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Interlayer electron transport through a graphene / hexagonal boron-nitride (h-BN) / graphene
heterostructure is strongly affected by the misorientation angle θ of the h-BN with respect to the
graphene layers with different physical mechanisms governing the transport in different regimes of
angle, Fermi level, and bias. The different mechanisms and their resulting signatures in resistance
and current are analyzed using two different models, a tight-binding, non-equilibrium Green function
model and an effective continuum model, and the qualitative features resulting from the two different
models compare well. In the large-angle regime (θ > 4◦), the change in the effective h-BN bandgap
seen by an electron at the K point of the graphene causes the resistance to monotonically increase
with angle by several orders of magnitude reaching a maximum at θ = 30◦. It does not affect
the peak-to-valley current ratios in devices that exhibit negative differential resistance. In the
small-angle regime (θ < 4◦), Umklapp processes open up new conductance channels that manifest
themselves as non-monotonic features in a plot of resistance versus Fermi level that can serve as
experimental signatures of this effect. For small angles and high bias, the Umklapp processes give
rise to two new current peaks on either side of the direct tunneling peak.

I. INTRODUCTION

Graphene (Gr), a two-dimensional (2D) material made
of carbon atoms arranged in a honeycomb structure,
has excellent electronic, thermal, and mechanical prop-
erties that make it a promising candidate for nanoelec-
tronic devices1,2. 2D hexagonal boron nitride (h-BN)
has the same 2D honeycomb structure as graphene. Its
lattice constant is closely matched to that of graphene,
and its large band gap and good thermal and chemi-
cal stability make it an excellent insulator, substrate,
and encapsulating material for graphene and other 2D
materials.3,4 There have been a number of experimental
and theoretical studies of the in-plane electronic prop-
erties of graphene on h-BN.5–10 In general, in a h-BN
graphene heterolayer system, whether grown by chemical
vapor deposition or assembled by mechanical stacking,
the graphene will not be crystallographically aligned with
the h-BN. The misalignment results in a small change in
the in-plane graphene electron velocity8.

Interest in the effect of misorientation on cross-plane
transport began with bilayer graphene, and the first co-
herent tunneling calculations showed a 16 order of mag-
nitude change in the interlayer resistance as a function
of the misalignment angle.11 Including phonon mediated
transport reduced the dependence on angle to a few or-
ders of magnitude.12 Replacing the source and drain mis-
oriented graphene sheets with source and drain misori-
ented graphite leads resulted in the same angular depen-
dence and very similar quantitative values for the co-
herent current.13 This demonstrated sensitivity to inter-
layer misorientation motivates us to examine the effect
in Gr/BN/Gr devices.

There is also significant interest in Gr/BN/Gr het-

erostructures for electronic device applications14–33.
Gr/BN/Gr structures display negative differential re-
sistance (NDR),20,24,27,30–32,34 and theoretical calcula-
tions predict maximum frequencies of several hundred
GHz.26 The NDR arises from the line-up of the source
and drain graphene Dirac cones combined with the con-
servation of in-plane momentum. In one experiment
in which plateaus were observed in the current-voltage
characteristics instead of NDR, the experimental results
could be matched theoretically by ignoring momentum
conservation.23 In the theoretical treatments, the focus
has been primarily on the rotation between top and bot-
tom graphene layers and the resulting misalignment of
the Dirac cones20,27,32. Recently, the effect of misalign-
ment of both the BN and the graphene layers including
the effects of phonon scattering have been investigated
using the low-angle effective continuum model30,35.

In this work, we focus on the effect of the BN misalign-
ment and consider a system of two aligned graphene lay-
ers serving as the source and the drain separated by one
or more AB stacked layers of h-BN that are misoriented
with respect to the graphene. An illustration of such a
system is shown in Fig. 1(a). This system is analyzed
using two different models and the results from the two
models are compared. Commensurate rotation angles in
the range 1.89◦ ≤ θ ≤ 27.8◦ are simulated with a tight
binding model and the non-equilibrium Green function
(NEGF) formalism. The small angle regime is also ana-
lyzed with a continuum model similar to that used in Ref.
[35]. The qualitative features of the two different models
compare well, and the continuum model elucidates the
physics of the small angle regime

