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Abstract9

A model for the K̄d → πY N reactions with Y = Λ,Σ is developed, aiming at establishing the10

low-lying Λ and Σ hyperon resonances through analyzing the forthcoming data from the J-PARC11

E31 experiment. The off-shell amplitudes generated from the dynamical coupled-channels (DCC)12

model, which was developed in Phys. Rev. C 90, 065204 (2014), are used as input to the calculations13

of the elementary K̄N → K̄N and K̄N → πY subprocesses in the K̄d → πY N reactions. It is14

shown that the cross sections for the J-PARC E31 experiment with a rather high incoming-K̄15

momentum, |~pK̄ | = 1 GeV, can be predicted reliably only when the input K̄N → K̄N amplitudes16

are generated from a K̄N model, such as the DCC model used in this investigation, which describes17

the data of the K̄N reactions at energies far beyond the K̄N threshold. We find that the data18

of the threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reaction below the19

K̄N threshold can be used to test the predictions of the resonance poles associated with Λ(1405).20

We also find that the momentum dependence of the threefold differential cross sections for the21

K−d → π−Λp reaction can be used to examine the existence of a low-lying JP = 1/2+ Σ resonance22

with a pole mass MR = 1457 − i39 MeV, which was found from analyzing the K−p reaction data23

within the employed DCC model.24

PACS numbers: 14.20.Jn, 13.75.Jz, 13.60.Le, 13.30.Eg25
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I. INTRODUCTION26

Recently, the spectroscopic study of Λ and Σ hyperon resonances with strangeness S =27

−1 (collectively referred to as Y ∗) has made significant progress. This advance mainly28

comes from using sophisticated coupled-channels approaches [1–4] to perform comprehen-29

sive partial-wave analyses of the existing data of K−p reactions in a wide energy region from30

their thresholds to a rather high energy with the invariant mass W = 2.1 GeV. With this31

analysis, the systematic extraction of Y ∗ resonances defined by poles of the scattering am-32

plitudes in the complex-energy plane was accomplished. It has been established [5] that the33

resonance poles can be identified with the (complex-)energy eigenstates of the Hamiltonian34

of the underlying fundamental theory, which are obtained under the purely outgoing wave35

boundary condition. Thus the Y ∗ resonance parameters extracted through the coupled-36

channels analyses of Refs. [1–4] have well defined theoretical meaning, while it is often not37

straightforward to interpret the Breit-Wigner parameters listed by Particle Data Group38

(PDG) [6]. In addition, attempts [7–9] are being made to develop methods for relating the39

meson and baryon resonance poles to the Lattice QCD calculations.40

In this work, we consider the dynamical coupled-channels (DCC) model developed in41

Ref. [2] for the meson-baryon reactions in the S = −1 sector. This model was developed by42

extending the theoretical framework of Ref. [10], which was originally formulated to study43

πN , γN , eN , and νN reactions in the nucleon resonance region [11–24], to include the44

meson-baryon channels with strangeness S = −1. Within this DCC model, the T -matrix45

elements for each partial wave can be obtained by solving the following coupled integral46

equation [2]:47

Tβ,α(pβ, pα;W ) = Vβ,α(pβ, pα;W ) +
∑

δ

∫

p2dpVβ,δ(pβ, p;W )Gδ(p;W )Tδ,α(p, pα;W ), (1)

with48

Vβ,α(pβ, pα;W ) = vβ,α(pβ , pα) +
∑

Y ∗

0,n

Γ†
Y ∗

0,n,β
(pβ)ΓY ∗

0,n,α
(pα)

W −MY ∗

0,n

, (2)

where W is the invariant mass of the reaction; the subscripts α, β, and δ represent the49

four two-body channels (K̄N , πΣ, πΛ, ηΛ, and KΞ) and the two quasi-two-body channels50

(πΣ∗ and K̄∗N) that can decay into the three-body ππΛ and πK̄N channels, respectively;51

pα is the magnitude of the momentum of channel α in the center-of-mass (CM) frame; Gδ52

is the Green’s function of channel δ; MY ∗

0,n
is the mass of the nth bare excited hyperon53

state Y ∗
0,n included in the given partial wave; vβ,α represents the hadron-exchange potentials54

derived from the effective Lagrangian that respects the SU(3) flavor symmetry; and the bare55

vertex interaction ΓY ∗

0,n,α
(Γ†

Y ∗

0,n,β
) defines the α → Y ∗

0,n (Y ∗
0,n → β) transition. The model56

parameters contained in the potential Vβ,α were fixed by fitting more than 17,000 data of57

both unpolarized and polarized observables of the K−p → K̄N, πΣ, πΛ, ηΛ, KΞ reactions.58

As a result, we obtained two distinct sets of the model parameters, referred to as Model59

A and Model B. Both models describe the existing K−p reaction data equally well over a60

wide energy range from the thresholds up to W = 2.1 GeV. From Model A (Model B),61

18 (20) of Y ∗ resonances were extracted in the energy region above the K̄N threshold and62

below W = 2.1 GeV. It is found that some of the extracted low-lying Y ∗ resonances may63

correspond to one- and/or two-star resonances assigned by Particle Data Group [6] or may64
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FIG. 1. Kinematics of the K̄d → πY N reaction considered in this work. The outgoing N (outgoing

πY -pair) momentum is in the direction (opposite direction) of the incoming-K̄ momentum.
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FIG. 2. The outgoing nucleon momentum pN ≡ |~pN | (solid line) as function of the kinematically

allowed πY invariant mass MπY for the incoming-K̄ momentum |~pK̄ | = 1 GeV. Here the case that

Y = Σ is presented.

