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The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics
and its applications. In small metal nanostructures, the dominant mechanism of plasmon decay
is size-dependent Landau damping. We performed quantum-mechanical calculations of Landau
damping for the bright surface plasmon mode in a metal nanoshell with dielectric core. In contrast
to the conventional model based on the electron surface scattering, we found that the damping rate
decreases as the nanoshell thickness is reduced. The origin of this behavior is traced to the spatial
distribution of plasmon local field in the metal shell. We also found that, due to the interference
of electron scattering amplitudes from the two nanoshell metal surfaces, the damping rate exhibits
pronounced quantum beats with changing shell thickness.

I. INTRODUCTION

Lifetime of localized surface plasmons (SP) in metal
nanostructures is one of fundamental problems in plas-
monics that has been continuously addressed for about
50 years1–5. The importance of this issue stems from
one of the major objectives of plasmonics – generation
of extremely strong local fields at the nanoscale. The
range of physical phenomena and applications related
to this goal cuts across physics, chemistry, biology, and
device applications. A small sample of examples in-
cludes plasmon-enhanced spectroscopies of molecules or
semicinductor quantum dots near metal nanostructures,
such as surface-enhanced Raman scattering (SERS)6,
plasmon-enhanced fluorescence7–10, plasmon-assisted flu-
orescence resonance energy transfer (FRET)11–14 and
plasmonic laser (spaser)15–20. High Ohmic losses in bulk
metal due to strong electron-phonon interactions impose
limitation on the quantum yield of metal-based plas-
monic devices, which can, to some extent, be remedied
by reducing the metal component size.
However, at the lengthscale below ∼ 10 nm, new lim-

itations on the SP lifetime and, consequently, on quan-
tum yield arise due to the quantum-size effects1. Among
those, the most important is the Landau damping (LD)
of SP – decay of SP into the Fermi sea electron-hole
pair21–31. This process has been recently suggested as
an efficient way of hot carriers excitation in plasmon-
based photovoltaic devices32–42. Starting with the pi-
oneering work of Kawabata and Kubo43 for a spheri-
cal nanoparticle (NP), quantum-mechanical calculations
of LD rate were performed, using random phase ap-
proximation (RPA)43–50 or density functional theory
(DFT)51–58 methods, for several NP shapes. Excitation
of an electron-hole pair with large optical frequency re-
quires momentum relaxation to satisfy the energy and
momentum conservation laws which, in small systems,
can take place via the electron surface scattering. Based
on this picture, it was suggested59–63 that the SP LD rate
in any small system should have the form

γs = A
vF
L
, (1)

where vF is the electron Fermi velocity (hereafter we
set ~ = 1) and L is the effective mean free path of
ballistic electrons confined in a hard-wall potential well,
while the phenomenological constant A, measured in the
range 0.3− 1.51, accounts for surface potential, electron
spillover, and dielectric environment effects. Note that,
for nonspherical NPs, the SP damping by interband ex-
citations can complicate the LD size dependence. For
example, absorption spectra for gold nanorods22,27 and
nanoshells23,24 show overall narrowing of the SP reso-
nance that is redshifted away from the interband transi-
tions onset. At the same time, recent systematic stud-
ies of scattering spectra of single silver nanoprisms29,
gold nanorods30, and gold nanodisks31 revealed signifi-
cant discrepancies with Eq. (1), while no size-dependence
was detected for the SP resonance width of single gold
nanoshells26, implying that LD is shunted by the bulk
SP damping even for relatively thin shells.

There is also a physical argument that renders Eq. (1)
invalid for nanostructures of general shape. Indeed, the
rate of electron-pair excitation by the SP local field must
be sensitive to the field distribution in the NP. Note that
for a solid sphere, the dipole SP electric field in the NP is
uniform and size independent, which is the reason Eq. (1)
holds well for spherical NPs in a very wide size range1.
However, in general case, the local field distribution de-
pends strongly on NP size or shape, so that the simple
picture implied by Eq. (1) fails. Below we demonstrate
that the effect of field distribution leads to a drastically
different size and shape dependence of the LD decay rate
in a nanostructure than that implied by Eq. (1).