The misorientation of the BN with respect to the
graphene can have several possible effects that dominate
in different regimes of angle and applied bias. (a) For
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FIG. 1. (a) Atomistic geometry of the graphene/boron-
nitride/graphene heterostructure. The top and bottom lay-
ers are aligned graphene. The middle boron-nitride layer is
rotated with respect to the graphene layers. (b) In k space.
The relative rotation between the Brillouin zone of h-BN (red)
with respect to that of graphene (black). (c) The energy gap
of monolayer h-BN at the K point of graphene as a function
of rotation angle.

devices under high bias, it can alter the transverse mo-
mentum conservation and thus degrade the NDR. (b) It
can alter the potential barrier seen by the electrons at the
K points in the graphene, and thus alter the interlayer
tunneling current and resistance. (c) As in misoriented
graphene on graphene, it can result in destructive quan-
tum interference that reduces the current. A signature
of this effect is that over a range of angles, the coherent
interlayer resistance scales monotonically with the size
of the commensurate unit cell.12,13 (d) For small angle
rotations, Umklapp processes can open up new channels
of conductance resulting in new features that depend on
Fermi level, angle, and bias. The presence or absence
of these effects and under what conditions they manifest
themselves will become clear in the analysis.

The paper is organized as follows. Sec. II A, describes
the tight binding model and the NEGF method used to
calculate the coherent resistance for different commen-
surate angles and different h-BN layer thicknesses. Sec.
II B describes the effective continuum model employed
to analyze the low angle regime. Sec. III describes and
discusses the results. Conclusions are given in Sec. IV.
The appendix gives details of the tight-binding model
and calculations.

in-plane interaction Interlayer interaction

t0 (eV ) t⊥ (eV ) d⊥
(

Å
)

λz

(

Å
)

λxy

(

Å
)

α

C-C 2.85 0.39 3.35 0.60 1.70 1.65
B-N 2.52 0.60
C-B 0.62 3.22 0.54 0.84 2.04
C-N 0.38 3.22 0.41 0.97 2.03

TABLE I. Parameters for the tight binding model. t0 is the
intra-layer, off-diagonal matrix element. All other parameters
are described by Eq. (2).

II. MODELS AND METHODS

A. Tight Binding Transport Calculations

The interlayer transport in the Gr/BN/Gr device illus-
trated in Fig. 1 is analyzed using a tight binding Hamil-
tonian and a non-equilibrium Green function (NEGF)
approach for the transport. The device Hamiltonian has
the following block tridiagonal form

H =





HT (k) tT (k) 0

t
†
T (k) HBN (k) tB(k)

0 t
†
B(k) HB(k)



 , (1)

where k is the wavevector in the x − y plane, HT (B) is
the Hamiltonian of the uncoupled top (bottom) graphene
layers, HBN is the Hamiltonian of the h-BN layer(s), and
tT (B) is the block of matrix elements coupling HT (B) to
HBN . The elements tij of the off-diagonal blocks tT (B)

representing the interaction between atom i in a graphene
layer and atom j in the adjacent h-BN layer are given
by12

tij = t⊥ exp

(

−rij − d⊥
λz

)

exp

[(

ξij
λxy

)α]

(2)

where d⊥ is the interlayer disatnce, rij is the dis-
tance between two atoms i and j, and ξij =
[

(xi − xj)
2
+ (yi − yj)

2
]1/2

is the projected in-plane dis-

tance between the two atoms. The lattice constant of
the entire system is set to that of graphene. The mis-
oriented commensurate primitive unit cells are created
using the approach described in Ref. [36]. Parameters
for this tight binding model were extracted by fitting the
band structures to density functional theory (DFT) re-
sults. The on-site energy for C, is set to 0 and the on-site
energies of the B and N atoms are 3.40 eV and -1.31 eV,
respectively. For multiple h-BN layers, we adapt the in-
terlayer h-BN interaction strength t′ = 0.60eV from Ref.
[37]. All other parameters are shown in Table I.
Since this is essentially a 2D - 2D tunneling prob-

lem, the coherent interlayer transmission through the
Gr/BN/Gr structure is calculated within a NEGF ap-
proach using the ‘generalized boundary conditions’ de-
scribed in Ref. [38]. Within the NEGF approach, the
graphene layers act as the ‘contacts’ and the h-BN layer
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acts as the ‘device’. The surface Green’s functions of the
top and bottom graphene layers are

gT (B)(E,k) =
[(

E + i
γ

2

)

I−HT (B)(k)
]−1

(3)

where I is the identity matrix, and the energy broadening
γ = 80 meV is chosen to match that of Ref. [11]. Given
the surface Green’s functions, the rest of the NEGF cal-
culations follow as usual. Here the ‘device’ Green’s func-
tion is

Gr(E,k) = [EI−HBN(k) −ΣT (E,k) −ΣB(E,k)]−1

(4)
where the self energies resulting from coupling to the

graphene layers are ΣT = t
†
TgT tT and ΣB = tBgBt

†
B.