be new resonances. Furthermore, two JP = 1/2− Λ resonances are found below the K̄N65

threshold in both Model A and Model B, which is similar to the results from the chiral66

unitary models (see, e.g., Refs. [25, 26]) and the Jülich model [27].67

Although a number of new and/or unestablished low-lying Y ∗ resonances were found in68

the DCC analysis of Refs. [2, 3], their existence and pole-mass values are rather different69

between Model A and Model B. This is of course due to the fact that the existing K−p70

reaction data used in the analysis are incomplete, as discussed in Refs. [2, 3]. In addition,71

there is a limitation of using the K−p reaction data for establishing low-lying Y ∗ resonances72

because theK−p reactions cannot directly access the energy region below the K̄N threshold,73

and also it is practically not easy to measure precisely theK−p reactions in the energy region74

just above the K̄N threshold where the incoming-K̄ momentum becomes very low. One of75

the most promising approaches to overcome this limitation would be a combined analysis of76

the K−p reactions and the K−d → πY N reactions. This is based on the observation that77

the two-body πY subsystem in the final state of the K−d → πY N reactions can be in the78

energy region below the K̄N threshold even if the incoming-K̄ momentum is rather high.79

As a first step towards accomplishing such a combined analysis of the K̄N and K̄d reac-80

tions, in this work we apply the multiple scattering theory [28, 29] to predict the differential81

cross sections of the K̄d → πY N reaction by using the K̄N reaction amplitudes generated82

from the DCC model of Ref. [2]. We focus on the kinematics that the incoming K̄ has a83

rather high momentum of |~pK̄ | = 1 GeV and the outgoing nucleon N is detected at very84

forward angles with θpN ∼ 0, which is the same as the setup of the J-PARC E31 experi-85

ment [30]. At this special parallel kinematics, the outgoing N and the outgoing πY pair are86
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FIG. 3. Diagramatical representation of the K̄d → πY N reaction processes considered in this

work: (a) the impulse process; (b) the K̄-exchange process. The deuteron wave function (open

circles) is taken from the one constructed with the Argonne V18 potential [35], while the off-shell

amplitudes describing the meson-baryon subprocesses (filled squares) are taken from our DCC

model developed in Ref. [2].

scattered back-to-back, as illustrated in Fig. 1, and have almost no correlation in experimen-87

tal measurements. In fact, as can be seen from Fig. 2, the forward moving nucleon momenta88

(solid curve) become |~pN | > |~pK | = 1 GeV for the invariant mass of the πY subsystem89

relevant to our study (horizontal axis), which means that the momentum of the πY pair is90

in an opposite direction to ~pN . Consequently, it is the best for examining Y ∗ resonances91

through their decays into πY states. In addition, since the forward moving nucleon carries92

high energy-momentum, the recoiled πY pair can be even below the K̄N threshold, which93

is also illustrated in Fig. 2. We thus can make predictions for investigating low-lying Y ∗
94

resonances, including the long-standing problem associated with Λ(1405) that was also the95

focus of Refs. [31–34]. The data from the J-PARC E31 experiment [30] can then be used96

to test our results. In particular, we would like to examine how the predicted cross sections97

can be used to distinguish the resonance parameters extracted within Model A and Model98

B employed in our calculations.99

Following the previous works [31–33] and justified by the special kinematics mentioned100

above, we assume that the scattering amplitude for K̄d → πY N includes the single-101

scattering (impulse) term and the K̄-exchange term, as illustrated in Fig. 3. While such102

a perturbative approach neglects the higher-order scattering processes in a recent calcula-103

tion [34] based on the AGS-type of three-body scattering formulation [36], it is supported by104

many earlier studies of intermediate and high energy reactions on deuteron; see, for example,105

a recent study of γd → πNN of Ref. [37]. Thus it is reasonable to assume that our results as106

well as the results of Refs. [31–33] account for the main features of the K̄d → πY N reaction107

and can be used to explore the feasibility of using the experiment at J-PARC to investigate108

the low-lying hyperon resonances.109

An essential difference between this work and the previous works [31–34] is that we110

employ the (off-shell) K̄N reaction amplitudes generated from the DCC model developed111

in Ref. [2]. This DCC model describes the K̄N reaction data over a very wide energy range112

from the thresholds up to W = 2.1 GeV. On the other hand, the models for the meson-113

baryon subprocesses employed in Refs. [31–34] were constructed by fitting only the K−p114

reaction data just near the K̄N threshold. To see how these K̄N models can be used in the115

calculations, it is instructive here to examine the kinematics of the K̄-exchange mechanism116

illustrated in Fig. 3(b). The range of the invariant mass of the outgoing πY system (MπY )117

we are interested in is mπ + mY ≤ MπY . 1.5 GeV, where mπ (mY ) is the mass of π118
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FIG. 4. Total cross sections for K−p → πY reactions near the threshold. Blue solid curves are

Model B in Ref. [2], green dotted-dashed curves are the E-dep. model in Ref. [34], and black dotted

curves are from the model developed in Ref. [38] that was used for the calculation in Refs. [31–33].

(Y ). Thus the K̄exN1 → πY amplitudes used for calculating the K̄-exchange mechanism119

must be generated from models which can reproduce well the data near the K̄N threshold.120

As seen in Fig. 4, the models used in Refs. [31, 32, 34] and the DCC models employed in121

our calculations are all valid for this calculation in the invariant mass MπY covered by the122

J-PARC E31 experiment shown in Fig. 2.123

The situation is very different for the calculations of K̄N2 → K̄exN amplitudes in124

Fig. 3(b). In the lower panel of Fig. 5, we show the ranges of the invariant mass (W ex
1st)125

of the K̄N2 → K̄exN subprocess, which can be formed from the incoming-K̄ momentum126

|~pK | = 1 GeV, the scattering angle of outgoing-N θpN = 0, and the momentum of initial127

nucleon N2 with | − ~p| < 0.2 GeV within which the deuteron wave function is large. We see128

that for a rather high incoming-K̄ momentum with |~pK | = 1 GeV, the allowed ranges for129

W ex
1st are in the well above the K̄N threshold region. In the upper panel of Fig. 5, we see130

that only the DCC model can describe the data in the whole range. Thus the models used131

in Refs. [31, 32, 34] have large uncertainties in calculating the K̄N2 → K̄exN amplitudes for132

predicting K̄d → πY N at |~pK̄ | = 1 GeV to compare with the data from the J-PARC E31133

experiment [30]. In this work, we will also discuss how these uncertainties associated with134

the K̄N2 → K̄exN amplitudes affect the resulting K̄d → πY N reactions cross sections.135

