with L = 40 MeV. Notice such structure
was also observed for Yp = 0.05 but at ρ = 0.07 fm−3.
On the other hand, for the system with L = 80 MeV we
observe a structure that resembles fibrous roots. To have
a better view of this structure, in particular, we show four
periodic copies of the isosurface of proton densities along
two directions, mainly x and y, using the fact that our
simulation volume is periodic. The resulting isosurface of
proton densities are plotted in Fig. 9. Since the existence
of many low-energy configurations is the benchmark of

frustrated systems, we believe that this structure in par-
ticular could be in a metastable state. We expect that
the true ground state is a Y -shaped junction that forms
the backbone of a branched network of many frustrated
systems such as the low-dimensional magnetic systems.
Next, at ρ = 0.06 fm−3 we observe almost identical net-
like structures in both models. At an even higher densi-
ties the threads of these nets structures get thicker as a
result of compression and they turn into the complex
shapes previously referred to as rod(3) structures [28–
30, 78]. Notice this structure continue to exist in the
model with soft symmetry energy even at ρ = 0.09 fm−3,
whereas the pasta structure almost disappears for L = 80
MeV. And finally, at ρ = 0.10 fm−3 both systems assume
uniform phase.

2. Systems with Yp = 0.20

Let us now analyze the more widely studied case of sys-
tems with larger proton fractions. Such systems display a
rich-variety of nuclear pasta even at high sub-saturation
densities. For example, even at ρ = 0.10 fm−3 the density
contrast in the system is as large as ∆ρ = 0.089 fm−3 for
the model with soft symmetry energy (see Fig. 7 and Ta-
ble VI). Although the overall binding energy of the sys-
tem is negative, there are still some free neutrons found in
this system with Yp = 0.20 (see Table VI). Nevertheless,
the fractional population of free neutrons are much less
than found before in systems with lower proton fractions.
The corresponding effective proton fractions therefore do
not deviate very much from 20%. All pasta structures
are energetically very close to one another, yet we ob-
serve structures that are radically different in topology.
Indeed, it has been first speculated by Ref. [8] that the
transition from the highly ordered crystal to the uniform

ρ Model Etot (MeV) ρmin
tot ρmax

tot Nf Y ?
p (%)

0.03 UNEDF1 −5.150 0.0046 0.1438 542 24.13
UNEDF1? −5.394 0.0036 0.1426 394 22.15

0.04 UNEDF1 −5.247 0.0065 0.1382 528 23.92
UNEDF1? −5.537 0.0062 0.1349 396 22.17

0.05 UNEDF1 −5.358 0.0071 0.1354 514 23.72
UNEDF1? −5.629 0.0101 0.1306 400 22.22

0.06 UNEDF1 −5.462 0.0092 0.1296 504 23.58
UNEDF1? −5.731 0.0153 0.1274 406 22.30

0.07 UNEDF1 −5.565 0.0105 0.1302 512 23.70
UNEDF1? −5.800 0.0209 0.1213 436 22.68

0.08 UNEDF1 −5.662 0.0143 0.1253 502 23.56
UNEDF1? −5.864 0.0284 0.1161 464 23.04

0.09 UNEDF1 −5.763 0.0182 0.1194 502 23.56
UNEDF1? −5.899 0.0370 0.1107 508 23.64

0.10 UNEDF1 −5.851 0.0329 0.1222 460 22.99
UNEDF1? −5.897 0.0887 0.1077 562 24.42

TABLE VI. Some bulk properties of nuclear pasta with an av-
erage proton fraction of Yp = 0.20. Average and local baryon
densities are given in units of fm−3.
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FIG. 10. (Color online) Isosurface of proton densities are plotted using the same presciription as in Fig. 5 except now the proton
fraction of the system is Yp = 0.20.
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phase must proceed through a series of changes in the di-
mensionality and topology only that depends on density
but not on total energy. We also observe that the depen-
dence on the symmetry energy is significantly reduced
both in total energies and in topology, even though the
system is still relatively very neutron-rich.

At ρ = 0.03 fm−3 we no longer observe a system purely
made of nuclei (gnocchi phase). Instead we observe a co-
existence of nuclei and rod-like structures. When the
model with the soft symmetry energy is used we observe
two nuclei and one rod in the simulation volume. How-
ever, for L = 80 MeV we observe just one nucleus and a
rod structure that is bent to assume a disconnected hook-
shaped structure. At ρ = 0.04 fm−3, the first system
now assumes a connected hook-shaped structures that
make a wave pattern, whereas the latter one assumes
a structure that resembles donuts which are connected
through Y -junctions. The lowest non-zero local baryon
densities shown in Table VI correspond to the density of
background free neutron gas.

