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We developed a general theory that allows to predict the power factor n in the asymptotics of
the tunneling magnetoresistance (TMR), TMR ∝ Nn, in the limit of large number of the tunnel
barrier layers, N , for a magnetic tunnel junction (MTJ) system that has the so-called symmetry
spin filtering properties. Within this theory the only information required to determine n is the
knowledge of the symmetries of the wave functions of the bulk electrode and barrier materials at
the Γ-point in the in-plane surface Brillouin zone. In particular, we show that for a MTJ that has
the in-plane square symmetry only three values for the power factor are allowed: n = 0, 1, and 2 for
the asymptotics of the TMR enhanced due to the symmetry spin filtering mechanism. To verify our
theory we performed the Density Functional Theory (DFT) calculations of transmission functions
and TMR for Fe/MgO/Fe MTJ which confirm predicted values of the power factor n = 0, 1, or 2 in
specific ranges of energies (in particular, n = 1 at the Fermi energy).

PACS numbers: 73.40.Rw, 85.75.-d

I. INTRODUCTION

The theoretical prediction of the symmetry spin filter-
ing mechanism [1, 2] of enhanced TMR in Fe/MgO/Fe
MTJ and its quick experimental verification [3, 4] allowed
for giant TMR that has been used for advanced mag-
netic recording read heads and for potential, high perfor-
mance, non-volatile spin-transfer torque magnetoresistive
random-access memory (STT-MRAM). But despite con-
siderable theoretical attention to the symmetry spin fil-
tering effect, the dependence of the TMR on the number
of tunnel barrier layers, N , arising from this mechanism,
is still not fully understood and is somewhat controver-
sial [3]. Some theoretical calculations based on the den-
sity functional theory (DFT) predict that in the ideal
Fe/MgO/Fe junctions the TMR should increase very fast
with increasing N . More specifically, TMR is predicted
to increase by as much as two orders of magnitude when
N increases from 4 to 12 [1, 5]. In contrast, experimental
measurements show that TMR does not depend much on
the thickness of MgO [3, 4].
Recently Autes, Mathon and Umerski show that the

TMR of Fe/MgO/Fe MTJ at the Fermi energy, EF ,
should be proportional to N at large N [6]. The deriva-
tion of the linear, TMR ∝ N , asymptotics in [6] is based
on the expansion of the pre-exponential factor in the k-
resolved transmission functions, T (k), at small in-plane
wave vectors k, over the powers of k2:

T (k) = (A+Bk2 + Ck4 + ..) exp [−(γ + αk2)N ] (1)

(this formula will be explained in details in the next sec-
tion). The coefficient A for transmission function in the
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antiparallel configuration (APC) of the magnetic elec-
trodes was found in [6] to be zero based on the symmetry
properties of the bands of bulk Fe and MgO at k = 0,
while the coefficient B was estimated from numerical cal-
culations for the entire Fe/MgO/Fe MTJ by fitting the
transmission in APC calculated at large N (N = 15) to
the Eq. (1). In such an approach the understanding of
the conditions that could lead to zero coefficient B (C,
etc) from similar symmetry considerations as coefficient
A is still lacking (note that if both coefficients A and B
were zero in the APC then the TMR asymptotics would
become nonlinear, TMR ∝ Nn with n ≥ 2 [see next sec-
tion for details]). Therefore, such an approach does not
allow fast screening of the promising candidates for the
electrodes and/or barrier materials if one is searching for
stronger then linear TMR asymptotics, TMR ∝ Nn with
n ≥ 2.

In the present paper we developed a general theory that
allows to predict the power factor n of the TMR ∝ Nn

asymptotics for arbitrary MTJ system based on the sym-
metry of the wave functions (and spacial derivatives of
these functions) of the bulk electrode and barrier mate-
rials at k = 0. In particular, we show that for a MTJ
that has the in-plane square symmetry (C4v symmetry
group) the asymptotics of the TMR due to the symmetry
spin filtering effect has a form of TMR ∝ Nn with only
three allowed values for the power factor: n = 0, 1, and
2. All three values of n (n = 0, 1, and 2) of the asymp-
totic behavior for the exemplary Fe/MgO/Fe system have
been predicted for specific ranges of energy based on
the symmetry properties of the bulk wavefunctions of Fe
and MgO at k = 0 and confirmed by ab initio Density
Functional Theory (DFT) calculations of the transmis-
sion functions and TMR for the Fe/MgO/Fe MTJ.

The fast increase of the TMR predicted numerically
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[1, 5] for Fe/MgO/Fe MTJ is generally explained by the
contribution to the transmission function in the APC
from the interface resonance states (IRS) that exist in
the minority Fe channel in a very narrow energy window
near the Fermi energy [1, 5, 7–10]. The IRS contribu-
tion to the APC transmission is significant at small N
but decays fast when N increases that leads to super-
linear TMR behavior at small N < 10. We show that
TMR ∝ N behavior begins at about N ∼ 12 at EF ,
when the effect of the IRS wears out. For energies where
the IRS contribution is small the TMR ∝ N behavior
begins at significantly smaller N ∼ 4, see Fig. 6. (The
effect of the IRS has not been discussed in [6] where the
tight-banding approach [2] was used for numerical cal-
culations resulting from one to two order of magnitude
smaller TMR at N = 12 as compared to presented here
results and results of other DFT calculations [1, 5, 11].)

The proposed in this paper approach for analysis of
the strength of the symmetry filtering effect based on the
properties of the bulk wavefunctions of the candidate elec-
trode and barrier materials could serve as a tool for quick
material discovery search of suitable electrodes and/or
barriers in the context of emerging technologies that re-
quire high TMR. As an example of such technology that
critically depends on discovery of novel MTJs with high
TMR we mention the STT-MRAM technology (that has
a potential to become an ’universal memory’ [12]) where
the pool of candidate electrode materials includes several
hundreds of Heusler alloys, magnetic multilayers, etc.

