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To give a general description of the influences of electric fields or currents on magnetization
dynamics, we developed a semiclassical theory for the magnetization implicitly coupled to electronic
degrees of freedom. In the absence of electric fields the Bloch electron Hamiltonian changes the
Berry curvature, the effective magnetic field, and the damping in the dynamical equation of the
magnetization, which we classify into intrinsic and extrinsic effects. Static electric fields modify
these as first-order perturbations, using which we were able to give a physically clear interpretation
of the current-induced spin-orbit torques. We used a toy model mimicking a ferromagnet-topological-
insulator interface to illustrate the various effects, and predicted an anisotropic gyromagnetic ratio
and the dynamical stability for an in-plane magnetization. Our formalism can also be applied to
the slow dynamics of other order parameters in crystalline solids.

PACS numbers: 75.78.-n, 75.60.Jk, 75.76.+j

Introduction—Magnetization dynamics is convention-
ally described by the phenomenological Landau-Lifshitz-
Gilbert (LLG) equation1,2, in which the effective mag-
netic field and the damping factor can be associ-
ated with various mechanisms such as dipolar interac-
tion, exchange coupling, electron-hole excitations, etc.,
through microscopic theories3–5. The recently discovered
current-induced spin-orbit torques emerge as current-
dependent modifications to the LLG equation, and can
be consequently categorized as field-like and damping-
like torques5–11. In systems with strong spin-orbit
coupling and broken inversion symmetry, e.g. GaM-
nAs, heavy-metal/ferromagnet bilayers and magnetically
doped topological insulator heterostructures, magnetiza-
tion switching using electric current alone through the
spin-orbit torque has been achieved experimentally10–14.
In antiferromagnets, staggered torques on opposite mag-
netizations are also generated electrically11,15–17. Theo-
retical studies of spin-orbit torques have mostly adopted
s − d type couplings between transport electrons and
those contributing to magnetization5–8,10, or a self-
consistent-field picture based on the spin density func-
tional theory9,18. Then the spin-orbit torques can be
understood as the modification to the effective exchange
fields proportional to the current-induced spin densities
in inversion symmetry breaking systems, known as the
Edelstein effect5,19. However, in general neither the
size of the exchange field nor its dependence on or-
der parameter (magnetization) direction is known a pri-
ori11,20,21. It is thus more desirable to develop a theo-
retical framework that does not explicitly depend on the
details of the coupling between transport electrons and
the magnetization21–23.

In this Rapid Communication, we provide a semiclassi-
cal framework for the dynamics of magnetization implic-
itly coupled to electronic degrees of freedom, based on
the wave-packet method. We found that the Bloch elec-
trons yield a Berry curvature Ωmm, acting as a magnetic

field in the magnetization space, while the gradient of the
electronic free energy with respect to the magnetization
acts as a static electric field in the magnetization space,
in agreement with previous adiabatic theory of magne-
tization dynamics24. These two fields thus govern the
dynamics of magnetization as that of Lorentz force to a
charged particle. In addition, we identified an extrinsic
contribution to the magnetization dynamics, correspond-
ing to the Gilbert damping in the LLG equation, which
is not included in the adiabatic theory. A static elec-
tric field enters the magnetization equation of motion by
modifying the Berry curvature Ωmm, the effective field,
and the damping factor as a first-order perturbation. In
particular, the modification to the effective field includes
a part proportional to the Berry curvature Ωmk and hav-
ing a geometric nature. We used a simplified model for
the ferromagnet-topological-insulator interface to illus-
trate the various effects, and showed that the gyromag-
netic ratio is renormalized anisotropically and that an
in-plane magnetization can be dynamically stable under
moderate electric fields.
Formulation and general results—We start from a general
Hamiltonian of Bloch electrons implicitly depending on
the order parameter m, Ĥe(q;m), where q is the crys-
tal momentum. External electromagnetic fields are de-
scribed by the scalar and vector potentials (φ,A) that en-
ter the Hamiltonian through minimum coupling (~ = 1,
e = |e|),

Ĥ = Ĥe(q + eA;m)− eφ. (1)