In this paper, we present a quantum-mechanical cal-
culation of the LD rate for bright SP modes in a metal
nanoshell (NS) with a dielectric core. We find that, with
decreasing NS thickness d, the LD rate decreases as well,
in sharp contrast to the surface scattering model59–63

predicting an increase of Γ as the effective mean free
path is reduced. Furthermore, for small overall NS sizes,
the SP LD rate exhibits quantum beats as a function of
shell thickness caused by the interference between elec-
tron scattering amplitudes from the inner and outer NS
boundaries.
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The paper is organized as follows. In Sec. II we out-
line our approach and present a formal expression for the
LD rate in terms of the SP eigenmodes. In Sec. III we
describe the plasmon eigenmodes in metal NS with di-
electric core and evaluate the NS internal energy. In Sec.
IV, we evaluate the power dissipated through electron-
hole excitation by the SP eigenmodes. The calculated
LD rates are discussed in Sec. V, and Sec. VI concludes
the paper.

II. SURFACE PLASMON LANDAU DAMPING

RATE IN COMPOSITE METAL-DIELECTRIC

NANOSTRUCTURES

In this section we outline our approach for calcula-
tions of the plasmon damping rate in a composite metal-
dielectric structure embedded in a dielectric medium. We
assume that the structure is characterized by dielectric
function of the form ε(ω, r) = ε′(ω, r)+iε′′(ω, r) and the
retardation effects are unimportant. In the quasistatic
case, the plasmon eigenmodes, labeled by n here, are de-
termined by the Gauss’s law

∇ · [ε′(ωn, r)En] = 0, (2)

where ωn is the eigenfrequency, En = −∇Φn is the mode
local field, and Φn is the potential. In the following we
assume that only the metal dielectric function εm(ω) =
ε′m(ω) + iε′′m(ω) is complex and dispersive. The decay
rate of a plasmon mode is given by64

Γn = Qn/Un, (3)

where Un is the mode energy65,

Un =

∫

dV

16π

∂(ωnε
′)

∂ωn
|En|2 =

ωn

16π

∂ε′m
∂ωn

∫

dVm|En|2, (4)

and Qn is the mode dissipated power

Qn =
ωn

2
Im

∫

dV E
∗

n ·Pn, (5)

where Pn is the polarization vector (Vm stands for the
metal volume). In the local case, i.e., Pn = En(ε−1)/4π,
Q is given by the usual expression65

Qn =
ωnε

′′
m

8π

∫

dVm|En|2, (6)

which, together with the mode energy (4), yields the
standard plasmon damping rate66,

Γn = 2ε′′m

(

∂ε′m
∂ωn

)−1

. (7)

For the Drude form of metal dielectric function, εm = εi−
ω2
p/ω(ω + iγ), where εi is a weakly-dispersive interband

contribution, ωp is the bulk plasmon frequency and γ is
the scattering rate, one obtains γn = γ for all modes.

The surface contribution Qs
n originates from the gen-

eration of electron-hole pairs by the plasmon local field
near metal-dielectric interfaces, and can be included in
Eq. (5) by relating the polarization vector Pn(r) to the
microscopic electron polarization operator P (ω; r, r′) via
the induced charge density: ρ(r) =

∫

dr′P (r, r′)Φ(r′) =
−∇ ·P(r)64. Integrating Eq. (5) by parts, we obtain

Qs
n =

ωn

2
Im

∫

dV dV ′Φ∗

n(r)P (ωn; r, r
′)Φn(r

′). (8)

In the first-order, Qs
n is obtained within RPA as67

Qs
n = πωn

∑

αα′

|〈α′|Φn|α〉|2δ(ǫα − ǫα′ + ωn), (9)

where 〈α′|Φn|α〉 =
∫

dVmψ
∗
α′Φnψα is the transition ma-

trix element between electron state ψα with energy ǫα
below the Fermi level EF and electron state ψα′ with en-
ergy ǫα′ above the Fermi level under the perturbation Φn

(factor 2 due to the spin degeneracy is included). Note
that often in the literature, the plasmon surface-assisted
decay rate Γs

n is identified with the first-order transition
probability rate, similar to Eq. (9) (up to the factor
ωn/2); it must be emphasized that, in a system with
dispersive dielectric function, the accurate expression is
Γs
n = Qs

n/Un
64. In the rest of this paper, this expression

will be used to calculate the SP damping rate in a metal
NS.