II. ASYMPTOTICS OF THE TMR DUE TO THE
SYMMETRY SPIN FILTERING EFFECT

A. Surface transmission functions

We consider general FM/SB/FMMTJ, where the semi-
conductor barrier (SB) with N layers is sandwiched by
two ferromagnetic metal (FM) electrodes. We assume
that the MTJ has one and the same two-dimensional
(2D) translational invariance in the xy-plane for each
atomic layer of the system, so the 2D surface Brillouin
zone (SBZ) is well-defined. For sufficiently large barrier
thickness the transmission function for electrons with in-
plane wave vector k = (kx, ky) and energy E inside the
semiconductor band gap is determined by a single surviv-
ing evanescent state inside the barrier at this k and E,
ψe
k,E , that has the smallest attenuation constant, γk,E.

The transmission function in the limit N → ∞ is given
by [13]

Tσσ′(k, E) = tσkE × e−γk,EN × tσ′kE , (2)

where subindexes σ and σ′ describe the spin channel of
the left and right electrodes, correspondingly. We use
notations where σ takes two values, u and d (short for

”up” and ”down”) for majority and minority spin chan-
nel, correspondingly. Thus, Tuu and Tdd are majority-
majority and minority-minority transmission in parallel
configuration (PC) of the electrodes, and Tud and Tdu are
majority-minority and minority-majority transmission in
antiparallel configuration (APC) of the electrodes. The
coefficient tσkE in (2) is the so-called surface transmission
function (STF) defined for each electrode separately (in
the case of different electrodes) by solution of the scat-
tering problem at the electrode-barrier interface

tσkE =
∑

p

|Be/Ap|2 . (3)

Here summation is taken over all eigenstates p of the elec-
trode with given σ, k and E, Ap is the amplitude of the
eigenstate p incoming from the electrode and Be is the
corresponding amplitude of the scattering wavefunction
inside the barrier taken at the reference plane. Reference
plane is located inside the barrier at sufficient distance
from the interface where scattering wavefunctions for all
p are already indistinguishable from surviving evanescent
state ψe

k,E. Strictly speaking, with such definition of the
tσkE , N in Eq. (2) is the number of the barrier lay-
ers between reference planes corresponding to the two
electrode-barrier interfaces, but we will use total num-
ber of barrier layers, N , in Eq. (2) assuming proper re-
definition of the tσkE . In general, for different electrodes,
tσkE should also have the electrode index (left or right),
but we assume, for simplicity, that materials of the two
electrodes are the same, so the notation tσkE without
reference to the left or right electrode is used in (2).
Total transmission of the MTJ is given by the k-

integral over the 2D SBZ

Tσσ′(E) =

∫

d2kA

(2π)2
Tσσ′(k, E) =

∑

k

Tσσ′(k, E) , (4)

where A is the in-plane cross-sectional area of the device.
We emphasize two important features of Eq. (2) for the

transmission function: (i) due to the flux conservation the
same STF tσkE describes two different processes - trans-
mission from the electrode to the barrier and transmis-
sion from the barrier to the electrode, and (ii) the STF of
the two electrodes are independent from each other (elec-
trodes are decoupled). One nontrivial consequence of de-
coupling of the two electrodes and transmission through a
single channel (at given k) inside the barrier as described
by Eq. (2) is that in the limit N → ∞ transmission
function in APC can be expressed in terms of transmis-
sion functions for majority and minority electrons in PC,
namely: limN→∞ T ′

ud(E) = Tud(E), where

T ′
ud(E) =

∑

k

[Tuu(k, E)× Tdd(k, E)]1/2 . (5)

In computational studies the closeness of the T ′
ud(E) to

Tud(E) could serve as an indicator whether the asymp-
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totic limit described by Eq. (2) is already reached at
given N or not.

B. Wave functions of bulk materials at small k.

Let us assume that the attenuation constant γk,E (the
smallest attenuation constant of the barrier at given k

and E) reaches the absolute minimum, γ0,E , at k = 0
when we consider γk,E as a function of k in SBZ and
increases as

γk,E = γ0,E + αk2 (6)

for small k, with α > 0. Such behaviour of γk,E is typ-
ical for semiconductors (e.g. MgO or CaO) that have a
high-lying ∆1-symmetry small-mass valence band at the
Γ-point and, simultaneously, a low-lying ∆1-symmetry
small-mass conduction band at the Γ-point. The smaller
are the masses of these bands and the Γ − Γ band gap
between these bands, the smaller is the γ0,E [1] and, cor-
respondingly, the higher are the chances of γk,E to reach
the absolute minimum at the k = 0.
As follows from Eqs. (2) and (6), for large N the trans-

mission function (4) of the FM/SB/FM system is domi-
nated by contributions from vicinity of the k = 0 point.
Therefore, in order to estimate the STF (3), the trans-
mission functions (2) and, finally, the TMR, we need to
study the symmetry matching of the wave functions of
the bulk FM and SB at small k ∼ 0.
Let us consider a wavefunction ψk,E(r) of a bulk elec-

trode or barrier material [here r = (x, y, z)] that satisfy
the Kohn-Sham equation with fixed energy E and 2D
wave vector k = (kx, ky):

Hψk,E(r) = Eψk,E(r) , (7)

where Hamiltonian has the form

H = − ~
2

2m
∂2rr + U(r). (8)

Here U(r) is the total DFT potential of the material,
including the nuclei, Hartree, and the LDA exchange-
correlation contributions. For the FM electrode the
ψk,E(r) is the wavefunction ψp

k,E(r) of the band p along
the line (k, kz) in 3D reciprocal space with fixed 2D k

and kz = kpz chosen in such a way that the band energy
is E. For the SB the ψk,E(r) is the evanescent state ψ

e
k,E

inside the barrier that has the smallest attenuation con-
stant γk,E .
The wave function ψk,E(r) can be written as