The transmission coefficient is

T (E,k) = tr
[

ΓTG
rΓBG

r†] (5)

where ΓT = t
†
TaT tT , ΓB = tBaBt

†
B , aT (B) = −i(gT (B)−

g
†
T (B)) is the spectral function of the top (bottom)

graphene layer, and tr [· · · ] indicates a trace of the ma-
trix.
Integrating Eq. (5) for the transmission over the

first commensurate Brillouin zone, the energy-dependent
transmission coefficient per unit area is

T (E) =

∫

1stBZc

d2k

4π2
T (E,k) (6)

This integration is performed numerically on a square

grid with ∆kx = ∆ky = 0.005 Å
−1

(see Appendix A for
further details). The linear conductance is given by

G = 2
e2

h

∫

dET (E)

(

− ∂f

∂E

)

(7)

where the factor of 2 accounts for the spin degeneracy,
and the integration over k accounts for the valley degen-
eracy. The resistance is the inverse of the conductance,
R = 1/G.
For finite bias calculations, an applied bias Vb = ∆/e is

symmetrically applied across the device by settingHi,j
T =

δij∆/2 and H
i,j
B = −δij∆/2. When multiple BN layers

are present, the potential drops linearly within the BN
region, since BN is an insulator. The tunneling current
flowing through the device is given by:

I =
2e

h

∫

dET (E) [f (E − µT )− f (E − µB)] (8)

where µT = µt+∆/2 and µB = µb−∆/2 are the chemical
potentials of the top and bottom graphene, respectively,
f(E) is the Fermi distribution function, and ∆V = µt −
µb is the potential difference between the charge neutral
points of the two Gr layers. ∆V accounts for the effect
of gating and doping. We refer to ∆V as the built-in
potential in analogy with a pn junction, since this is the
potential that exists before the bias is applied.

B. Effective Continuum Model

As the rotation angles become smaller the commen-
surate unit cells become very large. As a result, NEGF
calculations with the large tight binding Hamiltonians
become computationally challenging. In order to better
understand the physics governing the interlayer transport
at small rotation angles, we construct an effective con-
tinuum model. In the small angle region (θ < 10◦), the
coupling matrix between graphene and h-BN layer is of
the following form20,30,39

Hint =
1

3

∑

j=1,2,3

e−iqj(θ)·rTj , (9)

where

Tj =

(

tCBη
(j−1) tCNη−(j−1)

tCB tCNη(j−1)

)

. (10)

In Eq. (10), the row indices correspond to the A and B
atom of the graphene, and the column indices correspond
to the B and N atoms of the BN. The lower off-diagonal
element corresponds to a C atom directly over a B atom.
All other elements correspond to a C atom in the center
of an equilateral triangle of B atoms or N atoms. The
hopping amplitudes tCB and tCN between a C atom and
a B or N atom are the same as those listed in Table I.
The phase factors η = ei(2π/3) result from the matrix ele-
ments of the Bloch sums evaluated at the K points. The
index j labels the three equivalent corners of graphene’s
Brillouin zone corresponding to the three K points. The
momentum shift qj(θ) is the momentum misalignment
between the three equivalent K points of the h-BN and
those of the graphene. Specifically,

q1(θ) = kD(0, θ),

q2(θ) = kD(−
√
3

2
θ,−1

2
θ),

q3(θ) = kD(

√
3

2
θ,−1

2
θ),

(11)

where kD = 4π
3a is the magnitude of the K point of

graphene. When θ = 0, q = 0, and the sum in Eq. (9)
will cause the diagonal and upper off-diagonal elements
of Hint to vanish leaving a coupling matrix correspond-
ing to AB stacking with the B atom directly above the
C atom.
By eliminating HBN from Hamiltonian (1), we reduce

the 3×3 Hamiltonian into an effective 2×2 Hamiltonian
and obtain the effective interaction Hamiltonian between
the top and bottom graphene layers as40

UTB(ǫ) = Hint(ǫ −HBN )−1H
†
int. (12)

The low-energy electronic structure of h-BN can be de-
scribed by a gapped Dirac-like Hamiltonian that acts on
the B and N pz orbital basis around a given K point,

HBN(∆K) =

(

ǫB ~υBN∆Keiθ∆K

~υBN∆Ke−iθ∆K ǫN

)

.