As we progressively increase the density, at ρ = 0.05
fm−3 and ρ = 0.06 fm−3, both systems proceed into hav-
ing the donut-like shapes with less spatial separations. At
higher densities the size of the openings become smaller
making a transition to cylindrical holes at densities of
0.08 fm−3 and eventually leading to spherical bubbles for
models with the soft symmetry energy. A similar phase
transition between pasta states is observed for models
with the stiff symmetry energy, however the system be-
comes uniform at much lower densities. As can be seen
from Table VI at the average baryon density of ρ = 0.10
fm−3, where the local deviation of the density within the
simulation box is no more than ∆ρ = 0.019 fm−3. This
result is also depicted in the lower right panel of Fig. 10.

3. Systems with Yp = 0.30

Turning to increasingly symmetric matter, in Fig. 11
we display the isosruface of the proton densities of var-
ious pasta phases for Yp = 0.30 using both models with
L = 40 and L = 80 MeV. It is observed that such sys-
tems exhibit a series of many complex geometries. We
no longer observe spherical nuclei at an average density
of 0.03 fm−3, which was chosen as the starting point of
our simulations. Obviously, the gnocchi phase must have
formed at an even lower density for Yp = 0.30. At the
lowest density considered in our simulation we observe fi-
brous root-like structures, at 0.04 fm−3 we observe rod(3)
structures. At densities of 0.05 and 0.06 fm−3 the pasta
system is composed of circular perforated complex sys-
tems, at 0.07 and 0.08 fm−3 the nuclear pasta transi-
tions to the bucatini phase, and finally at 0.09 and 0.10
fm−3 they form the Swiss cheese. The pasta systems
are strongly bound with binding energies ranging from
−8.8 MeV for systems with average baryon density of
0.03 fm−3 to −10.1 MeV for systems with ρ = 0.10 fm−3

(see Table VII).

All neutrons strongly participate in forming the pasta
structure, and there are no free neutrons left in the sys-
tem. Thus the neutron gas background that was making
the lowest density of the simulation box in the previ-
ous systems with lower proton fractions now simply van-
ishes. The vanishing of the neutron gas background for
Yp > 0.29 was also obtained earlier Ref. [75]. For this
and larger proton fractions one can either plot the iso-
surface of proton densities or total densities that are both
visually indistinguishable.

Perhaps the most interesting aspect of this system is
to notice that the dependence on the nuclear symmetry
energy has now become less prominent. The binding en-
ergies in all configurations are very close. The similarity
of density contrasts for these configurations as predicted
by both models suggest that the pasta structures should
also be close to one another, which is confirmed by com-
paring them as displayed in Fig. 11. Thus while the sym-
metry energy plays a significant role for the nuclear pasta
formation in the neutron star crust and for the the re-
gions of Supernovae with low proton fractions its role
becomes insignificant for pasta formation at Yp & 0.30.
This result is one of the important findings of our work.

4. Systems with Yp = 0.40

Finally, we study the case of Yp = 0.40. This pro-
ton fraction is roughly comparable to that found in the
collapsing dense core of a supernovae, before the matter
gets heated further by the shock wave. As confirmed in
the previous subsection and given the fact that the mat-
ter is close to being isospin symmetric, the role of the
symmetry energy becomes negligible. The maximum lo-
cal density in the system is equal to that of the nuclear
saturation density, ∼ 0.16 fm−3. At densities of 0.03 and

ρ Model Etot (MeV) ρmin
tot ρmax

tot

0.03 UNEDF1 −8.794 0.0000 0.1489
UNEDF1? −8.782 0.0000 0.1442

0.04 UNEDF1 −9.050 0.0000 0.1491
UNEDF1? −9.051 0.0000 0.1470

0.05 UNEDF1 −9.344 0.0000 0.1423
UNEDF1? −9.337 0.0002 0.1345

0.06 UNEDF1 −9.621 0.0000 0.1412
UNEDF1? −9.620 0.0000 0.1360

0.07 UNEDF1 −9.881 0.0001 0.1406
UNEDF1? −9.843 0.0002 0.1298

0.08 UNEDF1 −10.133 0.0002 0.1360
UNEDF1? −10.085 0.0004 0.1267

0.09 UNEDF1 −10.371 0.0001 0.1351
UNEDF1? −10.308 0.0003 0.1265

0.10 UNEDF1 −10.601 0.0001 0.1306
UNEDF1? −10.530 0.0005 0.1194

TABLE VII. Some bulk properties of nuclear pasta with an
average proton fraction of Yp = 0.30. Average and local
baryon densities are given in units of fm−3.
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FIG. 11. (Color online) Isosurface of proton densities are plotted using the same presciription as in Fig. 5 except now the proton
fraction of the system is Yp = 0.30.
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0.04 fm−3 the pasta system is made of connected rod
structures (see Fig. 12). At ρ = 0.05 fm−3, rods merge
to form complex structures with circular openings and at
ρ = 0.06 fm−3 they form states that closely resemble the
perforated parallel plates, which are now connected along
their normal direction. Again, as density increases, the
matter forms cylindrical holes at 0.07 and 0.08 fm−3, and
finally spherical bubbles are observed at higher densities.