ψk,E(r) = ei(kxx+kyy)fk,E(r) , (9)

where fk,E(r) is the periodic function with respect to
translations in the xy-plane. In the linear approximation
over small kx and ky the function fk,E(r) reads

fk,E = f0,E + kx[∂kxfk,E ]k=0 + ky[∂kyfk,E]k=0 +O(k2) .
(10)

If the Hamiltonian of the material has some point-
group symmetry in the xy-plane (with such symmetry
operations as rotations around the z-axis and/or reflec-
tions in vertical planes) the function f0,E(r) at the k = 0
point (or several such functions in the case of degener-
ate bands) will transform according to some irreducible
representation of the symmetry group. Here and below
we assume that the planar 2D point-group symmetry (in
the xy-plane) is the same for the FM and SB. As a con-
sequence, if ψe

0,E of the barrier transforms according to
some irreducible representation of the group, then the ra-
tio Be/Ap in Eq. (3) is non-zero at the k = 0 point only
for ψp

0,E of the FM that transforms according to the same
irreducible representation (in another words, the symme-
tries of the ψe

0,E and ψp
0,E functions match). In the case

of absence of the ψp
0,E that transforms with such repre-

sentation, corresponding STF and transmission will be
zero at the k = 0 point. In such a case small (but non-
zero) terms proportional to the kx and ky in the Eq. (10)
should be taken into consideration.
Let us express the functions

gx(r) ≡ [∂kxfk,E(r)]k=0 , (11)

gy(r) ≡ [∂kyfk,E(r)]k=0 (12)

in terms of the function f0,E(r) in order to understand
how these functions transform when the symmetry opera-
tions are applied. Let us consider first the gx(r) function.
By using the form of the wavefunction (9) and expression
for the Hamiltonian (8) in equation (7), removing the ex-
ponential terms ei(kxx+kyy) from both sides of resulting
equation, then taking the derivative over the kx, and, fi-
nally, putting k = 0 one can obtain following equation
for gx(r):

[H − E]gx(r) = i
~
2

m
∂xf0,E(r) . (13)

Since the Hamiltonean is invariant with respect to the
symmetry operations the solution of the Eq. (13) can be
written in the form

gx(r) = g̃x(r) +Axf0,E(r) , (14)

where g̃x(r) transforms under symmetry operations as
function ∂xf0,E(r) (or several such functions in the case of
degenerate bands) and Ax is an arbitrary constant (note
that [H−E]f0,E = 0). The term proportional to Ax leads
to small (∼ kx) re-normalization of the f0,E(r) contribu-
tion to the function fk,E(r). Therefore, constant Ax can
be found from normalization conditions for the function
fk,E(r).
Analogously, function gy(r) can be written in the form

gy(r) = g̃y(r) +Ayf0,E(r) , (15)

where g̃y(r) transforms under symmetry operations as
function ∂yf0,E(r) (or several such functions in the case
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of degenerate bands) and constant Ay can be found from
normalization conditions for the function fk,E(r). Since
small correction to the normalization of the function
fk,E(r) is not important for our purposes, we can safely
set Ax = Ay = 0.

C. Transmission for different symmetry matching
scenarios of incoming and scattering waves.

Let us consider three most common scenarios for the
symmetry matching of the incoming and scattering waves
at the FM/SB interface.
Scenario (i): The symmetry of the barrier fe

0,E(r) func-
tion matches the symmetry of at least one of the FM
electrode fp

0,E(r) functions. In such a case the ratio
of the scattering amplitude to the incoming amplitude
Be/Ap ∝ 1 in Eq. (3) and, thus, STF is

t
(i)
σkE ∝ 1 (16)

(in other words, the STF is not suppressed by any power
of small k).
Scenario (ii): The symmetry of the barrier fe

0,E(r) func-
tion does not match the symmetry of the electrode fp

0,E(r)
function for all p. But, ether (a) the symmetry of the
∂x/yf

e
0,E(r) functions matches the symmetry of at least

one of the fp
0,E(r) functions, or (b) the symmetry of the

fe
0,E(r) function matches the symmetry of at least one
of the ∂x/yf

p
0,E(r) functions. Since, as derived above,

functions [∂kx/y
fk,E(r)]k=0 transforms under symmetry

operations as ∂x/yf0,E(r), in both cases, (a) and (b), the
overlap integral 〈ψe

k,E |ψ
p
k,E〉 at the FM/SB interface be-

tween incoming and scattering waves is proportional to
the first power of k [see Eqs. (9),(10)]: 〈ψe

k,E |ψ
p
k,E〉 ∝ |k|.

Therefore, Be/Ap ∝ |k| in Eq. (3), and

t
(ii)
σkE ∝ k2 . (17)

Scenario (iii): The symmetry of the barrier fe
0,E(r)

function does not match the symmetry of the elec-
trode fp

0,E(r) function for all p. The symmetry of the
∂x/yf

e
0,E(r) functions does not match the symmetry of

the fp
0,E(r) functions for all p and the symmetry of the

fe
0,E(r) function does not match the symmetry of the
∂x/yf

p
0,E(r) functions for all p. But, the symmetry of

the ∂x/yf
e
0,E(r) matches the symmetry of the ∂x/yf

p
0,E(r)

functions for at least one p. In such a case the overlap
integral 〈ψe

k,E |ψ
p
k,E〉 is proportional to the second power

of k: 〈ψe
k,E |ψ

p
k,E〉 ∝ k2. Therefore, Be/Ap ∝ k2 in Eq.

(3), and

t
(iii)
σkE ∝ k4 . (18)

Using three scenarios (16-18) for the STFs of both left
and right electrodes, and the Eq. (6) for the attenuation

constant in Eq. (2), one can obtain the asymptotic be-
havior of the transmission functions (4) that are covered
by these scenarios:

T (E) ∝
∫

d2kk2me−(γ0,E+αk2)N ∝ e−γ0,EN

Nm+1
. (19)

Here m = 0 when both left and right electrode have sce-
nario (i) [we will denote such scenario as (i,i)]. Analo-
gously, for scenario (i,ii) m = 1, for scenarios (i,iii) and
(ii,ii) m = 2, for scenario (ii,iii) m = 3, and, finally, for
scenario (iii,iii) m = 4.