In Sec. II, we first give the notations for kinematical variables and the cross section136

formulas necessary for the presentation of this work. We then give the formula for calculating137

the impulse and K̄-exchange amplitudes of the K̄d → πY N reactions. The predicted results138

for the K̄d → πY N reaction from our model are presented in Sec. III. The comparisons139

with the results from using the S-wave K̄N models are also given there. A summary and140
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FIG. 5. Upper panel: Total cross section for K−p → K̄0n in the energy region relevant to the

K̄N2 → K̄exN subprocess in the K̄-exchange process [Fig. 3(b)]. Blue solid curve is Model B in

Ref. [2], green dotted-dashed curve is the E-dep. model in Ref. [34], and black dotted curves is

from the model developed in Ref. [38] that was used for the calculation in Refs. [31–33]. Lower

panel: Allowed ranges of the invariant mass W ex
1st for the K̄N2 → K̄exN subprocess as p ≡ | − ~p|

is varied. Here the incoming-K̄ momentum and the scattering angle of outgoing N are fixed as

|~pK̄ | = 1 GeV and θpN = 0, respectively.

the prospect for future works are given in Sec. IV.141

II. FORMULATION142

In this section, we present the formulas for the calculations of the differential cross sections143

for K̄ + d → π + Y +N that can be used to compare with the data from the J-PARC E31144

experiment.145

A. Kinematics and cross sections146

We perform calculations in the laboratory (LAB) frame in which the incoming K̄ is in147

the quantization z-direction and the outgoing N is on the x-z plane. The momenta for the148
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K̄ + d → π + Y +N reaction, denoted as pa (a = K̄, d, π, Y,N), can then be written as149

pK̄ = (EK̄(~pK̄), 0, 0, |~pK̄|), (3)

pd = (md,~0), (4)

pπ = (Eπ(~pπ), ~pπ), (5)

pY = (EY (~pY ), ~pY ), (6)

pN = (EN(~pN ), |~pN | sin θpN , 0, |~pN | cos θpN ), (7)

where Ea(~pa) = (m2
a + ~p2a)

1/2 is the relativistic energy for a particle a with mass ma and150

momentum ~pa. It is convenient to introduce the momentum ~qπ of the outgoing π in the151

center-of-mass (CM) frame of the final πY subsystem. For a given invariant mass MπY of152

the πY subsystem, the magnitude of ~qπ is given by153

|~qπ| =
1

2MπY

√

λ(M2
πY , m

2
π, m

2
Y ), (8)

where λ(a, b, c) is the Källen function defined by λ(a, b, c) = a2 + b2 + c2 − 2ab− 2bc− 2ac.154

For given MπY and cos θpN , |~pN | is obtained by solving EK̄(~pK̄)+md = EN (~pN)+EπY where155

EπY =

√

M2
πY + ~P 2

πY and ~PπY ≡ ~pπ + pY = ~pK̄ − ~pN . The momenta ~pπ for the outgoing π156

and ~pY for the outgoing Y can then be given by157

~pπ = ~qπ +
~PπY

MπY

[

~PπY · ~qπ
EπY +MπY

+ Eπ(~qπ)

]

, (9)

158

~pY = −~qπ +
~PπY

MπY

[

−
~PπY · ~qπ

EπY +MπY
+ EY (~qπ)

]

, (10)

With the above formulas, the kinematical variables [Eqs. (3)-(7)] are completely fixed by159

the incoming-K̄ momentum ~pK̄ , the solid angle ΩpN = (θpN , φpN ≡ 0) of the outgoing N on160

the x-z plane, the solid angle Ωqπ = (θqπ , φqπ) of the outgoing π in the πY CM frame, and161

the πY invariant mass MπY .162

With the normalization 〈~p′|~p〉 = δ(~p′ − ~p) for the plane-wave one-particle state, the163

unpolarized differential cross sections investigated in this work are given by164

dσ

dMπY dΩpN

=

∫

dΩqπ

dσ

dMπY dΩpNdΩqπ

, (11)

165

dσ

dMπY dΩpNdΩqπ

= (2π)4
EK̄(~pK̄)

|~pK̄ |
Eπ(~pπ)EY (~pY )EN(~pN)|~qπ||~pN |2

|[EK̄(~pK̄) +md] |~pN | −EN (~pN)|~pK̄ | cos θpN |

× 1

(2Jd + 1)

∑

spins

|TπY N,K̄d|2, (12)

where dΩp = dφpd cos θp; Jd = 1 is the spin of the deuteron; and TπY N,K̄d is the T -matrix166

element for the K̄d → πY N reaction.167
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B. Model for K̄d → πY N reaction168

As discussed in Sec. I, the cross section for the K̄d → πY N reaction will be calculated169

from the mechanisms illustrated in Fig. 3. The T -matrix element TπY N,K̄d appearing in170

Eq. (12) is given as a sum of contributions from the impulse (T imp

πY N,K̄d
) and K̄-exchange171

(T K̄-ex
πY N,K̄d

) processes:172

TπY N,K̄d = T imp
πY N,K̄d

+ T K̄-ex
πY N,K̄d. (13)

The T -matrix element for the impulse process [Fig. 3(a)] is given by173

T imp

πY N,K̄d
=

√
2〈π(~pπ, Izπ); Y (~pY , S

z
Y , I

z
Y );N(~pN , S

z
N , I

z
N)|tπY,K̄N1

|Ψ(Md)
d ; K̄(~pK̄ , I

z
K̄)〉

=
√
2
∑

Sz
N1

Tπ(Izπ)Y (Sz
Y
,Iz

Y
),K̄(Iz

K̄
)N1(Sz

N1
,−Iz

N
)(~pπ, ~pY ; ~pK̄ ,−~pN ;W

imp)

×Ψ
(Md)
d (−~pN , S

z
N1
,−IzN ; ~pN , S

z
N , I

z
N), (14)

where Iza (Sz
a) is the quantum number for the z-component of the isospin Ia (the spin Sa)174

of the particle a; and Md is that of the deuteron spin. The factor
√
2 comes from the175

antisymmetry property of the deuteron wave function given by the following standard form:176