III. PLASMON MODES IN METAL

NANOSHELLS WITH DIELECTRIC CORE

Here we collect the relevant formulas for plasmonic
eigenstates in a spherical NS with inner and outer radii
R1 and R2, respectively, and core dielectric constant εc,
in a medium with dielectric constant εd (see inset in Fig.
1). In the quasistatic limit, the plasmonic eigenfunctions

in each region have the form ΦLM (r) = Φ
(i)
L (r)YLM (r̂),

where r and r̂ are the magnitude and orientation of
the radius vector with the origin at NS center, i =
(c,m, d) denotes core, metal and outside dielectric re-
gions, respectively, and YLM (r̂) are spherical harmon-
ics. In each region, the eigenfunctions are superposi-
tions of two independent solutions of Laplace equation
in spherical coordinates, rLYLM (r̂) and r−L−1YLM (r̂).
The equation for eigenvalues is obtained by imposing
standard boundary conditions on the radial part of po-

tentials, Φ
(i)
L (r), and radial component of electric field,

E
(i)
L (r) = −∂Φ(i)

L (r)/∂r, as

ε̃cmε̃md + L(L+ 1)εcmεmdκ
2L+1 = 0, (10)

where κ = R1/R2 is the NS aspect ratio, and we denoted
εαβ = ε′α − ε′β and ε̃αβ = Lε′α + (L+ 1)ε′β . The plasmon

frequencies are obtained by solving Eq. (10) for the real
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FIG. 1. Frequency of bright dipole plasmon mode in gold NS
with various core and outside dielectrics is plotted vs. NS as-
pect ratio. Inset: Electric field distribution for SiO2/Au/H2O
NS with aspect ratio R1/R2 = 0.7.

part of metal dielectric function,

ε′m(ωL) = −µL

2
±
√

µ2
L

4
− εcεd,

µL =
(2L+ 1)

L(L+ 1)

ε̃cd
(1− κ2L+1)

− εc − εd, (11)

where alternating (±) sign correspond to bright and dark
plasmon modes, respectively. The bright plasmon spec-
trum matches that of a solid NP plasmon in the κ = 0
limit: ε̃md = Lε′m+(L+1)εd = 0. The higher frequency
dark plasmon mode couples weakly to the external fields
and will not be considered here.

In Fig. 1, we show the dependence of bright plasmon
mode frequency ω1 (for L = 1) on aspect ratio κ = R1/R2

of Au NS with several choices of core and outside di-
electrics. In all numerical calculations, the experimental
dielectric function for gold as well as for core and outside
dielectrics were used68. With decreasing shell thickness,
after a prolonged plateau for κ up to approximately 0.5-
0.7 (depending on dielectric content), the frequency de-
velops a redshift. The inset shows electric field distribu-
tion for the dipole plasmon mode oscillating along z-axis
in a NS with κ = 0.7. Note that, in a thin NS, the electric
field of bright plasmon is mainly concentrated outside of
the metal shell, in contrast to the field distribution in a
solid metal NP.

The normalized (dimensionless) radial eigenfunctions
ΦL(r) in core (r < R1), shell (R1 < r < R2), and outer

dielectric (r > R2) regions have the form

Φ
(c)
L (r) = (2L+ 1)

ε′mκ
L

ε̃cm

(

r

R1

)L

, (12)

Φ
(m)
L (r) = κL

(

r

R1

)L

+
1

L+ 1

ǫ̃md

ǫmd

(

R2

r

)L+1

, (13)

Φ
(d)
L (r) =

2L+ 1

L+ 1

ε′m
εmd

(

R2

r

)L+1

, (14)

and are continuous at the metal-dielectric interfaces,

Φ1L ≡ Φ
(m)
L (R1) = (2L+ 1)

ε′mκ
L

ε̃cm
, (15)

Φ2L ≡ Φ
(m)
L (R2) =

2L+ 1

L+ 1

ε′m
εmd

. (16)

The radial electric fields satisfy the standard boundary

conditions, i.e., εαE
(α)
L (r) is continuous, and take the

following values at the interfaces (on metal side)

E1L ≡ E
(m)
L (R1) = − L

R1

εc
ε′m

Φ1L,

E2L ≡ E
(m)
L (R2) =

L+ 1

R2

εd
ε′m

Φ2L, (17)

while their ratio at the interfaces is given by

qL = E1L/E2L = −LκL−1 εmdεc
ε̃cmεd

. (18)

Note that the electric field orientations at the inner and
outer interfaces (on the metal side) are opposite.

Using the above eigenfunctions, the plasmon mode en-
ergy can be straightforwardly calculated from Eq. (4).
Since the eigenfunctions are harmonic functions inside
each region, the integral in Eq. (4) reduces to the bound-
ary terms, and, using the relations (17) between fields
and potentials at the interface, we obtain

UL =
|ε′m|ωL

16π

∂ε′m
∂ωL

[

R3
1

Lǫc
E2

1L +
R3

2

(L + 1)ǫd
E2

2L

]

. (19)

The aspect ratio dependence of the bright dipole plas-
mon energy U1 normalized to solid NP plasmon energy
Unp
1 with the same overall size is plotted in Fig. 2. The

NS mode energy depends strongly on core and outside di-
electrics, but is largely comparable to that for a solid NP.
This is due to a somewhat similar distribution of the sur-
face charges for bright NS plasmon and solid NP plasmon
modes: in both cases, the opposite charges are located at
different hemispheres so the energy is proportional to the
core-shell particle volume. In contrast, for dark modes
(not shown here), the opposite charges are located at in-
ner and outer boundaries, so the energy vanishes as the
shell thickness decreases.
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FIG. 2. Normalized energy of bright dipole plasmon modes
in gold NS with various core and outside dielectrics is plotted
vs. NS aspect ratio.