D. Symmetry of the wavefunctions at small k for the
system with planar square group symmetry.

For one of the most common planar symmetry - the
square group symmetry, C4v, all possible irreducible rep-
resentations of the wavefunctions f0,E(r) at k = 0 are
following:

• ∆1 - function f0,E(r) transforms as function x2+y2,

• ∆2 - function f0,E(r) transforms as function x2−y2,

• ∆2′ - function f0,E(r) transforms as function xy,

• ∆5 - two degenerate functions f0,E(r) transform as
functions x and y.

Since the symmetry operations of the group C4v are the
transformations (x → ±x, y → ±y) and (x → ±y,
y → ±x) the set of functions (∂xf0,E(r), ∂yf0,E(r)),
where functions f0,E(r) have one of the above symme-
try, will transform the same way as the set of functions
(x × f0,E(r), y × f0,E(r)) when these symmetry opera-
tions are applied. (We used the × multiplication sign
in order to separate the multipliers x and y from the
function f0,E(r) to avoid confusion below where instead
of f0,E(r) we use their symmetry-transformation equiv-
alents such as xy, x, y, etc.) Note that two functions
x × (x2 + y2) and y × (x2 + y2) have ∆5 symmetry, two
functions x × (x2 − y2) and y × (x2 − y2) also have ∆5

symmetry, two functions x × xy and y × xy also have
∆5 symmetry, and three functions x × x, x × y = y × x,
and y × y are the linear combinations of three functions
(x2 + y2), (x2 − y2), and xy that have ∆1, ∆2 and ∆2′

symmetry, correspondingly.
Thus, the ∝ |k| correction to the ∆1-symmetry func-

tion f0,E(r) is the function with ∆5-symmetry; the ∝ |k|
correction to the ∆2-symmetry function f0,E(r) is the
function with ∆5-symmetry; the ∝ |k| correction to the
∆2′ -symmetry function f0,E(r) is the function with ∆5-
symmetry. Finally, the ∝ |k| corrections to the double-
degenerate ∆5-symmetry functions f0,E(r) are composed
of the linear combination of the ∆1, ∆2, and ∆2′ symme-
try functions. Schematically, we can represent the above
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conclusions as follows:

∆1 (k = 0) → ∆1 + |k|∆5 +O(k2) (20)

∆2 (k = 0) → ∆2 + |k|∆5 +O(k2) (21)

∆2′(k = 0) → ∆2′+ |k|∆5 + O(k2) (22)

∆5 (k = 0) → ∆5 + |k|[∆1 +∆2 +∆2′ ] +O(k2)(23)

E. Asymptotics of the TMR in Fe/MgO/Fe MTJ.

We will use the exemplary Fe/MgO/Fe MTJ in order
to demonstrate how one can obtain the asymptotics of
the transmission functions and TMR if the symmetry of
the bulk barrier fe

0,E(r) and electrode fp
0,E(r) functions

at k = 0 are known. First, we note that Fe/MgO/Fe
MTJ has the square-group symmetry, C4v, therefore the
symmetry assignment of Eq. (20-23) can be applied for
bands with corresponding symmetry at k = 0. It is well
known [1] that the evanescent state of the MgO, fe

0,E(r),
at k = 0 has ∆1-symmetry with the attenuation constant
described by Eq. (6). The symmetry assignment of the
majority and minority bands fp

0,E(r) of Fe are shown on
Fig. 1 along the Γ-H line (k = 0).
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FIG. 1: (a) majority and (b) minority Fe bands plotted along
the Γ−H symmetry line.

Based on the symmetry assignments shown on Fig. 1
we can identify what scenario (i),(ii), or (iii) [see Eqs. (16-
18)] is realised for the STF for each spin channel at given
energy E, and therefore, assign the power factor m in Eq.
(19) to obtain asymptotics of corresponding transmission.
For majority Fe channel following scenarios are realized.

• For energies (EF−2.3eV,EF−1.0eV ) scenario (ii) is
realized: Fe has ∆5 + |k|∆1 band and MgO evanes-
cent state has ∆1+ |k|∆5 symmetry, therefore both
Fe ∆5 and MgO |k|∆5 match and also Fe |k|∆1 and
MgO ∆1 match. The ∆2 and ∆2′ bands of Fe is less
important compared to the ∆5 band since they give
higher order of |k| contribution to the STF.

• For energies (EF − 1.0eV,EF + 3.0eV ) scenario (i)
is realized: both Fe and MgO have ∆1 bands.

For minority Fe channel following scenarios are realized.

• For energies (EF −2.7eV,EF −0.4eV ) scenario (iii)
is realized: Fe has single ∆2+ |k|∆5 band and MgO
evanescent state has ∆1+|k|∆5 symmetry, therefore
the Fe |k|∆5 and MgO |k|∆5 match.

• For energies (EF − 0.4eV,EF +1.5eV ) scenario (ii)
is realized: Fe has ∆5 + |k|∆1 band.

• For energies (EF + 1.5eV,EF + 3.0eV ) scenario (i)
is realized: both Fe and MgO have ∆1 bands.

Based on these scenarios the Tuu(E) transmission has
following power factor m in Eq. (19):

• For energies (EF −2.3eV,EF −1.0eV ) m = 2 (ii,ii).

• For energies (EF − 1.0eV,EF + 3.0eV ) m = 0 (i,i).

The Tdd(E) transmission has following power factor m in
Eq. (19):

• For energies (EF−2.7eV,EF−0.4eV )m = 4 (iii,iii).

• For energies (EF −0.4eV,EF +1.5eV ) m = 2 (ii,ii).