Ψ
(Md)
d (~p,ms1, mt1;−~p,ms2, mt2) = (

1

2
mt1,

1

2
mt2|00)

×
∑

LMLMs

(LML, 1Ms|1Md)(
1

2
ms1,

1

2
ms2|1Ms)

×YLML
(p̂)RL(|~p|), (15)

Here (l1m1, l2m2|lm) is the Clebsch-Gordan coefficient for l1⊗l2 → l; YLM(p̂) is the spherical177

harmonics; and RL(|~p|) is the radial wave function. The radial wave function is normalized178

as179

∑

L=0,2

∫ ∞

0

p2 dp |RL(p)|2 = 1. (16)

In this work, the radial wave function, RL(|~p|) with L = 0, 2, is taken from Ref. [35].180

The half-off-shell K̄N1 → πY scattering in Eq. (14) can be related to the one in its CM
frame by

Tπ(Izπ)Y (Sz
Y
,Iz

Y
),K̄(Iz

K̄
)N1(Sz

N1
,−Iz

N
)(~pπ, ~pY ; ~pK̄ ,−~pN ;W

imp) =
√

Eπ(~qπ)EY (−~qπ)EK̄(~qK̄)EN(−~qK̄)

Eπ(~pπ)EY (~pY )EK̄(~pK̄)EN (−~pN)
TCM
π(Izπ)Y (Sz

Y
,Iz

Y
),K̄(Iz

K̄
)N1(Sz

N1
,−Iz

N
)(~qπ,−~qπ; ~qK̄ ,−~qK̄ ;W

imp),

(17)

where ~qK̄ is the momentum of the incoming K̄ in the CM frame of the final πY system; the181

Lorentz-boost factor appears in the right hand side1; and the invariant mass W imp for the182

K̄N1 → πY subprocess is defined by183

W imp = MπY . (18)

1 Strictly speaking, the Wigner rotations also take place for the particle spins through the Lorentz boost.

However, those are omitted here because those do not affect the unpolarized differential cross sections

considered in this work.
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Furthermore, the partial-wave expansion of the amplitude in the CM frame is expressed as

TCM
π(Izπ)Y (Sz

Y
,Iz

Y
),K̄(Iz

K̄
)N1(Sz

N1
,−Iz

N
)(~qπ,−~qπ; ~qK̄ ,−~qK̄ ;W

imp) =
∑

JLJzLz
f
Lz
i

∑

IIz

YLLz
f
(q̂f )Y

∗
LLz

i
(q̂i)(LL

z
f , SY S

z
Y |JJz)(LLz

i , SN1
Sz
N1
|JJz)

× (IπI
z
π, IY I

z
Y |IIz)(IK̄IzK̄ , IN1

− IzN |IIz) T
(IJL)

πY,K̄N1

(qπ, qK̄ ;W
imp), (19)

As already mentioned, in this work we take the partial-wave amplitudes T
(IJL)

πY,K̄N1

(qπ, qK̄ ;W
imp)184

from the DCC model developed in Ref. [2].185

For the K̄-exchange process [Fig. 3(b)], the corresponding T -matrix element is expressed186

as187

T K̄-ex
πY N,K̄d =

√
2〈π(~pπ, Izπ); Y (~pY , S

z
Y , I

z
Y );N(~pN , S

z
N , I

z
N)|

×t̂πY,K̄exN1
ĜK̄exNN1

t̂K̄exN,K̄N2
|Ψ(Md)

d ; K̄(~pK̄ , I
z
K̄)〉

=
∑

Sz
N1

Sz
N2

∑

Iz
K̄exI

z
N1

Iz
N2

∫

d~pK̄ex

×Tπ(Izπ)Y (Sz
Y
,Iz

Y
),K̄ex(Iz

K̄ex )N1(Sz
N1

,Iz
N1

)(~pπ, ~pY ; ~pK̄ex, ~p;W ex
2nd)

× 1

E − EK̄ex(~pK̄ex)− EN(~pN )−EN1
(~p) + iε

×TK̄ex(Iz
K̄ex )N(Sz

N
,Iz

N
),K̄(Iz

K̄
)N2(Sz

N2
,Iz

N2
)(~pK̄ex, ~pN ; ~pK̄ ,−~p;W ex

1st)

×Ψ
(Md)
d (~p, Sz

N1
, IzN1

;−~p, Sz
N2
, IzN2

), (20)

where ~p = ~pπ + ~pY − ~pK̄ex = ~pK̄ − ~pN − ~pK̄ex; and E is the total scattering energy in the188

LAB frame. W ex
1st and W ex

2nd are respectively the invariant mass for the K̄N2 → K̄exN and189

K̄exN1 → πY subprocesses that describe the first and second meson-baryon interaction190

vertices [filled squares in Fig. 3(b)] in the K̄-exchange process. The explicit form of W ex
1st191

and W ex
2nd are given by192

W ex
1st =

√

[EK̄(~pK̄) +md − EN1
(~p)]2 − (~pN + ~pK̄ex)2, (21)

193

W ex
2nd = MπY . (22)

Again, the off-shell plane-wave amplitude for the K̄N2 → K̄exN and K̄exN1 → πY subpro-194

cesses are constructed with the partial-wave amplitudes generated from the DCC model [2]195

in a way similar to Eqs. (17) and (19).196

III. RESULTS AND DISCUSSION197

With the model described in the previous section, we can use Eqs. (11) and (12) to198

calculate the differential cross sections for the K−d → πY N reactions. We will first present199

our predictions for using the forthcoming data from the J-PARC E31 experiment to examine200

the low-lying Y ∗ resonances that were extracted [3] from the two DCC models, Model A201

and Model B, of Ref. [2]. We then discuss the differences between our results with those202

given in Refs. [31, 32, 34].203
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FIG. 6. Threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reactions at

|~pK−| = 1 GeV and θpn = 0. Solid curves (dashed curves) are the full results for which the

off-shell partial-wave amplitudes of Model A (Model B) of our DCC model [2] are used for the

two-body meson-baryon subprocesses. Dotted vertical lines indicate the πΣ invariant mass at the

K̄N threshold.