Following Ref. 25, a wave packet is constructed with cen-
ter position x and center physical momentum k from
the Bloch eigenstates of the local electronic Hamiltonian.
The Lagrangian of a single wave packet reads as

L = ẋ·[k−eA(x, t)]+k̇·Ak+ṁ·Am−[ε−eφ(x, t)], (2)

with Aλ = i〈u|∇λu〉 (λ = k or m) the Berry connec-
tions of the Bloch state |u〉, and ε the wave packet en-
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ergy. For notational simplicity we have dropped the band
index. The Lagrangian depends on (x,k) of the wave
packets and magnetization m. Thus a set of coupled
equations of motion for all three variables can be derived
from the Lagrangian principle26:

k̇ = −eE, (3)

ẋ =
∂ε

∂k
+ k̇ · Ωkk + ṁ · Ωmk, (4)

ˆ
[dk]f

(
ṁ · Ωmm + k̇ · Ωkm +

∂ε

∂m

)
= 0, (5)

where the Berry curvatures Ωλiλj =
−2Im〈∂u/∂λi|∂u/∂λj〉, λ = k or m. Eq. 5 is ob-
tained by summing over all occupied states, and f is
the distribution function for the electrons. Note the
magnetization dynamics enters the electron equations
of motion through Ωkk in Eq. 4, and the terms in the
square brackets of Eq. 5 can be viewed as conjugates of
the right hand side of Eq. (4), by interchanging k and
m. This is a manifestation of the reciprocity between
charge pumping due to magnetization precession and
electric-current-induced spin-orbit torque.

The nonequilibrium response of the electrons to an
external electric field and/or a dynamical m is ac-
counted for using the semiclassical Boltzmann equation,
according to which the deviation of the distribution
function from the equilibrium Fermi-Dirac distribution
f0[ε(k,m)] is

δf = −τ ∂f0
∂ε

(
k̇ · ∂ε

∂k
+ ṁ · ∂ε

∂m

)
, (6)

where we have assumed a grand canonical ensemble with
fixed temperature and chemical potential. τ is the re-
laxation time which we take as a constant for simplic-
ity. Generalization to including more specific scattering
mechanisms is straightforward but involved, and does not
necessarily provide additional insight on the main issues
considered in this work.

The equations (3-6) complete our semiclassical descrip-
tion of coupled magnetization and electron dynamics in
the presence of external electric fields, though they can
be easily extended to including magnetic fields and other
perturbations.

In the absence of electric fields, k̇ = 0, and we can
obtain from Eq. (6) and Eq. (5) the following equations
of motion of the magnetization,

ṁ · (Ω̄mm + ηmm)−H = 0, (7)

in getting which we have ignored higher order ṁ2 terms
by assuming that the magnetization dynamics is slow
compared to typical electronic time scales. The Berry
curvature Ω̄, the damping coefficient η and the effective

field H in the equation above are respectively

Ω̄mm =

ˆ
[dk]f0Ωmm, (8)

ηmm = −τ
ˆ

[dk]
∂f0
∂ε

∂ε

∂m

∂ε

∂m
, (9)

H = − ∂G
∂m

, (10)

where G is the free energy of the electron system.
For non-interacting electrons G = −β−1

´
[dk] ln[1 +

e−β(ε−µ)] for a single band, where β = 1/kBT . Interac-
tion effects may be included in G through different levels
of approximations, which will also modify the way mag-
netization appears in G. At this point we will leave G as
a general electron free energy depending on m implicitly.

We only consider the transverse modes (ṁ perpendic-
ular to m) of the magnetization dynamics in this work,
although Eq. 7 can be used for the longitudinal mode as
well. The magnetization is thus described by the polar
angle θ and the azimuthal angle φ. Eq. (7) can then be
converted to the familiar form of the LLG equation,

ṁ = −γm× (H − ηmm · ṁ) , (11)

where the gyromagnetic ratio γ is related to the Berry
curvature through

Ω̄ = m/γm2, (12)

where Ω̄i = εijkΩ̄jk/2 is the vector form of the Berry cur-
vature tensor. Expressions similar to Eq. (7), but without
the damping term, have been derived using the adiabatic
theory27. Since the damping term is explicitly depen-
dent on the relaxation time, which is ultimately due to
dissipative microscopic processes such as electron-phonon
scattering and electron-impurity scattering, we call it ex-
trinsic contribution to the magnetization dynamics. Note
Eq. 9 suggests η is positive definite, which means it al-
ways leads to energy dissipation through Eq. 11. The
remaining terms are intrinsic contributions from the elec-
tron degrees of freedom. In particular, from Eq. (7) one
can see that the two intrinsic terms are formally similar
to the Lorentz force of a charged particle, with the anti-
symmetric part of Ωmm (or equivalently the vector form
Ωm) analogous to the magnetic field and H playing the
role of the electric field.