• For energies (EF + 1.5eV,EF + 3.0eV ) m = 0 (i,i).

The Tud(E) transmission (which is equal to the Tdu(E)
transmission since both electrodes are from the same ma-
terial) has following power factor m in Eq. (19):

• For energies (EF −2.3eV,EF −1.0eV )m = 3 (ii,iii).

• For energies (EF −1.0eV,EF −0.4eV ) m = 2 (i,iii).

• For energies (EF − 0.4eV,EF +1.5eV ) m = 1 (i,ii).

• For energies (EF + 1.5eV,EF + 3.0eV ) m = 0 (i,i).

Finally, the optimistic TMR, defined by expression

TMR(E) =
TPC − TAPC

min(TPC , TAPC)
, (24)

where TPC = Tuu + Tdd, and TAPC = Tud + Tdu, has
following asymptotics:

• For energies (EF − 2.3eV,EF − 1.0eV ) TMR ∝ N .

• For energies (EF −1.0eV,EF −0.4eV ) TMR ∝ N2.

• For energies (EF − 0.4eV,EF + 1.5eV ) TMR ∝ N .

• For energies (EF + 1.5eV,EF + 3.0eV ) TMR ∝ 1.
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In general, if MTJ system has planar square group sym-
metry, the TMR due to the symmetry filtering mechanism
can only have three possible asymptotics: TMR ∝ Nn

with n = 0, 1, or 2. This follows from the fact that the
STF is the same for the electrode that does not switch
the spin direction when going from the PC to the APC,
while the STF of the electrode that switches the spin di-
rection in each of this spin states can only have one of
three possible scenarios: (i), (ii), or (iii) [see Eqs. (16-
18)]. The last statement is a consequence of the fact that
for the square-symmetry group all possible symmetry as-
signments are described by Eqs. (20-23). Therefore, the
m-factor in Eq. (19) for the transmission in PC, mPC ,
and them-factor in Eq. (19) for the transmission in APC,
mAPC , can only differ by |mAPC −mPC | = 0, 1, or 2, re-
sulting in the TMR ∝ Nn with only possible values of
n = 0, 1, or 2.
In conclusion of this section we present the expres-

sions for the k-resolved transmission functions for the
Fe/MgO/Fe MTJ in the limit of small k and large N
for the energies in the range (EF − 0.4eV,EF + 1.5eV ):

Tuu(k, E) = Auue
−(γ0,E+αk2)N (25)

Tud(k, E) = Auufud(k/|k|)k2e−(γ0,E+αk2)N (26)

Tdd(k, E) = Auuf
2
ud(k/|k|)k4e−(γ0,E+αk2)N (27)

Here Auu is a constant (for fixed energy), and fud(k/|k|),
in general, is a function of the k-direction, k/|k|. Note,
that in Eq. (27) the square of the function fud(k/|k|) is
used, as prescribed by Eq. (2) that demands the equality
Tuu(k, E)×Tdd(k, E) = T 2

ud(k, E) in the limit of large N .
The k-resolved transmission functions Tud(k, E) and

Tdd(k, E) in the limit of small k and large N for the
energies in the range (EF − 1.0eV,EF − 0.4eV ) have the
form:

Tud(k, E) = Auufud(k/|k|)k4e−(γ0,E+αk2)N (28)

Tdd(k, E) = Auuf
2
ud(k/|k|)k8e−(γ0,E+αk2)N (29)

The Tuu(k, E) for this energy range is given by Eq. (25).
In the following section we will compare these theoret-
ical expressions with calculated k-resolved transmission
functions.

F. Ab-initio calcuclations for Fe/MgO/Fe MTJ

In order to confirm the theoretical formulas derived
above we performed ab initio DFT calculations of the
transmission functions for the Fe/MgO/Fe MTJ with
N = 4, 6, 8, 10, and 12 using the TB-LMTO-ASA Green’s
function approach [14–16]. We used relaxed nuclear co-
ordinates of the Fe/MgO interface from Ref. [17].
The transmission functions Tud(E) and T ′

ud(E) are
shown on Fig 2 (a) and transmission functions Tuu(E)
are shown on Fig 2 (b) for different N . One can see that
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FIG. 2: (color online). (a) Comparison of two expressions for
the APC transmission, Tud(E) =

∑
k
Tud(k, E) (red lines),

and T ′
ud(E) =

∑
k
[Tuu(k, E) × Tdd(k, E)]1/2 (blue lines) for

the Fe/MgO/Fe MTJ with number of MgO layers N = 4,
6, 8, 10, and 12. (b) Majority-majority transmission in PC,
Tuu(E), for the Fe/MgO/Fe MTJ with different N .

Tud(E) defined by Eq. (4) and T ′
ud(E) defined by Eq.

(5) indeed are very close to each other even for N = 4.
For larger N agreement between Tud(E) and T ′

ud(E) be-
comes better and at N = 12 Tud(E) and T ′

ud(E) are
almost indistinguishable. We conclude that the asymp-
totic behaviour described by Eq. (2) is reached for the
Fe/MgO/Fe MTJ starting already with N = 4.
In Fig 3 (a) we show attenuation constant γ0,E esti-

mated from expression for Tuu(E)

Tuu(E) = A exp [−γ0,EN ]/N (30)

with N = 10 and 12:

γ0,E =
1

2
ln

(

10Tuu(E,N = 10)

12Tuu(E,N = 12)

)

(31)

In order to verify the convergence of calculated γ0,E with
respect toN we plotted the product Tuu(E)N exp [γ0,EN ]
for N = 6, 8, 10 and 12 on Fig. 3(b). As can be seen the
curves for N = 8, 10 and 12 are indistinguishable on the
figure, confirming both validity of the asymptotic formula
(30) and convergence of calculated γ0,E with respect to
N for broad range of energies. Decline of the γ0,E at
E = EF − 0.85 eV could be explained by approaching
the edge of the ∆1-symmetry majority band that occurs
at the energy slightly below E = EF − 0.85 eV (see Fig
1(a)).
The k-resolved transmission functions Tuu(k, E),