(13)
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The energies ǫB and ǫN are the on-site energies of the B
and N atoms, while υBN is the velocity that is determined
by the in-plane matrix elements between the B and N
atoms given in Table I. The ∆K is the connection vector
between K point of graphene and h-BN. Then, we obtain

(ǫ −HBN)−1 =

1

(ǫ− ǫN)(ǫ − ǫB)− (~υBN∆K)2

(

ǫ− ǫN 0
0 ǫ− ǫB

)

.

(14)

The off-diagonal term vanished due to the three-fold sym-
metry of ∆K. Combining Eqs. (9), (12), and (14), the
effective interaction Hamiltonian is

UTB(ǫ) =
1

9

∑

i,j=1,2,3

eiGij(θT ,θB)rTi(ǫ−HBN )−1Tj

(15)
where Gij(θT , θB) = qi(θT ) − qj(θB) is the momentum
difference shift during transmission. Since the top and
bottom graphene layers are aligned (θT = θB),

|Gij | =
{

0 for i = j√
3kDθT for i 6=j

(16)

This can be interpreted as the momentum being con-
served for transmission between aligned Dirac cones of
the top and bottom graphene layers. For transmission
between misaligned Dirac cones, the momentum shifts
by |Gij | =

√
3kDθT .

The tunneling matrix element for the transmission be-
tween the top and bottom layers is

Tα,β(kT ,kB) =
∑

i,j=1,2,3

tα,βi,j (kT ,kB)δ(kT − kB −Gij)

(17)
where

tα,βi,j (kT ,kB) =
1

9
φ†
α(kT )Ti(ǫ−HBN)−1Tjφβ(kB) (18)

and the eigenvectors of the graphene layers are φα(k) =
1√
2

[

1, αeiθk
]

eik·r, where α = ±1 is the band index. The

linear conductance is11

G =
e2gsgv
~A

∑

kT ,kB

α,β

|Tα,β(kT ,kB)|2×

A(ǫα(kT ), ǫF )A(ǫβ(kB), ǫF ) (19)

or

G =
e2gsgv
~A

∑

k,α,β
i,j=1,2,3

|tα,βi,j (k,k +Gij)|2×

A(ǫα(k), ǫF )A(ǫβ(k+Gij), ǫF )
(20)

where gs = 2 and gv = 2 account for the spin and
valley degeneracy, respectively, and A is the cross sec-
tional area. A is the spectral function approximated by

a Lorentzian function near the Fermi energy32 with a
broadening lifetime that is the same as that used in the
NEGF calculations.
To better understand the effect of the rotation, we di-

vide the conductance into three parts.

G = Gi=j +Gα=β
i6=j +Gα6=β

i6=j (21)

where the first part

Gi=j =
e2gsgv

~

∑

k,α=β
i=j=1,2,3

|tα,βi,j (k,k)|2A2(ǫ(k), ǫF ) (22)

represents the coherent transport process where the mo-
mentum is conserved between top and bottom graphene
layers. The second and third terms correspond to Umk-
lapp processes in which the second term is an intraband
process

Gα=β
i6=j =

e2gsgv
~A

∑

k,α=β
i6=j=1,2,3

|tα,βi,j (k,k+Gij)|2×

A(ǫα(k), ǫF )A(ǫα(k) + α~υ
√
3kDθ, ǫF ),

(23)

and the third term is an interband process,

Gα6=β
i6=j =

e2gsgv
~

∑

k,α6=β
i6=j=1,2,3

|tα,βi,j (k,k+Gij)|2×

A(ǫα(k), ǫF )A(ǫβ(k) + β(~υ
√
3kDθ − 2ǫF ), ǫF ).

(24)

III. RESULTS

Fig. 2 shows the tight-binding, NEGF calculations of
the zero-temperature, coherent resistance versus Fermi
energy (EF ) for heterostructures with (a) a single h-BN
layer and (b) 3 h-BN layers. The Fermi level, EF , varies
from -0.5 eV to 0.5 eV around the charge neutrality point
for a range of rotation angles from 0◦ to 27.79◦ as indi-
cated in the legend. The lowest black curve is the coher-
ent resistance for the ABA unrotated heterostructure.
For all of the angles shown, the resistance monotonically
falls as the Fermi level moves away from the charge neu-
trality point where the density of states of the graphene
layers are a minimum. In contrast to rotated bilayer
graphene (r-BLG), for the two lowest angles, 6.01◦ and
7.34◦, there is no sudden change in resistance with Fermi
energy around 0.3-0.4 eV (compare with Fig. 2(a-b) of
Ref. [13]).
The vertical dashed lines in Fig. 2 correspond to a

