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Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion
systems. In its many applications, 3D coordinate-space representation is used, and infinite-domain calculations
are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei,
hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the
continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles.
Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential
in a certain boundary region sufficiently far from the described system. However, such absorption cannot be
applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer
from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions
(TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-
dependent modes.
Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional.
The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations
of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged.
Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based
on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results.
With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluc-
tuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas
remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed
particles in ABC.
Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without
adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious
choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be
performed independently, the method is trivially adapted to parallel computing.

PACS numbers: 02.60.Lj,21.60.Jz,24.30.Cz,31.15.ee

I. INTRODUCTION

The time-dependent density functional theory
(TDDFT) for electronic systems had been developed as
dynamical extension of stationary DFT [1] in the early
1980ies [2] and has evolved in the meantime to a widely
used, efficient, and reliable tool to describe the dynamics
of all sorts of electronic systems, see [3, 4] for a review of
the basics, and [3, 5–7] for examples of applications. A
parallel development took place in nuclear physics where
TDDFT is known under the notion of time-dependent
Hartree-Fock (TDHF) scheme. TDHF as such was
proposed as early as 1930 in [8]. Applications to nuclei
started in the mid 1970ies when appropriate computing
facilities became available [9–11]. The ever-improving
computational capabilities had led to a revival of TDHF
without symmetry restrictions, applied to both finite
systems [12–16] and infinite matter under astrophysical
conditions [17–19]. The numerical tool of choice for truly

dynamical processes are coordinate- or momentum-space
representations of wave functions and fields and there
exists a great variety of published codes using these
techniques for electronic systems [20, 21] as well as for
nuclear TDHF [22].

A problem pertaining to all numerical solutions of
TDDFT is that one is bound to use finite basis sets. For
example, the most widely used scheme is based on the
coordinate-space representation of wave functions, den-
sities, and potentials. The size of the box, in which com-
putations are carried out, is finite, and this implies that
either reflecting or periodic boundary conditions (PBC)
are imposed [22]. This leads to unphysical artifacts. One
problem is that particles which are in principle emitted
from the system and thus traverse the box boundaries
are coming back to the system area (reflected or reen-
tering the simulation box from the opposite side) and so
perturb the dynamical evolution. Moreover, due to the
presence of finite box, the continuum states are artifi-
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cially discretized, and this produces artifacts at energies
above continuum threshold. Green’s functions methods
allow to cope with this problem in the regime of linear
response [23, 24]. In case of grid representations, one has
to work on the boundary conditions. Outgoing, or ra-
diation, boundary conditions which exactly connect the
dynamics on the grid to free flow in outer space are pro-
posed as solution [25–27], but they are very elaborate
and hard to implement in fully three dimensional grid
representations. An efficient and practical method are
ABC, which were introduced first in atomic calculations
[28, 29] and are meanwhile also used in nuclear TDHF
[12, 30, 31]. Although they can be implemented techni-
cally with different algorithms, they amount in practice
to adding an imaginary potential in a certain boundary
region. The quality of the absorption depends on the
profile of the imaginary potential and its width [30]. A
good working compromise has to be found in each ap-
plication anew in order to suppress unwanted remaining
reflections as much as necessary.

Problems with finite simulation boxes appear also in
calculations of infinite matter. Periodic boundary condi-
tions are appropriate in this case, and yet, the wave func-
tions are forced to be strictly periodic which induces spu-
rious quantization effects. This can be avoided by TABC
[32–34], often referred to as ‘integration over boundary
conditions’. According to the Floquet-Bloch theorem, a
wave function in a periodic potential is periodic up to a
complex phase shift (twist) when going from one cell to
the next. Averaging over different phase shifts very effi-
ciently suppresses unwanted spurious quantization effects
[35–39]. The benefits of TABC have also been demon-
strated in nuclear physics, including time-independent
simulations of infinite nucleonic matter [40–45] and lat-
tice QCD [46–51]. All these successful applications of
TABC indicate that this method can help with the prob-
lem of the unphysically discretized continuum in TDHF
calculations of finite nuclei. This is the question, which
we aim to investigate in this paper and we do that by
comparing the performance of TABC with that of ABC.