Tud(k, E), and Tdd(k, E) calculated for the Fe/MgO/Fe
MTJ with N = 10 for 6 energy points E − EF =
−0.8,−0.4, 0, 0.05, 0.4 and 0.8 eV are presented on 6 pan-
els of Fig. 4 as functions of the absolute value of the
wave-vector |k| (shown in units of 2π/a, where a is the
lattice constant of Fe). The mesh of 128× 128 divisions
of the full SBZ was used that resulted in 2145 k-points in
the irreducible wedge of the SBZ (ISBZ). (These 2145 k

points of the ISBZ were used for plotting Fig 4.) For each
transmission function the corresponding theoretical curve
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FIG. 3: (color online). (a) Attenuation constant γ0,E esti-
mated from Eq. (31). (b) Tuu(E)N exp [γ0,EN ] calculated
for N = 6, 8, 10 and 12. Curves with N = 8, 10 and 12 are
indistinguishable on the figure.

(shown by red dashed curves) that describes the small |k|
behavior of the transmission is also plotted. Theoretical
curves for Tuu(k) transmission were fitted according to
the Eq. (25) using γ0,E shown on Fig. 3 (a) and two fit-
ting constants: Auu and α. Theoretical curves for Tud(k)
transmission were fitted according to the Eq. (28) for
E − EF = −0.8 eV and according to the Eq. (26) for
other energy points with additional fitting constant fud
that corresponds to the maximum value of the function
fud(k/|k|), fud = maxk fud(k/|k|). Theoretical curves
for Tdd(k) transmission were plotted according to the Eq.
(29) for E−EF = −0.8 eV and according to the Eq. (27)
for other energy points without any additional fitting con-
stants.

One can see that theoretical curves describe the small
|k| behavior of all transmission functions rather well in a
broad range of energies, including the E−EF = −0.8 eV
energy where behavior of the Tud(k) and Tdd(k) changes
from that described by Eqs. (26-27), to that described
by Eqs. (28-29). We stress that behavior of the Tdd(k)
transmission is very well described by the corresponding
theoretical curve that was plotted without any additional
fitting - by using only the constants derived from fitting
the Tuu(k) and Tud(k) functions (which provides yet an-
other conformation of the validity of Eq. (2)).

For all six energy points theoretical curves correctly
predict small |k| behavior of the Tuu(k) function up to
|k| ∼ 0.2, where Tuu(k) is reduced by many orders of
magnitude from its maximum. Theoretical curves for
Tud(k) and Tdd(k) functions start to deviate from calcu-
lated transmissions at |k| ∼ 0.1, where the small |k| ap-
proximation becomes invalid. The theoretical curves cor-
rectly describe the local maximum of the Tud(k) at small
k for all considered energy points except E −EF = −0.4
eV energy which is a transitional point where the ∆5

minority band disappears (see Fig 5 (c)). Due to corre-
sponding Van Hove singularity in the minority Fe density
of states (DOS) at this energy the maximum of the Tud(k)
is the largest for E−EF = −0.4 eV as compared to max-
ima of Tud(k) for another five energy points [which leads
to the smallest TMR atN = 10 compared to other energy
points, see Fig. 5 and Fig. 6].
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FIG. 4: (color online). Transmission functions Tuu(k, E)
(green dots), Tud(k, E) (cyan dots), and Tdd(k, E) (blue dots)
shown for the Fe/MgO/Fe MTJ with N = 10 for 6 energies
E−EF = −0.8,−0.4, 0, 0.05, 0.4 and 0.8 eV as function of the
absolute value of the wave-vector |k| (shown in units of 2π/a).
Red dashed curves are theoretical curves that describe be-
haviour of the transmission functions at small |k|. Theoretical
curves were plotted using Eqs. (25,28-29) for E −EF = −0.8
eV and Eqs. (25-27) for all other energy points (see text for
details).

The global maximum of the function Tud(k) does not
coincide with the local maximum described by the theo-
retical curves also for two other energy points: E−EF =
−0.8 eV and E = EF . For E − EF = −0.8 eV the small
|k| region is strongly suppressed by the |k|4 factor (see
Eq. 28), so Tud(k) near the M point (M point on Fig. 4
corresponds to largest |k| = 1/

√
2) is larger compared to

Tud(k) near |k| = 0. At sufficiently large N the contribu-
tion from |k| = 0 region will eventually become dominant,
but this asymptotic has not been reached yet at N = 10
for E − EF = −0.8 eV.
The global maximum of the Tud(k) at the E = EF

energy point reached at |k| ∼ 0.15 is not described by
Eq. (26) and corresponds to the interface resonance states
that exist in a narrow energy window near EF [1, 5, 7–
10]. The IRS are very sensitive to small changes of the
energy and, as can be seen on Fig 4, the peak in Tud(k)
associated with IRS disappears already at E−EF = 0.05
eV. The IRS contribution to the APC transmission can
be seen as a narrow peak on Fig. 2(a) with maximum
at E − EF = −0.009 eV and width ∼ 0.02 eV (at N =
10), and, also, as a narrow dip in the TMR, on Fig. 5.
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We note that the energy position of the IRS states is
very sensitive to the details of the Fe/MgO interface and
depends on the DFT functional used for relaxation of the
interface structure [9]. In addition, recent beyond-DFT
QSGW calculations show that the IRS-induced peak in
the minority DOS is shifted from E = EF (as predicted
by DFT) to E = EF +0.12 eV [10], which is in agreement
with experimental measurements [18].
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FIG. 5: (color online). Tuu(E)/(N × Tud(E)) shown as func-
tion of the energy for N = 4, 6, 8, 10 and 12.