The nuclear pasta at Yp = 0.40 is strongly bound, no
neutron background exists as in the case of Yp = 0.30.
The binding energy per nucleon is much smaller than
that of the uniform matter. For example, at ρ = 0.03
fm−3 we have E/A = −11.05 MeV, whereas the uniform
nuclear matter predicts an almost twice smaller value
of E/A = −5.38 MeV. When symmetric nuclear mat-
ter (SNM) is considered a similarly large difference in
the binding energies per nucleon would obviously be ex-
pected between the uniform nuclear matter and the nu-
clear pasta. Given this fact, a word of caution on the
definition of the symmetry energy or the SNM is in or-
der. The symmetry energy S(ρ) which is defined as the
coefficient of expansion of the binding energy per nucleon,
ε ≡ E/A,

ε(ρ, α) = ε(ρ, 0) + S(ρ)α2 + . . . , (8)

where α = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry,
usually represents the energy cost per nucleon of chang-
ing all the protons in SNM into neutrons. We should
be wary about the latter description because the ground
state of matter at sub-saturation densities is not that of a
uniform matter. Therefore in this description where the
usage of SNM appears, one should explicitly state that
a hypothetical uniform nuclear matter has been consid-
ered, which can easily cluster if left alone.

ρ Model Etot (MeV) ρmin
tot ρmax

tot

0.03 UNEDF1 −11.076 0.0000 0.1605
UNEDF1? −11.050 0.0000 0.1585

0.04 UNEDF1 −11.442 0.0000 0.1559
UNEDF1? −11.394 0.0000 0.1549

0.05 UNEDF1 −11.780 0.0000 0.1532
UNEDF1? −11.756 0.0000 0.1531

0.06 UNEDF1 −12.173 0.0000 0.1529
UNEDF1? −12.145 0.0000 0.1486

0.07 UNEDF1 −12.516 0.0000 0.1472
UNEDF1? −12.482 0.0000 0.1457

0.08 UNEDF1 −12.873 0.0000 0.1426
UNEDF1? −12.830 0.0000 0.1412

0.09 UNEDF1 −13.194 0.0000 0.1395
UNEDF1? −13.156 0.0000 0.1377

0.10 UNEDF1 −13.501 0.0000 0.1363
UNEDF1? −13.504 0.0000 0.1334

TABLE VIII. Some bulk properties of nuclear pasta with an
average proton fraction of Yp = 0.40. Average and local
baryon densities are given in units of fm−3.

C. Sensitivity of the “Ground State” to the Initial
Configurations

Notice that none of our simulations have produced par-
allel plates. One reason is because parallel plates might
have formed in a very small density range not consid-
ered in our simulations. Indeed, using an almost 10 times
smaller number of particles, but exploring a density range
of 0.02 < ρ < 0.12 fm−3 with smaller steps of 0.025 fm−3,
Ref. [79] has observed parallel plates to appear within a
very short density range. The other reason is because our
simulation could significantly depend on the initial con-
figurations of the system. In most of other previous full
quantum mechanical studies the existence of stable plate
configuration was usually confirmed by assuming that the
initial state of the system is already in the plate configu-
ration and by using certain guiding potentials that lead
to this form. Since we have started from a completely
random distributions of nucleons, it is not guaranteed
that our final configurations are in the true ground state
of the nuclear pasta, but the solutions are driven to a
meta-stable state.

We start the analysis by comparing two identical con-
figurations with ρ = 0.05 fm−3, Yp = 0.40, and A = 2000
that have started from different random initial configura-
tions and different grid spacings. At the final converged
stated we obtained E/A = −11.852 MeV and E/A =
−11.780 MeV, respectively. While these states have sim-
ilar energies, the final pasta shapes are not quite identi-
cal. The first one gives two parallel plates with wholes—
nuclear waffle—whereas the second one gives perforated
plates with complex 3D connections, see Fig. 13. There
could be two reasons behind this difference. First reason
is that the grid spacings in two simulations were different,
with the first one being a fine grid spacing of ∆x = 1.00
fm, whereas with the second one being ∆x = 1.42 fm.
Our energy difference of 0.072 MeV at first suggests that
perhaps a finer grid spacing should be sought in the fu-
ture simulations. However, earlier in Section II A and
Fig. 2 we have shown that the dependence on the grid
spacing should be minimal with energy difference of less
than 0.007 MeV if started from the same initial config-
uration. Whereas the difference of 0.072 MeV is still
tiny (about 0.6% only), the observed pasta topologies are
quite different. The second reason for this could therefore
be that the final state of the system is very sensitive to the
initial configurations. In Fig. 14 we compare intermediate
pasta states during the convergence at various iteration
points. For the first ∼ 5 000 iterations the simulation
converges quickly, and in the remaining ∼ 70 000 itera-
tions we do not see a significant change in both the energy
and the topology of the system. This suggests that the
simulation gets trapped in a meta-stable state after the
first few thousands iterations. For example, the energy