TABC is designed to suppress spurious finite-size quan-
tization effects and does that very well. It leaves, how-
ever, all particles in the simulation box which means that
the gas of emitted particles is still around and may per-
turb system’s dynamics. By employing ABC, one can
avoid the gas because the emitted particles are removed
efficiently. In the same way ABC help to reduce spu-
rious finite-volume quantization effects. However, im-
perfect absorption always leaves some quantum beating
[30]. Moreover, ABC also absorb the outer tails of bound-
state wave functions; hence, a faint background of spuri-
ous particle emission is produced (to be avoided by suffi-
ciently large boxes). As no practical prescription is per-
fect, we have to balance advantages and disadvantages of
various ways of implementing boundary conditions.

II. BOUNDARY CONDITIONS

TABC are realized by implementing the Bloch bound-
ary conditions

ψαθ(r + T i) = eiθiψαθ(r), (1)

where θ are three phases or twist angles, T i (i ∈ {x, y, z})
is one of the lattice vectors, ψαθ(r) is the single-particle
wave function characterized by the label α. When em-
ploying TABC, one runs separately DFT calculations
with different twists θ and averages the results. This
can also be applied to the TDDFT case. An observable
to be evaluated is averaged according to

〈Ô(t)〉 =
1

8π3

2π∫∫∫
0

d3θ 〈Ψθ(t)|Ô|Ψθ(t)〉. (2)

Considering the spatial symmetry of the problem, it is
sufficient to average over θi between 0 and π in all three
directions for the isoscalar E2 mode and in the x and y
directions for the isovector E1 mode. The 3D integration
over θ is carried out using an n-point Gauss-Lagrange
quadrature between 0 and π and 2n-point between 0 and
2π. The total number of TABC TDHF calculations to
be performed is thus n3 for the isoscalar E2 mode and
2n3 for the isovector E1 mode. The Slater determinants
|Ψθ(t)〉 are obtained through independent TDHF calcu-
lations with the different sets of twist angles θ.

ABC can be realized by either introducing an imagi-
nary absorbing potential in a boundary zone or by apply-
ing a mask function after each TDHF step. Both meth-
ods are equivalent and can be mapped into each other
[30]. Here we use the mask function f(r). One masking
step reads ψα → ψαf(r) with f(r) = 1 for r ≤ L/2− labs;
f(r) = cos

(
π
2
r−L/2+labs

labs

)p
for L/2− labs < r ≤ L/2; and

f(r) = 0 for r > L/2, where L is the cubic box length and
labs is thickness of the absorbing sphere. Optimal values
of p depend on grid spacing and size of time step [30].
Here we use p = 0.0675 throughout. We perform the cal-
culations in two different boxes: (L = 32 fm, labs = 6 fm)
or (L = 40 fm, labs = 10 fm). Mind that the absorb-
ing zone is applied at all sides such that the active zone
without absorption has in both cases the same radius of
L− 2labs = 20 fm.

III. METHOD

Our calculations are done using the 3D Skyrme-TDHF
solver Sky3d which is based on an equidistant, Cartesian
3D grid [22]. We use it with a grid spacing of ∆x = 1 fm
and time steps of 0.1 fm/c. We use the Skyrme energy
density functional SV-bas [52]. The natural boundary
conditions for the plane-wave representation used are
PBC. Note that the long range Coulomb force is treated
exactly (i.e., yielding non-periodic 1/r asymptotics) us-
ing a Green’s function formalism [53]. Here we have



3

extended the code to accommodate ABC and TABC.
Our benchmarking calculations are performed for elec-
tric dipole and quadrupole oscillations of 16O.

The oscillations are generated by an initial boost
ψα(r) → ψα(r) e−iηF (r) where η is the excitation
strength and F is the electric isovector dipole (E1) op-
erator FE1(r) = −ταx or isoscalar quadrupole (E2)
operator FE2(r) = 2z2 − x2 − y2, where τα is 1 for
neutrons and -1 for protons [54]. For the calculations
at low excitation energy shown in Figs. 1 and 2 we
mask the operators with a Woods-Saxon-like form fac-
tor F (r) → F (r)/{1 + exp [(r − r0)/∆r]} to avoid un-
physical artifacts near the box boundaries [55]. Here we
chose r0 = 5 fm and ∆r = 2 fm throughout. For the
calculations at high excitation energies shown in Figs.
3 and 5, following Ref. [22], we replace the coordinates
r = {xi} with periodic substitutes xi → sin(2πxi/L) to
make the excitations explicitly periodic. The boost aug-
ments the stationary ground-state wave functions with a
velocity field which, in turn, drives dynamics. The ob-
servable we look at is the emerging time evolution of the
multipole moment 〈F 〉, from which we also produce the
spectral distribution of the multipole excitation strength,
or power spectrum, by the windowed Fourier transform
of the time signal [56]. Since the boost parameter η is an
auxiliary quantity, in the following discussion we replace
it with the excitation energy E∗ = E(η) − E(η = 0),
where E(η = 0) is the Hartree-Fock ground-state energy.