A. Predictions for J-PARC E31 experiment204

To make predictions for the J-PARC E31 experiment, we consider the kinematics that205

the momentum of the incoming K− is set as |~pK−| = 1 GeV and the momentum of the206

outgoing N is chosen to be in the K− direction with θpN = 0. We perform calculations207

using the K̄N → K̄N and K̄N → πY amplitudes generated from both of the DCC models208

(Model A and Model B) constructed in Ref. [2]. The predicted K−d results are denoted as209

Model A and Model B accordingly.210

First of all, we observe that the impulse process [Fig. 3(a)] gives negligible contribution211

at the considered kinematics with |~pK−| = 1 GeV and θpN = 0, and the cross sections are212

completely dominated by the K̄-exchange process [Fig. 3(b)]. This is expected since the213

impulse amplitude (14) contains the deuteron wave function Ψd(−~pN , ~pN), which becomes214

very small in the considered kinematics where the momentum ~pN is very high, |~pN | ∼215

1.2 GeV, as indicated in Fig. 2. Therefore, in the following, our discussions are focused on216

the K̄-exchange process.217

Figure 6 shows the predicted threefold differential cross section dσ/(dMπΣdΩn) for the218

K−d → πΣn reactions. There are two noticeable features. First, there is a significant219

enhancement of the cross section at MπΣ ∼ 1.45 GeV. Second, a varying structure, partly220

due to the cusp from the opening of the K̄N channel, appears in the considered MπΣ region,221

and its shape depends on the model and the charge state of the final πΣ system. We analyze222

their origins in the following.223

The enhancement of the cross section in Fig. 6 at MπΣ ∼ 1.45 GeV is mainly due to the224

fact that the meson-baryon amplitudes are in general the largest at the on-shell kinematics225

and the deuteron wave function Ψd(~p,−~p) is the largest at |~p| = 0. At MπΣ ∼ 1.45 GeV,226

all of the meson-baryon subprocesses and three-body propagator in the K̄-exchange process227

become almost on-shell when the momenta of the nucleons inside the deuteron are near228

|~p| = 0 in the integrand of Eq. (20). Thus the magnitude of K̄-exchange amplitude |T K̄−ex
πY N,K̄d

|229

gets a large enhancement at MπΣ ∼ 1.45 GeV. This is similar to what was discussed in230

Ref. [34]. In fact, we confirm that the enhancement disappears if we omit the contribution231
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FIG. 7. Threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reactions with

|~pK−| = 1 GeV and θpn = 0. Top, middle, and bottom panels are the results for K−d → π−Σ+n,

K−d → π+Σ−n, and K−d → π0Σ0n, respectively. The results from Model A (Model B) are

presented in left panels (right panels). Each of curves and points is: the full results (solid curves);

the results in which only the S-wave amplitude (filled squares), the S01 amplitude (dashed curves),

or the S11 amplitude (dashed-dotted curves) is included in K̄exN1 → πΣ of the K̄-exchange process.

Dotted vertical lines indicate the πΣ invariant mass at the K̄N threshold.

from the |~p| < 0.2 GeV region in the loop integration in Eq. (20).232

We now examine the varying structure of dσ/(dMπΣdΩpn) in Fig. 6. For this purpose,233

we first observe in Fig. 7 that the results (filled squares) from keeping only the S wave234

of the K̄exN1 → πΣ amplitude agree almost perfectly with the full results (solid curves).235

This indicates that the K̄exN1 → πΣ subprocess is completely dominated by the S-wave236

amplitudes in the considered kinematics. We note that this explains why a peak due to the237

Λ(1520)3/2− resonance does not appear at MπΣ ∼ 1.52 GeV in contrast to the case of the238

K−p reactions. In the same figure, we also show the contributions from S01 (dashed curves)239

and S11 (dashed-dotted curves) partial waves2 of the K̄exN1 → πΣ subprocess. Clearly, the240

main contributions to the full results (solid curves) are from the S01 wave that show the241

clear cusp structure near the K̄N threshold. However, their interference with the S11 wave242

is significant and is constructive (destructive) for the π−Σ+ (π+Σ−) production reactions.243

Such interference is absent for the π0Σ0 production reaction, since only the S01 wave of the244

2 The partial wave of the two-body K̄ +N → M(0−) + B(1
2

+
) reactions is denoted as LI2J , which means

that the partial wave has a total angular momentum J , a total isospin I, and a parity P = (−)L.
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FIG. 8. Threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reactions with

|~pK−| = 1 GeV and θpn = 0. Top, middle, and bottom panels are the results for K−d → π−Σ+n,

K−d → π+Σ−n, and K−d → π0Σ0n, respectively. The results from Model A (Model B) are

presented in left panels (right panels). Solid curves are the full results, while dashed curves are

the same as solid curves except that only the nonresonant contribution is included for the S01

amplitude of the K̄exN1 → πΣ subprocess. Dotted vertical lines indicate the πΣ invariant mass at

the K̄N threshold.

K̄exN1 → πΣ subprocess can contribute to the cross section.245

We next examine how the characteristic differences between Model A and Model B in the246

shape of the cross sections below the K̄N threshold (compare solid and dashed curves in247

Fig. 6) can be related to resonances in the S01 partial wave of the K̄exN1 → πΣ subprocess.248

For this purpose, we first observe in Fig. 8 that the cross sections become very small below249

the K̄N threshold if we take into account only the nonresonant contribution for the S01250

wave of K̄exN1 → πΣ. With this observation, we expect that S01 (J
P = 1/2−) Λ resonances251

are actually the main contribution of the cross sections below the K̄N threshold and are252

the origin of the difference in its shape between Model A and Model B. As mentioned in253

Sec. I, our DCC analysis of the K−p reactions [2] predicts two S01 (J
P = 1/2−) Λ resonances254

below the K̄N threshold in both Model A and Model B [3], as shown in Fig. 9. Here, the255

higher mass pole (A1 and B1) would correspond to the Λ(1405) resonance, while another Λ256

resonance with lower mass (A2 and B2) is similar to what was obtained in the chiral unitary257

models (see, e.g., Ref. [26]) and the Jülich model [27]. Although both Model A and Model258

B find two Λ resonances, their pole positions are rather different. One can see from Fig. 9259
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were extracted within the DCC models developed in Ref. [2]. Red triangles (blue diamonds) are

the resonance pole positions obtained from Model A (Model B).