difference of only ∆εtot = ε
(76 000)
tot − ε(7 600)

tot < −0.0084
MeV is observed in the last 68,400 iterations correspond-
ing to 28,700 CPU hours in the simulation runtime. This
suggests that it is not important to run the Sky3D simula-
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FIG. 12. (Color online) Isosurface of proton densities are plotted using the same presciription as in Fig. 5 except now the proton
fraction of the system is Yp = 0.40.
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FIG. 13. (Color online) Nuclear pasta phases at ρ = 0.05
fm−3 and Yp = 0.40 that started out from two different initial
configurations with nucleons randomly distributed in the box
and the grid spacing of (a) ∆x = 1.00 fm and (b) ∆x = 1.42
fm.

FIG. 14. (Color online) Energy difference per 200 iterations
versus the number of iterations is plotted for a total of 76,000
iterations. The inset pasta phases correspond the simulation
phases at 800, 7600, and 76000 iterations, respectively.

tions over about, 10 000 iterations, which saves a consid-
erable amount of CPU hours. The question then arises
on how to find the true ground state of the nuclear pasta.

To further study this in more details we have ex-
plored three possibilities. In addition to an already dis-
cussed case with the initial configuration of randomly
distributed nucleons in the simulation volume, we have
considered two other cases with initial configurations of:
(a) parallel rods on a face-centered site (spaghetti phase)
and (b) parallel plates (lasagna phase). The MD simula-
tions for large proton fractions suggest that the spaghetti
phase should appear at densities of 0.02 . ρ . 0.04 fm−3,
whereas the lasagna phase should appear at densities of
0.05 . ρ . 0.07 fm−3 [6]. Starting out from pre-assumed
spaghetti and lasagna phases we therefore expect these
pasta phases to remain stable at these densities.

The spaghetti case is prepared as follows. We fixed
the simulation volume to be cubic with sides of a = 33.6

FIG. 15. (Color online) Nuclear pasta simulations with proton
fractions of Yp = 0.40 for a cubic volume of fixed side a = 33.6
fm containing 640 < A < 4180 nucleons. All systems are
initialized with nucleons distributed randomly to form eight
identical rods aligned on a face-centered site.
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FIG. 16. (Color online) Nuclear pasta simulations with proton
fractions of Yp = 0.40 at average baryon densities of 0.01 <
ρ < 0.10 fm−3 corresponding to a cubic volume with a ≈
33.6 fm. All systems are initialized with nucleons distributed
randomly to form two identical parallel plates.

fm. The grid spacing was fixed at ∆x = 1.40 fm. A
total of eight identical parallel rods whose axes align
along the z-direction and are packed in a face-centered
site were formed by randomly distributing neutrons and
protons within the rod structure. Since each rod struc-
ture contains the same number of neutrons or protons,
the total proton number Z and neutron number N were
therefore chosen as multiples of eight. Furthermore, since
the volume of the system was fixed, the average baryon
density cannot be set arbitrarily but is determined by
the number of nucleons, A. We considered a total of 13
configurations with the number of nucleons ranging from
640 ≤ A ≤ 4480. The corresponding average baryon
densities are 0.0169 < ρ < 0.1181 fm−3. In Fig. 15 we
display our results for these simulations. At very low
densities the system arranges itself into eight 32Ge iso-
topes. Notice that indeed the spaghetti phase remains
stable in agreement with the MD simulations even when
full quantum mechanical effects are considered. Whereas
there is a qualitative agreement with the results displayed
in Fig. 12 the overall topology is quite different in two
cases. The complex perforated plates with normal con-
nections are observed at densities of ≈ 0.05 ∼ 0.06 fm−3.
At higher densities the nuclear pasta transitions into the
bucatini phase (anti-spaghetti). It is very interesting to
note that the cylindrical holes continue to exist even at a
very high density of ρ = 0.10 fm−3, where we observe
a phase coexistence between the cylindrical holes and
spherical bubbles. Recall that when we initialized the
system with a randomly distributed nucleons this phase
got diminished already at ρ = 0.09 fm−3 (compare with
Fig. 12). Moreover, to the best of our knowledge, cylin-
drical holes at densities as large as 0.10 fm−3 have never
been observed in the previous simulations that uses sim-
plified interactions. And finally, regular spherical bubbles
(anti-gnocchi) are formed at a very high density of 0.11
fm−3. The system assumes a uniform phase at higher
densities and we did not display our result here.