Electric fields enter our formalism through the equa-
tion of motion for k [Eq. (3)], which makes the 2nd term
in the integrand of Eq. 5 nonzero and also contributes to
the nonequilibrium distribution function δf in Eq. (6).
After some algebra, we arrive at the same equation as
Eq. (7), but with H, Ω̄mm, and ηmm acquiring the fol-
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lowing corrections proportional to the electric field:

HE = eE ·
ˆ

[dk]

(
Ωkmf0 − τ

∂ε

∂k

∂ε

∂m

∂f0
∂ε

)
, (13)

Ω̄Emimj
= eτE · (14)ˆ

[dk]

[
∂ε

∂k
Ωmimj

−
(

Ωkmi

∂ε

∂mj

)
A

]
∂f0
∂ε

,

ηEmimj
= eτE ·

ˆ
[dk]

(
Ωkmi

∂ε

∂mj

)
S

∂f0
∂ε

(15)

where subscript S (A) means the part of Ωkmi

∂ε
∂mj

that is

symmetric (antisymmetric) under i↔ j. We next discuss
the physical meanings of these results in detail.

For the correction to the effective field, HE , the first
term in Eq. 13 has a geometric nature and is an intrinsic
contribution from the Fermi sea electrons. It is of Ωmt

type, where the time variation is due to the momentum
change of a single wave packet driven by E: ∂t = k̇ ·∂k =
−eE ·∂k. We note there is a nice identity connecting Ωmt

and the “magnetic field” in magnetization space Ωm:

∂tΩm +∇m × Ωmt = 0. (16)

Since Ωmt = Ωmk · (−eE) is a correction to the static
effective electric field H (Eq. 10) in the magnetization
space, above equation is a magnetic analog of the Fara-
day’s law for charged particles. The 2nd term in Eq. 13 is
extrinsic since it is proportional to τ , and does not have
an electromagnetism analog.
HE also provides new insights on the charge pump-

ing effect of a nonzero ṁ28,29. Since P ≡ HE · ṁ
has the meaning of power density and is proportional
to E, there is an electric current induced by ṁ as
jp = ∂(HE · ṁ)/∂E. The change of the polarization
density (“pumping”) after m completes a closed path in
its configuration space is obtained by integrating jp over
this period. A finite charge pumping thus corresponds to
a nonzero work density, and is related to the curl of HE

in the magnetization space through

W =

˛
jp ·Edt =

˛
HE · dm (17)

=

¨
∇m ×HE · dσm,

where we have used the Stokes theorem, and dσm is the
infinitesimal area in the magnetization space. Thus in
order to have finite charge pumping, HE must not be
conservative, i.e., it cannot be written as a gradient of
certain scalar free energy.

We now move on to Ω̄Emm and ηEmm, which are all
Fermi surface contributions due to the non-equilibrium
part of the distribution function δf . They are important
in magnetic metals and should be discussed on an equal
footing as HE for current-induced effects on magnetiza-
tion dynamics. In the form of Eq. 11, Ω̄Emm renormal-
izes the gyromagnetic ratio as γ′ = γ/(1 + γ/γE), where
γE ≡ 1/m · Ω̄E , while ηEmm modifies the damping tensor

as η′ = η + ηE . It is interesting to note that ηE does
not have to be positive definite. A negative definite total
damping will make the free energy minima dynamically
unstable while the maxima dynamically stable. Thus in
addition to the potential of switching the magnetization
between different easy directions, a suitably chosen elec-
tric field can in principle switch the magnetization be-
tween easy and hard directions, which provides a new
mechanism (though volatile) for current driven reading
and writing processes in magnetic memory devices.