TABLE I. The product of coupling strengths gπΣY ∗gK̄NY ∗ at pole positions for JP = 1/2− Λ reso-

nances located below the K̄N threshold. The pole mass MR is presented as (Re(MR),−Im(MR)),

and gπΣY ∗gK̄NY ∗ = |gπΣY ∗gK̄NY ∗ |eiφ is presented as (|gπΣY ∗gK̄NY ∗ |, φ). The product gπΣY ∗gK̄NY ∗

is defined as the residue of the T -matrix element TπΣ,K̄N at the resonance pole position.

Pole mass MR (MeV) gπΣY ∗gK̄NY ∗ (MeV−1, deg.) |gπΣY ∗gK̄NY ∗/Im(MR)|2 (MeV−4)

A1 (1432, 75) (15.42 × 10−4, 170) 4.23× 10−10

B1 (1428, 31) (7.94 × 10−4, 102) 6.56× 10−10

A2 (1372, 56) (21.54 × 10−4, −24) 14.79 × 10−10

B2 (1397, 98) (13.87 × 10−4, −56) 2.00× 10−10

that the pole A1 (B2) has larger imaginary part than the pole B1 (A2) and is far away260

from the real energy axis. In addition, the products of their coupling strengths to the πΣ261

and K̄N channels, gπΣY ∗ × gK̄NY ∗ , are rather different as seen in Table I. The contribution262

of a resonance with complex mass MR in the K̄exN1 → πΣ subprocess to the K̄-exchange263

amplitude T K̄-ex
πΣn,K−d can be schematically expressed at MπΣ = Re(MR) as264

T K̄-ex
πΣn,K−d ∼

[

F (MπΣ)×
gπΣY ∗gK̄NY ∗

MπΣ −MR

+ · · ·
]

MπΣ=Re(MR)

= F (Re(MR))×
gπΣY ∗gK̄NY ∗

iIm(MR)
+ · · · , (23)

where F (MπΣ) is a regular function of MπΣ and is expected not to be much different between265

Model A and Model B. The value of |gπΣY ∗gK̄NY ∗/Im(MR)|2 can therefore be used to measure266

the effect of a resonance on the cross section. In the third column of Table I, we see that267

|gπΣY ∗gK̄NY ∗/Im(MR)|2 of the resonance B1 is larger than that of A1. Thus B1 has larger268

effects than A1 on the cross sections near the K̄N threshold, as can be seen from clear peaks269

in the cross sections at MπΣ ∼ 1.42 GeV that appear only in Model B. At lower energy, the270

cross sections are influenced by the second resonances A2 and B2. From Table I, we see that271

|gπΣY ∗gK̄NY ∗/Im(MR)|2 of the resonance A2 is much larger that that of B2. This explains272
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FIG. 11. Threefold differential cross section dσ/(dMπΛdΩpp) for the K−d → π−Λp reaction at

|~pK−| = 1 GeV and θpp = 0. The results from Model A (Model B) are presented in the left panel

(right panel). Each of curves and points is: the full results (solid curves); the results in which only

the S11 amplitude (dashed curves) or the S11 and P13 amplitudes (filled squares) is included for

K̄exN1 → πΛ of the K̄-exchange process. Dotted vertical lines indicate the πΛ invariant mass at

the K̄N threshold.

why the cross sections at MπΣ . 1.4 GeV in Model A are larger than Model B.273

We now turn to presenting the predicted cross sections for K−d → π−Σ0p and K−d →274

π−Λp at the same kinematics |~pK̄ | = 1 GeV and θpp = 0. Since the π−Σ0 and π−Λ states275

contain only the isospin I = 1 component, these reactions will be useful for investigating the276

low-lying Σ resonances. It is noted that the data for such reactions can also be obtained by277

extending the measurements of the the J-PARC E31 experiment [39]. Similar to the results278

for the K−d → πΣn reactions presented above, we find that (a) the impulse process gives279

negligible contribution to the cross sections for both K−d → π−Σ0p and K−d → π−Λp, and280

(b) the characteristic enhancement appears at MπY ∼ 1.45 GeV as seen in Figs. 10 and 11.281

For K−d → π−Σ0p, we find that the K̄exN1 → πΣ subprocess is completely dominated282

by the S11 amplitude. This is shown in Fig. 10. We see that the results (filled squares)283

from the calculations keeping only the S11 amplitude of the K̄exN1 → πΣ subprocess agree284

almost perfectly with the results (solid curves) from the calculations including all partial285
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waves. The cross section becomes very small below the K̄N threshold, and this would286

be because no resonance exists in the S11 wave in the corresponding energy region. It is287

found that Model B shows the cross section ∼ 20 % smaller than Model A at its maximum288

(MπΣ ∼ 1.45 GeV). Since the on-shell S11 amplitudes for the K̄exN1 → πΣ subprocess are289

not much different between the two models at MπΣ ∼ 1.45 GeV [2], the difference in the290

magnitude of the K−d → π−Σ0p cross section might partly come from that in the off-shell291

behavior of the K̄exN1 → πΣ subprocess.292

The predicted differential cross sections for the K−d → π−Λp reaction are given in293

Fig. 11. By comparing the solid and filled squares, it is clear that the S11 and P13 waves of294

the K̄exN1 → πΛ subprocess completely dominate the cross section in the region below the295

K̄N threshold. A resonance corresponding to Σ(1385)3/2+ in the P13 wave was identified296

in both Model A and Model B. For Model B (the right panel of Fig. 11), there is a peak at297

MπΛ ∼ 1.38 GeV, where the contribution from the S11 amplitude is very weak. On the other298

hand, we find that in Model A the S11-wave contribution and the P13-wave contribution from299

Σ(1385)3/2+ are comparable and interfere destructively, and, as a result, a dip is produced300

at MπΛ ∼ 1.38 GeV. We find that Model A has another P13 resonance with lower mass than301