In the next case, we prepared our initial configura-
tions assuming that all nucleons are evenly distributed
to make two parallel plates. By folding Gaussians over
each nucleon we constructed the initial single-particle
wave functions and solved Hartree-Fock equations iter-
atively. When the simulation is converged we observe
completely different topologies than the ones observed
before (see Fig. 16). In particular, at a very low den-
sity of 0.01 fm−3 we observe two super-elongated nu-
clei and two spherical nuclei (that resembles baseball bat
and ball). At 0.02 fm−3, a phase coexistence between
two types of rods is observed. Particularly interesting is
the nuclear waffle state that forms much earlier than ob-
served before at the density of 0.03 fm−3. And the initial
lasagna phase remains stable over a large density region
of 0.04 . ρ . 0.08 fm−3. The anti-spaghetti phase is
not observed at all within the density steps we consid-
ered in our simulations. After developing through spher-
ical bubbles at 0.10 fm−3, the pasta structure completely
disappears at ρ & 0.11 fm−3.



20

These results obtained above are the consequence of
generic features of matter frustration that allows many
different local energy minima, hence pasta topologies.
Thus we have obtained a series of pasta geometries where
matter got trapped in a quasi-ground state. In order to
determine which of these states represent the true ground
state, in Fig. 17 we plot the (quasi-) ground state energies
per nucleon as a function of average baryon density for all
three cases considered above. As evident from the figure,
energetically these pasta structures are very close to one
another. A careful observation of energies suggests that
at densities of 0.05 < ρ < 0.07 fm−3, for example, the
system favors the lasagna phase (See Fig. 18). However,
considering that we explored only few possibilities, it is
difficult to predict the true ground state of the system—
hence the formation of other pasta geometries—just by
comparing these energies alone.

As a final note, we would like to point out that one
way to get a time-efficient convergence is to start solv-
ing the Hartree-Fock equations by initializing the single-
particle wave functions from an already converged classi-
cal or quantum MD simulations that have shown to give
a full qualitative picture of nuclear pasta topologies. This
will significantly reduce the simulation runtime, which in
turn allows to explore much larger simulation volumes.
Our preliminary calculations show that the ground state
energies are slightly lower when the simulation is initial-
ized from a converged state of classical MD simulations.
Clearly, much work remains to be done in these fronts to
determine the true ground state of the nuclear pasta.

IV. CONCLUSIONS

In this work we performed large volume simulations
of the nuclear pasta using the Skyrme Hartree Fock cal-
culations with Sky3D. We considered a range of proton
fractions with Yp = 0.05, 0.10, 0.20, 0.30 and 0.40 as well
as the range of baryon densities from 0.03 < ρ < 0.10
fm−3, applicable to the nuclear matter found in the neu-
tron star crust and supernovae. The novel aspects of this
work compared to earlier HF calculations, such as the
one pioneered by Newton et al. [28] are as follows:

• To reduce the computational task Ref. [28] has ex-
cluded the spin-orbit force from the Hartree-Fock
(HF) Hamiltonian. In this work we have consid-
ered the full HF Hamiltonian including the spin-
orbit interaction that plays an important role in
the determination of the correct shell-energies and
single-particle energy spectrum;

• Early HF calculations have used nuclear configura-
tions that conserve reflection symmetry in the three
Cartesian directions. This allowed the computation
need be performed only in one octant of the unit
cell. In this work we did not place any symmetry
restriction, which allows to use the full Skyrme en-
ergy functional including the spin-orbit and most

important time-odd terms;

• Finally, constrained HF calculations (such as the
quadrupole constraint) have been used in the past
that physically correspond to including a guiding
potential term in the single-particle Hamiltonian.
While this approach is useful on the systematic ex-
ploration of the shape phase space of nuclear pasta,
in our work we did not restrict ourselves to con-
straints in order to avoid any biased initialization
that explicitly makes assumptions about the geo-
metrical shapes of the nuclear pasta.

We discussed the role of the nuclear symmetry energy
in the pasta formation and have found that it strongly
impacts the nuclear pasta geometries in the neutron star
crust but has negligible effect on the nuclear pasta in the
Supernovae, where the proton fraction is large. In par-
ticular, the crust of the neutron star contains a larger
density regions with pasta if the nuclear symmetry en-
ergy is soft. Various nuclear pasta geometries exist even
if the density slope of the nuclear symmetry energy is as
large as L = 80 MeV in agreement with previous calcula-
tions [52]. All pasta regions are found to be filled with the
neutron gas background for proton fractions Yp < 0.30
fm. At higher proton fractions, neutron gas background
vanishes, and all neutrons in the system strongly partic-
ipate in forming the pasta topology.