IV. POWER DISSIPATED BY PLASMON

MODES IN NANOSHELLS

We now turn to calculation of dissipated power Eq.
(9) (we drop superscript s in the following). We repre-
sent NS confining potential as three-dimensional quan-
tum well with hard boundaries at R1 and R2 and am-
plitude V0: V (r) = V0θ(r − R1)θ(R2 − r). The role of
realistic surface potential and nonlocal effects will be dis-
cussed later. The electron wave functions have the form
ψnl(r)Ylm(r), where n, l andm and electron radial, angu-
lar momentum and magnetic numbers, respectively. Due
to spherical symmetry, the angular part factorizes out
and Eq. (9) takes the form

QL = πωL

∑

nn′ll′

aLll′ |ML
nl,n′l′ |2δ(ǫnl − ǫn′l′ + ωL), (20)

where ML
nl,n′l′ = 〈nl|ΦL|n′l′〉 is radial transition matrix

element and

aLll′ =
1

2L+ 1

∑

Mmm′

∣

∣

∣

∣

∫

dΩYLMY
∗

lmYl′m′

∣

∣

∣

∣

2

(21)

is the angular contribution. The latter is non-zero only
for l = l′ ± L, and for typical l, l′ ≫ L, can be approxi-
mated as aLll′ ≈ δll′ l/2π.
The matrix element 〈α|ΦLM |α′〉 in Eq. (9) is dom-

inated by the surface contribution, which can be ob-
tained by first commuting twice the plasmon potential
ΦLM with the Hamiltonian,

〈α|ΦLM |α′〉 = 1

ω2
L

〈α [H [H,ΦLM ]] |α′〉

≈ 1

mω2
L

〈α|∇ΦLM · ∇V |α′〉, (22)

which, after separating out the angular part, leads to the

following expression for the radial matrix element,

ML
nl,n′l′ =

V0
mω2

L

[

ψnl(R1)ψn′l′(R1)EL(R1)

−ψnl(R2)ψn′l′(R2)EL(R2)
]

. (23)

Then, for infinitely high potential barrier (V0 → ∞),
matching the wave-functions across the well boundaries
gives

√
2mV0ψnl(Ri) ≈ −ψ′

nl(Ri) (here prime stands for
the derivative), and the matrix element takes the form

ML
nl,n′l′ =

1

2m2ω2
L

[

ψ′

nl(R1)ψ
′

n′l′(R1)E1L

−ψ′

nl(R2)ψ
′

n′l′(R2)E2L

]

. (24)

The first and second terms in the r.h.s. describe excita-
tion, by the plasmon electric field, of a Fermi sea electron-
hole pair accompanied by momentum transfer to the in-
ner and outer boundaries, respectively. Correspondingly,
QL can be decomposed as QL = Q11

L +Q22
L −2Q12

L , where

Qij
L =

e2

8m4ω3
L

E1LE2L (25)

×
∑

lnn′

ψ′

nl(Ri)ψ
′

n′l(Ri)ψ
′

nl(Rj)ψ
′

n′l(Rj)δ(ǫnl − ǫn′l + ωL),

and we used that aLll′ ≈ δll′ l/2π.
Consider first the inner surface contribution, Q11

L . For
typical electron energies ǫnl ∼ EF , we can adopt semi-
classical approximation for the electron wave-functions:

ψnl(r) =

√

4m

plτl
sin

∫ R2

r

pldr, pl =

√

2mǫ− (l + 1/2)2

r2
,

(26)
where τl(ǫ) is the period of classical motion between two
turning points. In this case, we find

ψ′

nl(R1) = −
√

4mpl(R1)/τl. (27)

Since the plasmon energy ωL is much larger than the
spacing ǫ0 = vF /d between the energy levels with adja-
cent n (at fixed l) in a spherical well, the sums in Eq. (25)
can be replaced by the integrals,

∑

n →
∫

dǫρl(ǫ) (with
ǫ < EF , ǫ

′ > EF ), where ρl(ǫ) = ∂n/∂ǫnl is the par-
tial density of states related to the classical period as
ρl = τl/2π (see Appendix). The result reads

Q11
L =

E2
1L

2π2m2ω3
L

∑

l

l

∫ EF

EF−ωL

dǫpl(ǫ, R1)pl(ǫ + ωL, R1).