Before ending this section, we translate our results
Eq. (13-15) into the commonly used spin-orbit torque
language. For small electric fields they can be converted
to additional terms added to the right hand side of the
LLG equation Eq. 11:

ṁ = −γm× (H − ηmm · ṁ)− γτso, (18)

where τso = τHso +τ γso+τ ηso with the separate terms being

τHso = m×HE , (19)

τ γso = −γ/γEm× (H + ηγm×H), (20)

τ ηso = γηEm× (m×H). (21)

For the special s − d type coupling, HE is propor-
tional to the spin density response to electric fields since
∂Ĥ/∂m ∼ s, in agreement with previous studies5,9,13,19,
though our formalism is not limited to this coupling form.
Morever, there are additional torques τ γso and τ ηso that
cannot be directly explained using spin density response
to electric fields. They can, however, always be classified
into either field-like or damping-like torques depending
on whether there is a sign change upon m→ −m.
Model example—As a concrete example, we consider a
2D toy model that can be used to describe the interface
between a ferromagnetic insulator and a 3D topological
insulator (TI)30–32:

Ĥ(m) = ~v(−kyσx + kxσy) + Jm · σ, (22)

where m is the 2D magnetization of the ferromagnet,
σ is the Pauli matrix vector for the spin operators, v
is the Fermi velocity of the Dirac surface electrons of
the TI, and J is the exchange coupling strength between
m and σ. Bulk and Rashba surface states are ignored
for simplicity29,33. The exchange coupling opens a gap
proportional to the z component of m. We consider zero
temperature and set the chemical potential µ = 0. The
Berry curvature of the lower band is calculated similarly

as the ~k · ~σ model26

Ω̄sθφ =
α2| sin 2θ|

8πa2
sgn(α), (23)

where α = Jma/~v is the exchange energy measured
in typical scales of the kinetic energy ε0 = ~v/a (a is
the lattice constant). Using relation Eq. (12), the Berry
curvature gives an anisotropic gyromagnetic ratio

γs(θ) =
4πma2

~α2| cos θ|
sgn(α). (24)
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We should note that the ferromagnet by itself has a gyro-
magnetic ratio, denoted as γf , and the overall gyromag-
netic ratio γ is corrected as

γ−1 = γf
−1 + γs

−1, (25)

or equivalently

γ = γf ·
1

1 + γf/γs(θ)
. (26)

The variation of γ for m moving across the Bloch sphere
is shown in Fig. 1(a). On the equator (θ = π/2),
γ = γf ; at the north and south poles, γ = γf/(1 +
γf~α2/4πma2sgn(α)). This angular dependence of gy-
romagnetic ratio should be able to be detected by ferro-
magnetic resonance experiments in such systems.

The free energy density at zero temperature is calcu-
lated by integrating the energy of the lower bands. Ig-
noring a constant term, we get

Gs = −J0m2
z (27)

where J0 = ε0kcα
2/4πm2a and kc is the momentum cut-

off. Gs has two minima at the north and south poles,
as shown in Fig. 1(b). Thus the surface states provide a
perpendicular magnetic anisotropy for the ferromagnet.
For simplicity we ignored the magnetic anisotropy energy
of the ferromagnet itself. For nonzero mz there is no con-
tribution from the surface state electrons to η because of
the finite gap, and if the intrinsic damping of the ferro-
magnet is ignorable the magnetization should move along
equal-energy lines without driving forces, along the direc-
tions determined by −γm×H [Eq. (11)], as illustrated
in Fig. 1(b).