Particularly interesting is the nuclear waffle state for-
mation. Independently from the classical MD simula-
tions [6], we confirmed that the nuclear waffle state forms
naturally even when full quantum mechanical effects are
considered.

The existence of disconnected rod structures with Y -
shaped junctions hints that many of these pasta geome-
tries can be in the quasi-ground state. We have explored
three possible scenario in which the initial state of the
system was prepared by assuming that nucleons are ran-
domly distributed within (1) the full simulation volume,
(2) eight parallel rods on a face-centered site, and (3) two
parallel plates. The resulting energies of the system are
very close to one another with ∆E/A < 0.1 MeV. Never-
theless, the final “ground” state in each scenario have dis-
tinct pasta geometries. Determination of the true ground
state requires the exploration of all possible probes which
is quite tedious in practice. This is due to the mere
nature of Coulomb frustration that is at odds with the
search for a true ground state. Indeed, it has been shown
in Ref. [80] that finding the true ground state of a spin
glass has features in common with NP-complete problems
as known in the language of computational complexity
theory. Whereas it is useful to exploit such rich low-
energy dynamics to investigate the response or transport
properties of the system, finding the ‘best’ ground state
amongst infinitely many local energy-minima remains an
important task of optimization. As a possible alterna-
tive, we suggest to initialize simulations from the final
state of various classical or quantum MD solutions. This
way the system will be converged time-efficiently, MD
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pasta geometries can be tested for stability against den-
sity fluctuations by using full quantum simulation, and
quantitatively accurate results can be presented.

ACKNOWLEDGMENTS

FJF and CJH are supported by the U.S. Department
of Energy (DOE) grants DE-FG02-87ER40365 (Indiana
University), DE-SC0008808 (NUCLEI SciDAC Collabo-
ration) and by the National Science Foundation through
XSEDE resources provided by the National Institute

for Computational Sciences under grant TG-AST100014.
BS is supported by DOE grant DE-SC0008511 (NUCLEI
SciDAC-3 collaboration). This work benefited in parts
from discussions at the Frontiers in Nuclear Astrophysics
meeting supported by the National Science Foundation
under Grant No. PHY-1430152 (JINA Center for the
Evolution of the Elements). The authors would like to
thank the developers of the code Sky3D and are grateful
to Indiana University for accessing to the resources at
the Big Red II supercomputer.

[1] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki,
Phys. Rev. C68, 035806 (2003).

[2] G. Watanabe, T. Maruyama, K. Sato, K. Yasuoka, and
T. Ebisuzaki, Phys. Rev. Lett. 94, 031101 (2005).

[3] C. J. Horowitz, M. A. Perez-Garcia, and J. Piekarewicz,
Phys. Rev. C69, 045804 (2004).

[4] C. J. Horowitz, M. A. Perez-Garcia, J. Carriere, D. K.
Berry, and J. Piekarewicz, Phys. Rev. C70, 065806
(2004).

[5] C. J. Horowitz, M. A. Perez-Garcia, D. K. Berry, and
J. Piekarewicz, Phys. Rev. C72, 035801 (2005).

[6] A. S. Schneider, C. J. Horowitz, J. Hughto, and D. K.
Berry, Phys. Rev. C88, 065807 (2013).

[7] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys.
Rev. Lett. 50, 2066 (1983).

[8] M. Hashimoto, H. Seki, and M. Yamada, Prog. Theor.
Phys. 71, 320 (1984).

[9] C. P. Lorenz, D. G. Ravenhall, and C. J. Pethick, Phys.
Rev. Lett. 70, 379 (1993).

[10] C. J. Horowitz, D. K. Berry, C. M. Briggs, M. E. Caplan,
A. Cumming, and A. S. Schneider, Phys. Rev. Lett. 114,
031102 (2015).

[11] Y. Levin and G. Ushomirsky, Mon. Not. Roy. Astron.
Soc. 324, 917 (2001).

[12] M. E. Gusakov, D. G. Yakovlev, P. Haensel, and O. Y.
Gnedin, Astron. Astrophys. 421, 1143 (2004).

[13] M. Gearheart, W. G. Newton, J. Hooker, and B.-A. Li,
Mon. Not. Roy. Astron. Soc. 418, 2343 (2011).

[14] J. A. Pons, D. Vigano’, and N. Rea, Nature Phys. 9, 431
(2013).

[15] H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).
[16] M. D. Alloy and D. P. Menezes, Phys. Rev. C83, 035803

(2011).
[17] H.-T. Janka, Ann. Rev. Nucl. Part. Sci. 62, 407 (2012).
[18] C. J. Pethick and A. Y. Potekhin, Phys. Lett. B427, 7

(1998).
[19] K. Nakazato, K. Oyamatsu, and S. Yamada, Phys. Rev.