Fermi level of 0.26 eV. This is the Fermi level previously
used for comparisons of the interlayer conductivity of
misoriented bilayer graphene11–13. The numerical values
of the resistance at EF = 0.26 eV are given in Table II
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FIG. 2. Zero temperature coherent resistance of twisted (a)
Gr/1L h-BN/Gr heterostructure and (b) Gr/3L h-BN/Gr het-
erostructure as a function of Fermi Energy for different com-
mensurate rotation angles. The dashed line shows the Fermi
energy of 0.26 eV used to calculate the resistance values in
Fig. 3. The resistances are calculated from the tight-binding,
NEGF approach.

at Appendex B. As the h-BN layer becomes misaligned,
the resistances increase by factors of 200 and 430 for the
monolayer and trilayer BN structures, respectively. This
trend in the variation of resistance with rotation angle
is similar to the experimental observations in Ref. [14].
There it was shown that the conductance can vary by
a factor of 100 for different devices with the same h-
BN thickness. For both the monolayer and trilayer BN
structures, the increase in the resistance is a monotonic
function of the BN rotation angle as the rotation angle
increases from 6◦ to 27.79◦. This trend is also in contrast
to that of r-BLG. In the r-BLG system, at low energies
near the charge neutrality point, the coherent interlayer
resistance is a monotonic function of the supercell lattice
constant as opposed to the rotation angle (compare to
Fig. 1(d) of Ref. [12]).

To investigate process (b) in which rotation of the BN
alters the tunnel barrier, we calculate the energy gap of
ML and trilayer h-BN at the BN k-point correspond-
ing to graphene’s K-point as a function of rotation an-
gle as illustrated in Fig. 1(b). The resulting effective
bandgap for ML BN is plotted versus rotation angle in
Fig. 1(c). Since the direct bandgap (4.7 eV) of h-BN oc-
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FIG. 3. Zero temperature coherent resistance of graphene/1L
h-BN/graphene (upward-pointing triangles) and graphene/3L
h-BN/graphene (downward-pointing triangles) as a function
of the effective energy gap of the monolayer h-BN and 3 layer
h-BN at the K-point of the graphene. The angles are given
next to each data point. The red lines show exponential fits
to the data, R = R0e

αEG . The values of α are shown next to
the fitted line. EF=0.26 eV.

curs at its K-point, the minimum BN bandgap ‘seen’ by
an electron at the K-point in the graphene layer occurs
for BN rotation angles of 0◦ and 60◦ when graphene’s K
point is aligned with BN’s K or K ′ points. The effective
BN bandgap seen by an electron at the K-point in the
graphene layer monotonically increases as the BN is ro-
tated from θ = 0◦, and it reaches a maximum at θ = 30◦.
In the Brillouin zone of the BN, this corresponds to the
bandgap near the M point. This monotonic increase in
the tunnel barrier with angle follows the same monotonic
trend as the increase in resistance with angle.

To analyze the relation between the effective energy
gap and resistance, we show in Fig. 3 a semi-log plot of
the resistance as a function of the effective BN band gap
(for different rotation angles) at EF =0.26 eV. For angles
greater than 4◦, the tunnel current scales exponentially
with the effective bandgap as one would expect for tun-
neling through a potential barrier. Therefore, for θ > 4◦,
we find that the dominant process affecting the tunnel
current is the change in the effective BN bandgap ‘seen’
by the electrons at the K point in graphene.

However, for small angles θ < 4◦, there is clearly a
very different trend and a different dependence of the re-
sistance on the BN rotation angle. The different depen-
dencies arise from different parallel conductance channels
that dominate at different angle regimes. To analyze the
low-angle region of the curve, we turn to the effective
continuum model.

A more detailed picture of the low-angle regime is given
in Fig. 4 which shows the resistance versus BN rotation
angle calculated with both the continuum model and the
NEGF tight-binding model for two values of EF . The
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solid lines are from the continuum model, and the tri-
angles are from the NEGF, tight-binding model. More
low-angles are included in the NEGF calculations, and
the smallest rotated angle calculated from the NEGF,
tight-binding model is 1.25◦. Both models show a non-
monotonic dependence of resistance on angle at very low
angles θ < 2.5◦. While the magnitudes differ between
the two models, the overall trends match well.