Figure 5 shows Tuu(E)/(N × Tud(E)) as a function of
the energy for N = 4, 6, 8, 10 and 12. It is seen that for
all considered N functions Tuu(E)/(N×Tud(E)) are very
close to each other in the energy range E > EF +0.4 eV,
thus confirming that linear with N asymptotic behavior
of the TMR resulting from the symmetry filtering effect
is established in Fe/MgO/Fe MTJ starting already with
N = 4 for E > EF + 0.4 eV. Established linear asymp-
totical behavior is also seen on Fig. 6(b) where TMR is
plotted as function of N for several energy points with
E > EF + 0.4 eV.
For energies between, approximately, EF − 0.2 eV and

EF +0.2 eV the asymptotic behavior is reached at larger
N due to two factors: (i) contribution of the IRS to the
Tud(E), and (ii) generally small h(k/|k|, E) multiplier in
the ∝ k2 term of the minority STF at small |k|, tdkE =
k2h(k/|k|, E), in this energy window. Smaller h(k/|k|, E)
for E between EF−0.2 eV andEF+0.2 eV as compared to
h(k/|k|, E) at E > EF +0.4 eV leads to increased relative
contribution to the Tud(E) from parts of the SBZ other
then |k| ∼ 0 [although the contribution of the |k| ∼ 0
region to Tud(E) still increases with increasedN ] and thus
larger N where linear asymptotic behavior, TMR ∝ N ,
is established.
As seen on Fig 5 and also on Fig 2(a), the width of the

IRS peak reduces with increased N due to fast decaying
of the IRS states (with |k| away from the |k| ∼ 0 region)
inside the barrier with attenuation constant larger then

γ0,E . As a result, curves with N = 10 and 12 shown
on Fig 5 are very close to each other for the whole range
E > EF −0.4 eV, except a small region with width ∼ 0.02
eV near EF where the contribution of some IRS states
(states that have |k| ∼ 0 which decays with γ0,E) to the
Tud(E) still survives.

The effect of small h(k/|k|, E) is seen on Fig. 5 as a
broad peak of the Tuu(E)/(N × Tud(E)) functions for
E between EF − 0.2 eV and EF + 0.2 eV. The fact
that minority STF tdkE = k2h(k/|k|, E) at |k| ∼ 0 is
smaller for E between EF − 0.2 eV and EF + 0.2 eV
compared to that outside of this energy window can also
be seen by comparing the k-resolved transmission Tud(k)
on Fig. 4 for E − EF = 0 and 0.05 eV with that for
E−EF = −0.4, 0.4 and 0.8 eV. [Note that majority STF
tukE does not change much in the broad energy range
E > EF − 0.4 eV, as can be concluded from comparing
Tuu(k) on panels corresponding to different energy points
on Fig 4 and the smooth behavior of the Tuu(E) shown on
Fig 2(b) and Fig 3(b).] Small STF of minority electrons
for energies between EF −0.2 eV and EF +0.2 eV results
in larger values of TMR for N > 6 in this energy window
(see Fig. 6) as compared to the TMR outside of this win-
dow, but within the broader window E > EF − 0.4 eV
where ∆5 minority Fe state still exists. Therefore, we can
conclude that it is the combination of the symmetry fil-
tering effect and small multiplier for the ∝ k2 term in the
minority STF, h(k/|k|, E) at the Fe/MgO interface that
is responsible for huge values of the TMR > 10, 000%
predicted for Fe/MgO/Fe MTJ at E = EF for N > 8.
Although large TMR has been predicted for Fe/MgO/Fe
MTJ in many previous works [1, 2, 5–11], it has been as-
signed to the symmetry spin filtering effect alone and the
contribution of the energy-dependant interface scattering
effects to the enhanced TMR values has not been dis-
cussed. The reason why the h(k/|k|, E) function is small
near EF is yet to be determined.

In the energy window from EF −1.0 eV to EF −0.4 eV
there is no ∆5-symmetry state along the Γ−H line in the
minority Fe channel (see Fig 1), so TMR ∝ N asymp-
totic behavior changes to the TMR ∝ N2 asymptotic
behavior (see Fig. 5 and Fig. 6(a,c)). The maximum of
Tuu(E)/(N ×Tud(E)) occurs at E = EF − 0.85 eV where
Tud(E) is small due to the |k|4 factor in Tud(k), while
Tuu(k) is enhanced due to the Van Hove singularity at the
edge of the ∆1 majority Fe band [see Fig 1 and Fig 2(b)].
In the energy window from EF − 2.3 eV to EF − 1.0 eV
the TMR asymptotics return to the TMR ∝ N behavior,
as predicted in previous section and as confirmed by con-
vergence of the function Tuu(E)/(N × Tud(E)) shown on
Fig. 5 at E < EF − 1.0 eV to a N -independent function
of E at large N .

Calculated TMR is shown as function of N on Fig 6
(a) for 6 energy points with E 6 EF + 0.2 eV and on
Fig 6 (b) for 5 energy points with E > EF + 0.4 eV.
Fig 6 (c) shows TMR for E = EF − 0.4 eV [in a scale
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FIG. 6: (color online). Calculated TMR shown as function of
N for (a) 6 energy points with E 6 EF + 0.2 eV and (b) 5
energy points with E > EF+0.4 eV. (c) TMR for E = EF−0.4

eV (shown on larger scale) and TMR1/2 for E − EF = −0.8
and −0.6 eV.

larger then that of Fig 6 (a)] and TMR1/2 [to identify
the N2 behaviour] for E −EF = −0.8 and −0.6 eV. The
TMR shown on Fig 6 is calculated using the definition
TMR = [Tuu−2Tud]/(2Tud) that neglects the Tdd contri-
bution to the transmission in PC. Such definition is used
since, in general, Tdd is much smaller than Tuu except in
the case of small N where, at energies near EF , the IRS
contribution to Tdd is significant and Tdd becomes com-
parable with (or even larger then) Tuu. As was noted in
[5] the contribution of IRS to Tdd at small N is signifi-
cant due to the energy matching of the surface resonances
at the left and right Fe/MgO surfaces that occurs ”only
for ideal, symmetric junctions, and only at zero bias”.
Slight non-ideality in any of the electrode or bias voltage
as small as 0.01 V is sufficient to destroy this resonance
matching [5]. Therefore we neglect such contributions.