IV. RESULTS

Figure 1 shows the isoscalar E2 response at the low ex-
citation energy E∗ = 3MeV. Compared are PBC, ABC
and TABC(n) results, where n denotes the number of
twists per direction. The time signal in Fig. 1(a) re-
veals that PBC induce large-amplitude unphysical beat-
ing pattern after about 1000 fm/c. The magnitude of
these reverberations is as large as half of the maximum
amplitude at t = 0. The use of ABC completely extin-
guishes them. While with TABC(2) there are still some
small spurious oscillations, with TABC(4) the damping
appears almost the same as with ABC. The correspond-
ing strength functions are displayed in Fig. 1(b). The
results obtained with PBC exhibit large fluctuations due
to the discretized continuum. With only n = 2 points
in each direction, these oscillations are almost gone in
TABC(2). The results in TABC(4) and ABC variants
yield smooth quadrupole strength distributions and both
curves are practically the same. Since TABC(4) repre-
sent a good compromise between feasibility and accuracy,
n = 4 is therefore chosen for all following calculations.

Although their results look very similar, the mecha-
nism damping the signals are much different in ABC and
TABC variants. With ABC, the erratic nucleon gas is
removed from the box whenever it encounters the bound-
aries. In TABC, the gas remains in the box as the particle
number is strictly conserved by Ψθ(t) and every single
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FIG. 1. (Color online) Quadrupole moment Q(t) (a) and
strength function (b) for the isoscalar E2 excitation of 16O
with E∗ = 3MeV and L = 40 fm. The inset illustrates
the geometry of the problem: the total density of 16O (cen-
ter), the absorption zone (red), and the region of zero density
(black). The low-energy part of the spectrum contains very
little strength and is not shown.

run for given twist shows qualitatively the same rever-
berations as PBC. However, these fluctuations enter av-
eraged quantities (2) with different phases and so average
out.

We now move to the isovector E1 mode. The corre-
sponding strength function is shown in Fig. 2 for the low
excitation energy E∗. To study the dependence of results
on box size, we compare results obtained with L = 32 fm
and L = 40 fm by keeping the inner region of ABC (no
masking function is applied) the same. The PBC re-
sults (not shown) exhibit the spurious finite-volume os-
cillations, which strongly depends on the box size. As
the excitation energy is small, there is a small loss of
about 0.1 nucleons in the ABC variant. Overall, ABC
and TABC(4) calculations produce fairly similar strength
functions for both box sizes. The enhanced shoulder
around 24 MeV for L = 32 fm in ABC is a faint remainder
of the artificial quantization of the continuum [30]. This
feature is wiped out by the improved absorption with
L = 40 fm. Another difference appears at the main peak
at about 20.5 MeV where both TABC calculations agree
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FIG. 2. (Color online) Isovector E1 strength for 16O with
E∗ = 1MeV and two box sizes: L=32 and 40 fm.
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FIG. 3. (Color online) Isoscalar E2 power spectrum for 16O
at E∗ = 20MeV and L = 32 fm. The inset shows the time
evolution of the mass quadrupole moment Q. See [57] for
animations.

aside from small remaining fluctuations which could be
further reduced by averaging over more twist points. The
maximum for ABC and L = 40 fm appears at a lower en-
ergy and is lower as compared to L = 32 fm.