Lett. 103, 132501 (2009).
[20] R. D. Williams and S. E. Koonin, Nucl. Phys. A435, 844

(1985).
[21] M. Lassaut, H. Flocard, P. Bonche, P. H. Heene, and

E. Suraud, Astron. Astrophys. 183, L3 (1987).
[22] K. Oyamatsu, Nucl. Phys. A561, 431 (1993).
[23] T. Maruyama, T. Tatsumi, D. N. Voskresensky, T. Tani-

gawa, and S. Chiba, Phys. Rev. C72, 015802 (2005).
[24] B. Schuetrumpf, M. A. Klatt, K. Iida, G. E. Schroeder-

Turk, J. A. Maruhn, K. Mecke, and P. G. Reinhard,

Phys. Rev. C91, 025801 (2015).
[25] M. Okamoto, T. Maruyama, K. Yabana, and T. Tatsumi,

Phys. Lett. B713, 284 (2012).
[26] P. Magierski and P.-H. Heenen, Phys. Rev. C65, 045804

(2002).
[27] F. Grill, C. Providencia, and S. S. Avancini, Phys. Rev.

C85, 055808 (2012).
[28] W. Newton and J. Stone, Phys. Rev. C79, 055801 (2009).
[29] B. Schuetrumpf, M. A. Klatt, K. Iida, J. Maruhn,

K. Mecke, and P.-G. Reinhard, Phys. Rev. C87, 055805
(2013).

[30] H. Pais and J. R. Stone, Phys. Rev. Lett. 109, 151101
(2012).

[31] I. Sagert, G. I. Fann, F. J. Fattoyev, S. Postnikov, and
C. J. Horowitz, Phys. Rev. C93, 055801 (2016).

[32] N. Gupta and P. Arumugam, Phys. Rev. C87, 028801
(2013).

[33] S. Avancini, D. Menezes, M. Alloy, J. Marinelli,
M. Moraes, et al., Phys. Rev. C78, 015802 (2008).

[34] S. Avancini, L. Brito, J. Marinelli, D. Menezes,
M. de Moraes, et al., Phys. Rev. C79, 035804 (2009).

[35] T. Maruyama et al., Phys. Rev. C57, 655 (1998).
[36] G. Watanabe, K. Sato, K. Yasuoka, and T. Ebisuzaki,

Phys. Rev. C66, 012801 (2002).
[37] G. Watanabe and H. Sonoda, (2005), cond-mat/0502515.
[38] H. Sonoda, G. Watanabe, K. Sato, K. Yasuoka, and

T. Ebisuzaki, Phys. Rev. C77, 035806 (2008), [Erratum:
Phys. Rev.C81,049902(2010)].

[39] G. Watanabe, H. Sonoda, T. Maruyama, K. Sato, K. Ya-
suoka, et al., Phys. Rev. Lett. 103, 121101 (2009).

[40] C. J. Horowitz and D. K. Berry, Phys. Rev. C78, 035806
(2008).

[41] J. Piekarewicz and G. Toledo Sanchez, Phys. Rev. C85,
015807 (2012).

[42] C. O. Dorso, P. A. Gimenez Molinelli, and J. A. Lopez,
Phys. Rev. C86, 055805 (2012).

[43] M. E. Caplan, A. S. Schneider, C. J. Horowitz, and D. K.
Berry, Phys. Rev. C91, 065802 (2015).

[44] A. S. Schneider, D. K. Berry, C. M. Briggs, M. E. Caplan,
and C. J. Horowitz, Phys. Rev. C90, 055805 (2014).

[45] D. K. Berry, M. E. Caplan, C. J. Horowitz, G. Huber,
and A. S. Schneider, Phys. Rev. C94, 055801 (2016).

[46] A. S. Schneider, D. K. Berry, M. E. Caplan, C. J.
Horowitz, and Z. Lin, Phys. Rev. C93, 065806 (2016).

[47] P. A. Gimenez Molinelli, J. I. Nichols, J. A. Lopez, and
C. O. Dorso, Nucl. Phys. A923, 31 (2014).



22

[48] National Research Council, “Nuclear physics: Exploring
the heart of matter,” (The National Academies Press,
Washington DC).

[49] J. A. Maruhn, P. G. Reinhard, P. D. Stevenson, and
A. S. Umar, Comput. Phys. Commun. 185, 2195 (2014).

[50] P. N. Alcain, P. A. G. Molinelli, J. I. Nichols, and C. O.
Dorso, Phys. Rev. C89, 055801 (2014).