The TMR curves shown on Fig 6 have linear with
N asymptotic behaviour for all energy points except
E − EF = −0.8,−0.6 and 0 eV. For energy points with
E > EF + 0.4 eV linear with N behavior starts already
with N = 4. For E−EF = −0.4 eV linear behavior starts
somewhat later, at N = 8 due to approaching band edge
of Fe ∆5 minority band (see Fig. 1(b)) and corresponding
reduction of the k integration range where the ∆5 bands
still exist (see fast drop of the Tud(k, E) at |k| ∼ 0.08
at this energy shown on Fig 4). For E − EF = −0.2
and 0.2 eV linear with N behavior begins also somewhat
later, at N = 8, due to generally small STF tdkE at
|k| ∼ 0 for energies between EF − 0.2eV and EF + 0.2
eV and, therefore, enhanced weight of the contributions
from other then |k| ∼ 0 parts of the SBZ at smaller N .

For E = EF the linear asymptotic regime is not estab-
lished yet even at N = 12 due to the narrow IRS-related
peak in Tud(E). On the other hand, as seen on Fig 5,
linear asymptotic is established already for N = 10 for
energies just 0.1 eV smaller or larger then EF . We note
that in real experiment the contribution of the IRS to the
transmission functions is suppressed due to the interface
roughness.

As can be concluded from the linear behavior of the

TMR1/2 as function of N shown on Fig 6 (c) for the en-
ergyE−EF = −0.6 eV, the asymptotic behavior TMR ∝
N2 starts already with N = 6. For E − EF = −0.8 eV
the asymptotic behavior TMR ∝ N2 (or TMR1/2 ∝ N)
begins somewhat later, at N = 8, due to enhanced weight
of the contributions from other than |k| ∼ 0 parts of the
SBZ at smaller N , as we noted in discussion of the Fig 4.

CONCLUSIONS

In conclusion, we derived the general expression for the
∝ k contributions (where k is the wave vector in 2D
SBZ) to the wave functions of bulk materials in terms
of the wave functions at k = 0 that allows to identify
the symmetry properties of such ∝ k contributions. In
particular, for a planar square group symmetry, C4v, we
derived the irreducible symmetry representations of the
∝ k terms that correspond to all possible symmetries (ir-
reducible representations) of the wavefunctions at k = 0.
We derived the ∝ exp [−γ0,EN ]/Nm+1 asymptotics of
the transmission functions at large N for the general
FN/SB/FM MTJ that has symmetry filtering properties
and identified power factor m for several most common
scenarios of the symmetry matching of the wave func-
tions at both FM/SB interfaces. We show that for a
MTJ system that has planar square group symmetry, C4v,
the TMR due to the symmetry filtering mechanism can
only have three possible asymptotics: TMR ∝ Nn with
n = 0, 1, or 2.
Based on the symmetry properties of bulk Fe and MgO

at k = 0 we predicted the asymptotics of the transmission
functions and TMR for the Fe/MgO/Fe MTJ. In particu-
lar, we predicted TMR ∝ N for energies from EF−0.4 eV
to EF +1.5 eV and from EF −2.3 eV to EF −1.0 eV, and
TMR ∝ N2 for energies from EF −1.0 eV to EF −0.4 eV.
Ab initio calculations performed for the Fe/MgO/Fe MTJ
confirm these theoretical predictions in a broad range of
energies and N .
Large TMR obtained for the Fe/MgO/Fe MTJ at ener-

gies near EF (TMR > 10, 000% for N > 8) is attributed
to the combination of the symmetry spin filtering effect
and small multiplier for the ∝ k2 term in the minority
surface transmission function, h(k/|k|, E), that leads to
additional enhancement factor of the order of ∼ 20 for
the TMR at the energy near EF compared to that at
E > EF + 0.4 eV or E ∼ EF − 0.4 eV (see Fig. 5). To
the best of our knowledge the effect of small h(k/|k|, E)
(strong scattering of minority Fe electrons at the Fe/MgO
interface at energies near EF ) has not been discussed in
the literature yet.
Super-linear behavior of TMR at energies near EF ob-

tained in this and previous theoretical works [1, 5] at
N ≤ 12 is associated with contribution of the interfacial
resonance states (quickly decaying with N) to the APC
transmission. In real experiment the IRS contribution
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is suppressed due to surface roughness, thus providing a
natural explanation as to why no strong dependance of
the TMR on N has been found experimentally. We note
also that the overlap integral at the Fe/MgO interface
between Fe minority eigenstates and the ∆1-symmetry
MgO eigenstate is proportional to |k| at small k only be-
cause of mismatching symmetry of these eigenfunctions
at k = 0. Therefore, surface roughness and/or interface
chemical disorder that breaks the symmetry of the wave
functions at the interface will inevitably lead to non-zero
value of the the overlap integral at k = 0 and therefore to
saturation of the TMR at large N , which is observed ex-
perimentally [3, 4]. In addition, a non ideal surface (due
to interface chemical disorder or steps in surface layers)
induces scattering of |k| > 0 Fe minority states into the
|k| = 0 MgO barrier eigenstate that also leads to the
saturation of the TMR at large N [6, 19].
The method for prediction of the strength of the sym-

metry filtering effect (asymptotics of the TMR) suggested
in present paper is based on simple analysis of the band
structure of the bulk electrode and barrier materials at
k = 0. Therefore, such method could be used as a tool
for quick material discovery search among vast number
of possible candidate electrode (eg Heusler alloys or mag-
netic multilayers) and/or barrier materials for suitable
MTJs in the context of emerging technologies (such as
STT-MRARM technology) that require high TMR.
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