We now proceed to higher excitation energies,
E∗ ≈20MeV. In this nonlinear regime for 16O [54], we
look at the power spectrum. Figure 3 shows results for
the isoscalar E2 excitation. In the time signal, PBC
shows the pronounced beat pattern stemming from low-
frequency oscillations of nucleonic gas moving within the

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8  10  12

ρ  
(f

m
-3

)

r (fm)

neutrons 
protons 

total 
t=104 fm/c}
t=0total 

FIG. 4. (Color online) Angular-averaged density distribution
corresponding to the isoscalar E2 mode at E∗ = 20MeV at
two snapshots: t = 0 and t = 104 fm/c. The gas densities
are indicated by dotted lines: ρn,gas = 1.15 · 10−5fm−3 and
ρp,gas = 1.42 · 10−5fm−3.

full volume of the box. This effect is well visible in the E2
mode as the quadrupole moment, being quadratic in x, y,
and z, is sensitive to the border areas of the box far from
the oscillating nucleus. The clouds of oscillating nucle-
onic gas can be clearly seen in the animations included in
Supplemental Material (SM) [57]. Those spurious long-
time fluctuations are efficiently wiped out in both ABC
and TABC after t ≈ 500 fm/c. At shorter times, say the
first 200 fm/c, we see some interesting differences in the
time signal of TABC and ABC. The initial TABC signal
takes a bit longer to decay and the negative amplitudes
are suppressed indicating that the evaporated particles
are emitted predominantly in the direction of positive
quadrupole moment (z-direction). As seen in the anima-
tions in SM, the gas particles are absorbed efficiently in
ABC, which results in a more symmetric time response.

To understand the effect of the background gas in
TABS, Fig. 4 shows angular-averaged density distribu-
tions associated with E2 vibrations of Fig. 3. The aver-
aging was done by means of Gaussians centered at mesh
points of the original Cartesian 3D grid. At times longer
than 500 fm/c, the resulting nucleonic gas is uniformly
distributed within the volume of the box. The magnitude
of the gas density carries information about the effective
temperature of the system and the particle emission rate
[58–61]. Integrating the gas density results in 0.38 neu-
trons and 0.47 protons, and this nicely agrees with the
number of absorbed particles in the ABC variant.

The power spectrum for PBC shows large fluctuations
in the resonance region around 20 MeV and huge spikes at
energies < 4 MeV. Those peaks are removed by ABC and
TABC and replaced by smooth low-energy bumps associ-
ated with nucleonic gas. In the TABC variant, the num-
ber of particles is strictly conserved and the gas is kept
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FIG. 5. (Color online) Isovector E1 power spectrum for 16O
at E∗ = 22MeV and L = 32 fm. The inset shows the time
evolution of the dipole moment D. See [57] for animations.

in the box. This results in a pronounced low-frequency
effect. In ABC, absorbing potential removes most of the
gas efficiently leaving only the unavoidable effect from a
loosely bound nucleon halo. There is also a small dif-
ference in the resonance spectra around 20 MeV where
a dip appears with ABC. This can be attributed to an
effect from the nucleon gas in TABC, which disturbs the
dynamics in the resonance region.

The agreement between ABC and TABC is much closer
for the E1 mode shown in Fig. 5. We see again that ABC
as well as TABC remove the reverberation in the time sig-
nal and the spurious fluctuations in the spectrum. Both
approaches reproduce nicely the strong enhancement of
the low-energy dipole peak at about 10 MeV as well as
the flat profile down to E = 0.

V. CONCLUSIONS

We demonstrated that TABC can be implemented into
TDDFT framework and tested it for nuclear vibrations.
Adding no additional parameters, the new approach re-
moves spurious finite-volume effects as efficiently as the
previously used method based on ABC. With only two
twist phases per direction one obtains a reasonable re-
duction of spurious fluctuations; four twists per direction
offer a good compromise between feasibility and quality.
Since TABC calculations for different twists can be per-
formed independently, the method is easily adapted to
parallel computing.

For low-energy excitations corresponding to the linear
regime, TABC give very similar results as ABC. In the
nonlinear regime, ABC absorb noticeable parts of wave
functions which for TABC remain in the box as float-
ing nucleon gas. Nonetheless, we see a good agreement.
Both methods suppress efficiently the box artifacts and
provide very similar spectra, except for some difference
in the quadrupole response at very low energies where
TABC shows a sizeable bump associated with the slow
long-range fluctuations of the nucleon gas. ABC is more
efficient in suppressing this artifact.

In future applications, the new TDDFT+TABC
method will be applied to excitations of heavy, super-
fluid nuclei. Furthermore, we intend to apply TABC to
infinite systems such as nuclear pasta oscillations in the
neutron star crust. In this case, the nucleonic gas rep-
resents physical reality, and the low-frequency bump as-
sociated with the motion of the cloud within the box is
likely to impact the transport properties of the crust.
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