FIG. 1. (Color online) (a) Renormalized gyromagnetic ratio
γ through coupling to the topological surface states. (b) Con-
tour plot of free energy Gs in the absence of electric fields.
The arrows indicate the directions of magnetization motion.
Parameters: γf = 2ma2/~, α = 1

We now consider the effect of an electric field along x
direction on the magnetization dynamics. For nonzero
mz all Fermi surface contributions in Eqs. (13-15) are
zero, and the only finite term is the Fermi sea contribu-
tion in HE :

HE = − eE|α|
4πma

sgn(mz)x̂. (28)

The magnetoelectric effect originates from the strong
spin orbital coupling in TI29,30,34,35. It has constant mag-
nitude but opposite directions depending on the sign of
mz. The curl of HE is thus zero everywhere except on
the equator, which also means nonzero charge is pumped
by magnetization dynamics when the precession axis is
in plane36. Based on our discussion in the previous sec-
tion we can only define free energy functions separately
for the north (N) and the south (S) hemispheres as GN
and GS but not globally:

GN = −J0m2
z +

eE|α|
4πma

mx, (29a)

GS = −J0m2
z −

eE|α|
4πma

mx. (29b)

On each hemisphere, the 2nd term in the free energy im-
plies a magnetization-dependent polarization, which will
be interesting to detect experimentally. Moreover, since
GN −GS ∝ mx, they cannot be connected by a constant
energy shift across the equator. The electric field thus
shifts the two free energy minima at the north and the
south poles in opposite directions, and distorts the equal
energy lines in the vertical direction, as shown in Fig.
2. In addition, the opposite signs of GN and GS very
close to the equator make half of the equator dynami-
cally stable, as can be seen from the arrows pointing to
the equator from both above and below in Fig. 2. Specif-
ically, if we still assume a vanishing intrinsic damping of
the ferromagnet, when the magnetization is very close
to the equator with φ ∈ (π, 2π), or more generally when
it is between the two critical trajectories determined by
GN/S = −eE|α|/4πa, it will follow the equal energy lines
and end up on the half equator with φ ∈ (0, π). Con-
versely, for a magnetization outside of the region between
the two critical trajectories, i.e., GN/S < −eE|α|/4πa, it
will keep precessing around one of the free energy min-
ima. When there is a small damping, the size of the
attraction area around the half equator reduces because
energy is dissipated during evolution.

FIG. 2. (Color online) Contour plot of free energies GN and
GS in the presence of an electric field along x̂. Parameters:
γf = 2ma2/~, α = 1, eE|α|/4πJ0 = 0.4.

In the limiting case of strong electric fields
eE|α|/4πa > 2J0m

2, the critical trajectories disappear
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on the Bloch sphere and the magnetization will always
evolve to the stable half equator. Since without the
magnetic field the magnetization has a perpendicular
anisotropy due to the topological surface states, electric
fields can lead to dynamical switching between easy (out-
of-plane) and hard (in-plane) directions. This mechanism
is unique to the FM/TI system and is independent of
the easy-hard-axes switching due to a negative-definite
damping tensor discussed in the last section.

Since the electric field enters our formalism only
through its modification on momentum [Eq. (3)], our the-
ory can be straightforwardly generalized to other time-
varying perturbations that influence wave-packet dynam-
ics in similar ways, which will give both Fermi-surface

contributions and Fermi-sea contributions through the
Berry curvature Ωmt. For example, a potential appli-
cation is the magnetization dynamics driven by sound
wave37,38. Separately, our formalism can be applied to
the slow dynamics of other order parameters in crys-
talline solids, and to its dependence on electromagnetic
fields through the electron degrees of freedom.

We acknowledge useful discussions with A. H. Mac-
Donald, R. Cheng, Y. Gao, H. Zhou. This work
is supported by National Basic Research Program of
China (Grant No. 2013CB921900), DOE (DE-FG03-
02ER45958, Division of Materials Science and Engineer-
ing), NSF (EFMA-1641101), and the Welch Foundation
(F-1255).
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A. Manchon, J. Wunderlich, J. Sinova, and T. Jungwirth,
Phys. Rev. Lett. 113, 157201 (2014).

17 A. Manchon, Journal of Physics: Condensed Matter 29,
104002 (2017).

18 Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404

(2002).
19 V. Edelstein, Solid State Communications 73, 233 (1990).
20 A. Brataas and K. M. D. Hals, Nature Nanotechnology 9,

86 EP (2014).
21 K. M. D. Hals and A. Brataas, Phys. Rev. B 88, 085423

(2013).
22 S. Wimmer, K. Chadova, M. Seemann, D. Ködderitzsch,

and H. Ebert, Phys. Rev. B 94, 054415 (2016).
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