Σ(1385)3/2+. This is the origin of the peak at MπΛ ∼ 1.3 GeV in the left panel of Fig. 11.302

These kinds of visible differences between Model A and Model B can occur below the K̄N303

threshold, because at present our DCC models for the K̄N reactions have been constructed304

by fitting only to the K−p reaction data. We expect that such a different behavior of the305

two-body subprocesses below the K̄N threshold, which cannot be directly constrained by306

the K̄N reaction data, needs to be judged by the data of K̄d reactions. The upcoming data307

from the J-PARC E31 experiment are thus highly desirable to improve our DCC models in308

the S = −1 sector.309

We also see in Fig. 11 that above the K̄N threshold, the P13 wave of the K̄exN1 → πΛ310

subprocess is negligible and the main contribution to the cross section comes from the S11311

wave. However, the behavior of the S11 partial-wave amplitudes for K̄N → πΛ is rather312

different between Model A and Model B at W . 1.7 GeV (see Fig. 27 in Ref. [2]), and this313

is the origin of the the sizable difference in the magnitude of the cross section above the314

K̄N threshold. For Model A (left panel), the difference between the solid and dashed curves315

are quite small, and hence the cross section above the K̄N threshold is almost completely316

dominated by the S11 wave. On the other hand, this difference is about 30 % for Model317

B (right panel) and is found to come from a P11 (JP = 1/2+) Σ resonance with pole318

mass MR = 1457− i39 MeV [3]. This resonance might correspond to the one-star Σ(1480)319

resonance assigned by PDG [6]. At present this resonance was found only in Model B, and320

this is why the contribution of P11 wave is negligible in the K−d → π−Λp cross section for321

Model A.322

The above result suggests that the K−d → π−Λp cross section may provide a useful323

constraint for judging this unestablished low-lying Σ resonance with spin-parity JP = 1/2+.324

To investigate this, we examine the threefold differential cross sections at different values325

of the incoming-K̄ momentum. In Fig. 12, we present dσ/(dMπΛdΩpp) at |~pK̄ | = 1 GeV326

and 0.7 GeV. We find that the interference pattern in the cross section changes as |~pK̄ |327

changes. For the cross section at |~pK̄ | = 1 GeV, the contribution from the P11 wave of the328

K̄exN1 → πΛ subprocess shows a constructive interference with the other contributions,329

while at |~pK̄ | = 0.7 GeV, it shows a destructive interference. This visible difference of330

the interference pattern originating from the P11 wave of the K̄exN1 → πΛ subprocess will331

provide critical information for judging the unestablished JP = 1/2+ Σ resonance. Therefore332
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FIG. 12. Threefold differential cross section dσ/(dMπΛdΩpp) for the K−d → π−Λp reaction at

θpp = 0, computed with Model B. The left (right) panel is the result at |~pK̄ | = 0.7 GeV (|~pK̄ | =
1 GeV). Solid curves are the full results, while dashed curves are the results in which the P11

amplitude for K̄exN1 → πΛ in the K̄-exchange process is turned off. Dotted vertical lines indicate

the πΛ invariant mass at the K̄N threshold.

it is highly desirable to measure the K−d → π−Λp cross section for several |~pK̄ | values.333

B. Comparison with the results from the S-wave K̄N models334

The differential cross sections at |~pK | = 1 GeV are also predicted in Ref. [34]. We first335

note that our predicted cross sections shown in Fig. 6 are much larger than those given336

in Fig. 12 of Ref. [34]. We find that it is mainly due to the large difference between the337

amplitudes used in the calculations of K̄N2 → K̄exN in the K̄-exchange process [Fig. 3(b)],338

where the incoming K̄ has a large momentum. As seen in Fig. 5, the S-wave K̄N model339

used in Ref. [34] underestimates the K̄N → K̄N cross section greatly in the invariant-mass340

region around W = 1.8 GeV, which is covered in the loop integration of Eq. (20) over341

the momentum of the nucleon in the deuteron. In such a high-W region far beyond the342

K̄N threshold, it is necessary to include the higher partial-wave contributions. This can be343

understood from Fig. 5 where we compare the K−p → K̄0n cross sections from our DCC344

model and the two S-wave models of Refs. [34, 38]. If we keep only the S-wave part of345

the amplitude in our calculation, our results (solid curve) in Fig. 5 are actually reduced to346

the values close to the results (dot-dashed and dotted curves) of the two S-wave models.347

Accordingly, we see in Fig. 13 that the magnitude of dσ/(dMπΣdΩpn) for the K−d → πΣn348

reactions are drastically reduced if we include only the S-wave amplitudes for K̄N2 → K̄exN349

in the K̄-exchange process. This result indicates that the use of appropriate amplitudes that350

reproduce the K̄N reactions up to a very high energy is inevitable for obtaining the K−d351

reaction cross sections that are comparable with the experimental data. The same argument352

would also apply to the other studies of the K−d reaction [31–33], where the amplitudes for353

the meson-baryon subprocesses are obtained by fitting only to the near-threshold data of K̄N354

reactions. It is noted that the higher-order scattering processes were also taken into account355

in Ref. [34]. By performing calculations using their S-wave K̄N model, however, we confirm356

that in the considered kinematics their results are nearly saturated by the impulse and K̄-357

exchange processes and the higher-order effects seem subdominant. Therefore, the use of358

appropriate K̄N scattering amplitudes, which can make the K−d reaction cross sections359
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FIG. 13. Threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reactions at

|~pK−| = 1 GeV and θpn = 0. Solid curves represent the full result, while dashed curves represent

the results in which only the S-wave amplitudes are included for K̄N2 → K̄exN of the K̄-exchange

process. Dotted vertical lines indicate the πΣ invariant mass at the K̄N threshold.
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FIG. 14. Threefold differential cross section dσ/(dMπΣdΩpn) for the K−d → πΣn reactions at

|~pK−| = 0.6 GeV and θpn = 0. Solid curves are the full results from our Model B, while dashed

curves are the results from Model B in which only the the S-wave amplitudes are included for all

meson-baryon subprocesses. Dotted curves are the results in Ref. [31], where the S-wave K̄N model

developed in Ref. [38] are used for calculating the meson-baryon subprocesses. Dotted vertical lines

indicate the πΣ invariant mass at the K̄N threshold.