The continuum model tells us that there are three par-
allel conductance channels corresponding to the direct
and two Umklapp processes in Eqs. (21) - (24). The indi-
vidual channels dominate in different angle regimes. The
angle at which each channel dominates is primarily de-
termined by the overlap of the spectral functions in Eqs.
(22) - (24). For the direct term, Gi=j of Eq. (22), the
spectral functions always overlap since the top and bot-
tom graphene layers are aligned. For the two Umklapp
terms, the overlaps of the spectral functions are func-
tions of the angles, and the overlaps become negligible
for ~υ

√
3kDθ >> ~/τ, ǫF . Therefore, for larger angles,

θ > 4◦, the direct channel dominates, and the depen-
dence on the angle is through the matrix element which,
through HBN (k) and the effective interaction, includes
the effect of the increase in the apparent BN bandgap
with angle as described above and shown in Fig. 1(c).

The maximum overlap of the spectral functions in the
‘interband’ term of Eq. (24) occurs when ~υ

√
3kDθ =

2ǫF . This term is maximum at rotation angle θm =
2ǫF/~υ

√
3kD, and it decreases for angles greater than

or less than θm. This interband term is responsible for
the dip in resistance for θ between one to two degrees
in Fig. 4. It also explains the shift in angle with Fermi
level. As the Fermi level is increased, the local minimum
moves to larger rotation angles since the angle of maxi-
mum overlap θm is linearly proportional to ǫF .

The maximum overlap of the spectral functions in the
‘intraband’ term of Eq. (23) occurs at θ = 0. As θ in-
creases, this channel monotonically decreases with the
decrease governed by the decreasing overlap of the spec-
tral functions. Since this channel has a maximum as θ
goes to zero, it governs the initial increase in resistance
for the smallest angles. The three individual contribu-
tions to the continuum model, direct, interband, and in-
traband, are shown in Fig. 5 for the two different Fermi
levels, 0.26 eV and 0.16 eV.

While analyzing the resistance as a function of rota-
tion angle is useful for clarifying the physics, verifying the
trends shown in Fig. 4 would be very difficult experimen-
tally. Experimentally, it is far easier to fix the angle and
sweep the Fermi level of the top and bottom graphene
layers. The resulting resistances calculated both from
the NEGF, tight-binding and the continuum models for
a 1-ML BN rotation angle of 3.89◦ are shown in Fig. 6(a).

Both models show non-monotonic behavior of the resis-
tance as the Fermi level is swept between 0.5 and 0.6 eV.
To observe this feature at lower Fermi levels, a smaller
angle is required, and to observe the feature experimen-
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FIG. 4. Zero temperature coherent resistance of Gr/1L h-
BN/Gr as a function of rotation angle for Fermi energies equal
to 0.26eV (blue) and 0.16eV (red). The solid lines show the
result calculated from the continuum model, and the trian-
gles show the results from the tight-binding, NEGF calcula-
tion. The smallest commensurate rotation angle calculated
numerically is 1.25◦.
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FIG. 5. Conductance components as a function of rotation
angle for (a) EF = 0.16eV , (b) EF = 0.26eV .

tally a larger resistance is required. The larger resistance
is achieved by increasing the number of BN layers from
1 to 5. The resistance versus Fermi level calculated from
the continuum model for a 5-ML BN layer rotated by
1.50◦ is shown in Fig. 6(b). The non-monotonic feature
moves to lower energies and now occurs as the Fermi level
is swept between 0.2 and 0.3 eV. The overall magnitude
of the resistance is between 100 and 1000 Ωµm2 which
should be large enough to be ovservable, and it can be
increased by increasing the number of BN layers.
So far, we have focused on the 0-bias resistivity to elu-

cidate the physics. However, interest in this system is
driven by potential applications, and one application of
current investigation is a high-frequency oscillator that
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structure (a) calculated by both the continuum model and
the NEFG method with θ = 3.89◦, and (b) calculated by the
continuum model only with θ = 1.50◦.