[51] M. Kortelainen, J. McDonnell, W. Nazarewicz, P. G.
Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and
S. M. Wild, Phys. Rev. C85, 024304 (2012).

[52] K. Oyamatsu and K. Iida, Phys. Rev. C75, 015801
(2007).

[53] C. J. Horowitz, E. F. Brown, Y. Kim, W. G. Lynch,
R. Michaels, A. Ono, J. Piekarewicz, M. B. Tsang, and
H. H. Wolter, J. Phys. G41, 093001 (2014).

[54] S. S. Bao and H. Shen, Phys. Rev. C89, 045807 (2014).
[55] S. S. Bao and H. Shen, Phys. Rev. C91, 015807 (2015).
[56] R. Nandi and S. Schramm, Phys. Rev. C94, 025806

(2016).
[57] M. Tsang et al., Phys. Rev. C86, 015803 (2012).
[58] J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62, 485 (2012).
[59] B.-A. Li and X. Han, Phys. Lett. B727, 276 (2013).
[60] F. Fattoyev, W. Newton, J. Xu, and B.-A. Li, Phys.

Rev. C86, 025804 (2012).
[61] J. Piekarewicz and M. Centelles, Phys. Rev. C79, 054311

(2009).
[62] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[63] R. J. Furnstahl, Nucl. Phys. A706, 85 (2002).
[64] M. Centelles, X. Roca-Maza, X. Vinas, and M. Warda,

Phys. Rev. Lett. 102, 122502 (2009).
[65] X. Roca-Maza, M. Centelles, X. Vinas, and M. Warda,

Phys. Rev. Lett. 106, 252501 (2011).
[66] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol,

D. Armstrong, et al., Phys. Rev. Lett. 108, 112502

(2012).
[67] K. Paschke, K. Kumar, R. Michaels, P. A. Souder,

and G. M. Urciuoli, Proposal to Jefferson Lab PAC
38 (2012), http://hallaweb.jlab.org/parity/prex/

prexII.pdf.
[68] K. Paschke, K. Kumar, R. Michaels, P. A. Souder,

and G. M. Urciuoli, Proposal to Jefferson Lab PAC
40 (2013), http://hallaweb.jlab.org/parity/prex/

c-rex2013_v7.pdf.
[69] A. Ong, J. C. Berengut, and V. V. Flambaum, Phys.

Rev. C82, 014320 (2010).
[70] W. Newton, The Phase Transition to Uniform Nuclear

Matter in Supernovae and Neutron Stars, Ph.D. thesis,
University of Oxford (2007).

[71] A. Henderson, “Paraview guide: A parallel visualization
application,” (Kitware, Incorporated, 2007).

[72] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J.
170, 299 (1971).

[73] X. Roca-Maza, M. Centelles, F. Salvat, and X. Vinas,
Phys. Rev. C78, 044332 (2008).

[74] E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, and
P. Haensel, Nucl. Phys. A627, 710 (1997).

[75] B. Schuetrumpf and W. Nazarewicz, Phys. Rev. C92,
045806 (2015).

[76] C. J. Horowitz, D. K. Berry, M. E. Caplan, T. Fischer,
Z. Lin, W. G. Newton, E. O’Connor, and L. F. Roberts,
(2016), arXiv:1611.10226 [astro-ph.HE].

[77] G. Shen, (2012), arXiv:1202.5791 [astro-ph.HE].
[78] F. Sebille, S. Figerou, and V. de la Mota, Nucl. Phys.

A822, 51 (2009).
[79] B. Schtrumpf, K. Iida, J. A. Maruhn, and P. G. Rein-

hard, Phys. Rev. C90, 055802 (2014).
[80] S. Kirkpatrick and D. Sherrington, Phys. Rev. B17, 4384

(1978).



23

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 0 . 1 2
- 1 5

- 1 4

- 1 3

- 1 2

- 1 1

- 1 0

- 9

U n i f o r m  M a t t e r

D ( E / A )  <  0 . 1  M e V

          A  =  2 0 0 0      2 7 . 1  f m  <  a  <  4 0 . 5  f m  ( r a n d o m )
 6 4 0  <  A  <  4 4 8 0                      a  =  3 3 . 6  f m  ( r o d s )
 3 8 0  <  A  <  4 5 5 2                      a  =  3 3 . 6  f m  ( p l a t e s )

 

 
E/A

 (M
eV

)

�  ( f m - 3 )

F i n i t e  S i z e  E f f e c t Y p  =  0 . 4

FIG. 17. (Color online) Total energy per nucleon as a function
of density for pasta structures that are obtained from three
different initial configurations.
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FIG. 18. (Color online) The energy differences of final con-
figurations shown in Fig. 17. Here ∆εrandom ≡ (E/A)random −
(E/A)plate and ∆εrod ≡ (E/A)rod − (E/A)plate.