order(s) of magnitude larger, seems more important than the higher-order effects.360

We next compare our results at |~pK | = 0.6 GeV with those given in Ref. [31]. In Fig. 14,361

we see that our “S-wave only” results at |~pK̄ | = 0.6 GeV are much smaller than the results362

in Ref. [31]. The results in Ref. [31] are even comparable or larger than our full results363

in which higher partial waves are also included. This can be understood from Fig. 15.364

For the K̄N2 → K̄exN subprocess, the K−p → K̄0n and K−n → K−n charge states can365

contribute. We see that at W ∼ 1.6 GeV, which corresponds to a typical invariant mass of366

the K̄N2 → K̄exN subprocess for |~pK̄ | = 0.6 GeV, the S-wave K̄N model used in Ref. [31]367

gives a large cross section for K−n → K−n, which is even larger than our full results. Since368

all the K̄N models give similar cross sections near the threshold, we can conclude that this369
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FIG. 15. Upper panel: Total cross section for K−p → K̄0n in the energy region relevant to the

K̄N2 → K̄exN subprocess in the K̄-exchange process [Fig. 3(b)] for the case of |~pK̄ | = 0.6 GeV and

θpN = 0. Solid (dashed) curve is the full (S-wave only) result from Model B of Ref. [2], while dotted

curve is from the model developed in Ref. [38] that was used for the calculation in Refs. [31–33].

Middle panel: Same as the upper panel but for K−n → K̄−n. Lower panel: Allowed ranges of the

invariant mass W ex
1st for the K̄N2 → K̄exN subprocess as p ≡ |− ~p| is varied. Here the incoming-K̄

momentum and the scattering angle of outgoing N are fixed as |~pK̄ | = 0.6 GeV and θpN = 0.

is the origin of the large K−d → πΣn reaction cross section found in Ref. [31]. Furthermore,370

the K−n → K−n cross sections are larger than K−p → K0n cross sections and thus has371

a larger contribution to the K̄-exchange amplitudes. This is why the result from Ref. [31]372

has a large cross section for K−d → πΣn at pK = 0.6 GeV. This observation also indicates373

that one must use the K̄N amplitudes that are well tested by the K̄N reaction data up to374

a high energy region far beyond the K̄N threshold.375
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IV. SUMMARY AND FUTURE DEVELOPMENTS376

Aiming at establishing low-lying Y ∗ resonances through analyzing the forthcoming data377

from the J-PARC E31 experiment, we have developed a model for the K̄d → πY N reac-378

tion. At the kinematics of this experiment that the outgoing nucleon is in the direction379

of the incoming K̄, the cross sections for this reaction are dominated by the K̄-exchange380

mechanism. The amplitudes of this K̄-exchange process are calculated in our approach by381

using the off-shell amplitudes of K̄N → K̄N and K̄N → πY generated from the dynamical382

coupled-channels (DCC) model developed in Ref. [2]. This DCC model was constructed383

by fitting the existing data of K−p → K̄N, πΣ, πΛ, ηΛ, KΞ reactions over the wide energy384

region from the thresholds up to W = 2.1 GeV.385

Most previous works used elementary meson-baryon amplitudes that were constructed386

by fitting only to the K̄N reaction data near the threshold. However, we have shown that if387

the incoming-K̄ momentum is rather high as in the case of the J-PARC E31 experiment, the388

use of such amplitudes would result in the cross section that is order(s) of magnitude smaller389

than the one calculated using the appropriate meson-baryon amplitudes that reproduce the390

K̄N reactions in the energy region far beyond the K̄N threshold. This is because the meson-391

baryon subprocess produced by the reaction between the incoming K̄ and the nucleon inside392

of the deuteron can have a very high invariant mass, even if the invariant mass of the final393

πY system is quite low.394

We have shown that the K̄d → πY N reactions are useful for studying low-lying Y ∗
395

resonances. In fact, by comparing the results between our two models, Model A and Model B,396

we have found that the behavior of the threefold differential cross sections for K−d → πΣn397

[K−d → π−Λp] below the K̄N threshold are sensitive to the existence and position of the398

S01 resonance poles including Λ(1405)1/2− [the P13 resonance poles including Σ(1385)3/2+].399

We have also demonstrated that the K−d → π−Λp reaction data would provide useful400

information for judging the existence of an unestablished low-lying JP = 1/2+ Σ resonance401

with the pole mass MR = 1457− i39 MeV, which is currently found only in Model B.402

Here we note that we have followed the previous works [31–33] to consider only the403

impulse and K̄-exchange processes and ignore other higher-order three-particle final state404

interactions. One possible important correction is the π-exchange mechanism when the405

invariant mass of the outgoing πN state in the final πY N state is near the ∆(1232) region.406

We have found that it has negligible effects to change our results in the considered special407

kinematics shown in Fig. 1. Nevertheless, our results on the differences between Models A408

and B should be further quantified by performing the complete three-particle calculation.409

This is, however, rather difficult within the framework using the K̄N amplitudes of the DCC410

model of Ref. [2] mainly because of the presence of multi-channel final states, such as πΛN ,411

πΣN , ηΛN , and KΞN , and of the non-separable nature of our meson-baryon amplitudes,412

which is different from those used in Ref. [34] where the separable nature of the two-body413

amplitudes was a key to solving the three-body scattering equation. Clearly, this requires a414

separated long-term effort.415

A necessary and immediate next step towards constructing a reliable K̄d reaction model416

that can be used for the spectroscopic study of low-lying Y ∗ resonances would be to include417

the baryon-exchange processes in addition to K̄- and π-exchange processes, so that we can418

apply our K̄d reaction model to wider kinematical region. Also, the inclusion of baryon-419

exchange process would make our model applicable to the study of Y N and Y Y interactions,420

where the latter is quite interesting in relation to a possible existence of the H dibaryons.421
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Our investigations in this direction will be presented elsewhere.422
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