exploits the negative differential resistance observed un-
der high-bias. To understand how the misorientation of
the BN layer affects the current-voltage (I-V) character-
istic of this structure, we show in Fig. 7 the NEGF, tight-
binding calculations using Eq. (8) of the I-V character-
istics for the unrotated structure and the structure with
the BN layer rotated by 21.78◦ for BN layer thicknesses
of 1 ML, 3 ML, and 5 ML. The three I-V characteris-
tics in each plot are for three different built-in potentials
∆V between the two graphene layers. The panels on
the left are for the unrotated structure while the panels
on the right are for the 21.79◦ structure. In Fig. 7(a)
and (b), it is shown that the rotation of monolayer h-BN
decreases the current by nearly 2 orders of magnitude.
This relative decrease in the tunneling current becomes
progressively greater as the number of h-BN layers is in-
creased, as shown in the other subplots. For the case of
5 h-BN layers, the tunneling current is nearly 4 orders
of magnitude smaller. As expected, this decrease in the
tunneling current and its scaling is consistent with the re-
sistance increasing with the rotation angles as shown in
Fig. 2. While the current decreases with rotation angle,
the peak-to-valley current ratio is unaffected.
For small rotation angles, it is interesting to consider

whether new qualitative features appear in the nonlinear
I-V characteristic. To answer that question, we applied
the effective continuum model to calculate I-V curves of
a structure with θ = 0.5◦. The results in Fig. 8, for
3 different values of built-in voltage ∆V , are qualita-
tively different from the I-V curves for large angle rota-
tion, since several regions of NDR appear depending on
the initial built-in potential. The first and third peaks
arise from the interband component which is maximum
at Vbias = ±~υ

√
3kDθ −∆V . The middle peak that oc-

curs at Vbias = −∆V is caused by the direct tunneling
term.
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FIG. 7. Current as a function of bias voltage for differ-
ent potential differences ∆V between the two graphene lay-
ers. (a) Graphene/1L h-BN/graphene with no rotation;
(b) graphene/1L h-BN/graphene with a 21.790 rotation an-
gle; (c) graphene/3L h-BN/graphene with no rotation; (d)
graphene/3layer h-BN/graphene with a 21.790 rotation an-
gle; (e) graphene/5L h-BN/graphene with no rotation; (f)
graphene/5layer h-BN/graphene with a 21.790 rotation an-
gle.

The model used for these calculations does not include
lattice mismatch between the graphene and the h-BN,
since that prohibits the creation of a commensurate unit
cell required for the numerical tight-binding calculations.
If we consider the lattice mismatch in the effective contin-
uum model, the size of commensurate Brillouin zone will
change from kDθ to kD

√
θ2 + δ2, where δ is the lattice

mismatch between the graphene and the h-BN. The mis-
match kD

√
θ2 + δ2 will still decrease monotonically with

a decrease in the rotation angle. Therefore, the relation
between conductance and rotation angle is qualitatively
the same as the angle is decreased. The only difference
is that in the small angle region, kD

√
θ2 + δ2 decreases

more slowly than kDθ, and it has a minimum value kDδ
when the angle is zero.

IV. CONCLUSIONS

Electron transport through a Gr / h-BN / Gr struc-
ture is examined within a tight-binding model with com-
mensurate rotation angles and within an effective con-
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FIG. 8. Current as a function of bias voltage for different
potential differences ∆V between the two graphene layers for
the 5L h-BN structure with a h-BN rotation angle of θ = 0.5◦

tinuum model. The two graphene layers are aligned,
and the h-BN layer is rotated by an angle θ with re-
spect to the graphene layers. For angles greater than 4◦,
the resistance is dominated by the change in the effec-
tive h-BN bandgap seen by an electron at the K point
of the graphene. In this large-angle regime, the effect
of rotating the BN is to increase the barrier height of
the BN tunnel barrier at the K point of the graphene.
For θ & 4◦, the resistance monotically increases with the
rotation angle, and it reaches a maximum at θ = 30◦.
As θ is increased from 0◦ to 30◦, the coherent interlayer
resistance increases by factors of 200 and 430 for mono-
layer and trilayer BN layers, respectively. For devices
that exhibit NDR under high bias, rotation of the h-BN
primarily serves to reduce the overall magnitude of the
current. It does not degrade the peak to valley current
ratios. In this large-angle regime, since the dominant
physics is that of single-barrier direct tunneling, phonon-
scattering should have negligible effect on the low-bias,
angle-dependent trends and magnitudes of the interlayer
resistances. Since NDR results from momentum conser-
vation, phonon-scattering will reduce the peak-to-valley
ratios, but this effect also exists in the unrotated struc-
ture. While we do not expect a significant dependence
of the phonon scattering on the rotation angle of the h-
BN in the large-angle regime, this is an open question for
further study.

The small-angle regime (θ . 4◦) reveals qualitatively
new features both in the low-bias interlayer resistances
and in the high-bias I-V characteristics. The new
features arise due to the opening of new conductance
channels corresponding to Umklapp processes. With the
two graphene layers aligned, Umklapp processes give
rise to two new conduction channels corresponding to
an intraband term and an interband term. The angular
and energy dependence of these terms is primarily de-
termined by the overlap of the top and bottom graphene
spectral functions that are shifted in momentum space
with respect to each other by an Umklapp lattice vector.
For a fixed rotation angle θ of the h-BN layer, both the
intraband and interband terms peak at a Fermi level

FIG. 9. Transmission coefficient T (E,k) in the first Brril-
louin at energy of 0.5 eV for Graphene/1L h-BN/Graphene
heterostructure with rotation angel: (a) 21.79◦ (b)9.43◦

εmF ≡ ~vkDθ
√
3/2. At this Fermi level, the two spectral

functions in the interband term perfectly overlap, so
that the interband term dominates. This strong peak in
the interband term results in a distinct, non-monotonic
feature in a plot of the interlayer resistance versus Fermi
energy that occurs as the Fermi level is swept through
±εmF . The qualitative trends of this non-monotonic
feature are reproduced in the tight-binding calculations
for structures with small commensurate rotation angles,
although the overall magnitude of the feature is less. The
interband term also gives rise to two extra peaks in the
nonlinear I − V characteristic on either side of the peak
resulting from the direct tunneling term. Amorim et
al.35 found that phonon scattering and incoherent scat-
tering in this low-angle regime reduces the magnitude of
the features resulting from Umklapp processes, but it
does not remove them, so that the new features in the
low-angle regime should be experimentally observable.
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Appendix A TIGHT-BINDING MODEL AND

METHOD DETAILS

The transmission coefficient over k in the first Bril-
louin zone, T (E) =

∫

1stBZ
d2k
4π2 T (E,k) was numerically

integrated on a square grid with ∆kx = ∆ky = 0.005

Å
−1

. Fig. 9 shows the momentum resolved transmission
T (E,k) in the first Brillouin zone corresponding to the
two commensurate rotation angles of 21.79◦ and 9.43◦ at
E = 0.5 eV. The transmission is centered at the K and
K’ and peaks on the isoenergy surface.
To extract a tunneling decay constant of the BN pre-
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dicted by the interlayer tight-binding parameters, we cal-
culate the resistance of 1, 3, 5, and 7 layers of h-BN for
two angles of θ = 0 and θ = 21.79◦ at EF = 0.26 eV. Fig.
10 shows the exponential increase in resistance with in-
creasing number of h-BN layers for both structures. Fit-
ting the results to an exponential function, R = R0e

κ·n,
where n is the number of h-BN layers gives values for κ of
2.6 and 3.6 for the unrotated and rotated structures, re-
spectively. These values are similar to an experimentally

extracted value of κ = 4.041.

Appendix B RESULTS OF RESISTANCE AS A

FUNCTION OF ROTATION ANGLE

θ (degrees)
Gr/1L h-BN/Gr Gr/3L h-BN/Gr

Energy gap (eV) Resistance (Ωµm2) Energy gap (eV) Resistance (Ωµm2)

0.00 4.709 0.007601 4.709 0.7972
1.25 4.726 0.03710
1.41 4.730 0.03758
1.54 4.734 0.03711
1.61 4.737 0.03521
1.70 4.740 0.03308
1.79 4.743 0.03028
1.89 4.748 0.02844 4.713 2.752
2.00 4.752 0.02954
2.13 4.758 0.03481
2.45 4.774 0.05355
2.88 4.798 0.07565 4.726 4.474
3.15 4.815 0.08741
3.48 4.838 0.09981
3.89 4.869 0.1132 4.753 5.510
4.41 4.913 0.1288 4.774 6.094
5.08 4.976 0.1481 4.807 6.977
6.01 5.075 0.1753 4.865 8.495
7.34 5.237 0.2182 4.971 11.43
9.43 5.529 0.3048 5.184 18.87
13.17 6.106 0.5371 5.653 46.48
17.90 6.813 0.9770 6.274 123.6
21.79 7.280 1.120 6.701 199.7
27.80 7.686 1.563 7.073 344.3

TABLE II. Effective BN energy gap and the coherent resis-
tances at EF=0.26 eV for different commensurate rotation
angles and two different BN thicknesses of 1ML and 3ML.
The resistances are calculated from the tight-binding, NEGF
approach.
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