(28)
Note that ρl cancels out, i.e., the level spacing disappears
from the result. In the energy integral, the integration
variable is first shifted as ǫ → EF + ǫ − ωL/2, where
ǫ now changes in the interval (−ωL/2, ωL/2), and then
rescaled to x = ǫ/ωL. The sum over l is replaced by
the integral restricted by maximal value l ∼ pFR1 that
is determined by the condition pl(ǫ, R1) ≥ 0. After the
change of variables to s = l2/(pFR1)

2, it contributes a
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factor proportional to the inner surface area. The result
reads

Q11
L =

E2
FR

2
1

2π2ω2
L

E2
1L g (ω/EF ) , (29)

where g(ξ) = 2
∫ 1/2

−1/2 dx
∫

dsf(ξ, x, s) with f(ξ, x, s) =

[(1 + ξx− s)2 − ξ2/4]1/2, is dimensionless function nor-
malized to g(0) = 1.
Turning to the outer surface term, Q22

L , the main con-
tribution into the r.h.s. of Eq. (25) comes from the terms
with pl(ǫ, R2) ≥ 0 (otherwise ψnl(R2) are exponentially
small). In this case, we have

ψ′

nl(R2) = −(−1)n
√

4mpl(R2)/τl, (30)

where the sign factor (−1)n accounts for the parity of
electron wave-function with n− 1 nodes between R1 and
R2. The rest of the calculation is carried in a similar way,
and the result,

Q22
L =

E2
FR

2
2

2π2ω2
L

E2
2L g(ω/EF ), (31)

is proportional to the outer surface area.
Finally, consider now the interference term Q12

L . Using
Eqs. (27) and (30), we write

Q12
L =

2E1LE2L

m2ω3
L

∑

lnn′

l(−1)n−n′

τl(ǫnl)τl(ǫn′l)
(32)

× Fl(ǫnl, ǫn′l)δ(ǫnl − ǫn′l + ωL),

with Fl(ǫ, ǫ
′) =

√

pl(ǫ, R1)pl(ǫ′, R1)pl(ǫ, R2)pl(ǫ′, R2).
As ωL changes (e.g., with changing aspect ratio), the
relative parity of electron and hole states, separated by
energy ωL, changes too, leading to a different sequence of
alternating signs in the sum in Eq. (32) which, in turn, re-
sults in oscillations of Q12

L (quantum beats). The number
of states contributing into the sum in Eq. (32) is large,
so that the oscillations can be described by substituting

(−1)n−n′

= cosπ(n− n′) = cos
[

π
∫ ǫ′

ǫ dǫρl(ǫ)
]

. Then Q12
L

takes the form

Q12
L =

E1LE2L

2π2m2ω3
L

∑

l

l

∫ EF

EF−ωL

dǫFl (ǫ, ǫ+ ωL)

× cos

[

π

∫ ǫ+ωL

ǫ

dǫ′ρl(ǫ
′)

]

, (33)

where l is restricted by the condition pl(ǫ, R1) ≥ 0. Equa-
tion (33) can be brought to the form

Q12
L =

e2R2
1E

2
F

2π2ω2
L

E1LE2LG(ωL/EF ), (34)

where the dimensionless function G(ξ) is rather cumber-
some and is given in the Appendix. For thin nanoshels,

d/R2 ≪ 1, it can be evaluated analytically (see Ap-
pendix) and the result reads

G(ξ) = −4
sinD

D

sin(ξD/4)

ξD/4
, (35)

where D = ωL/ǫ0 = ωLd/vF is the ratio of plasmonic
and electronic energy scales.
Putting all together, we finally obtain

QL =
E2

FR
2
2

2π2ω2
L

(

E2
2L + κ2E2

1L − 2κ2E1LE2LG
)

. (36)

The last term in Q12 oscillates as a function of shell thick-
ness d due to the interference of electron scattering ampli-
tudes from inner and outer NS boundaries. These oscil-
lations are, in fact, quantum beats caused by the change,
with d, of the number of electron levels with alternating
parities within the plasmon energy ωL (i.e., the differ-
ence between numbers of even and odd states oscillates
between 0 and 1). The oscillations period 2πvF /ωL de-
pends weakly on the shell thickness through dependence
of ωL on κ (see Fig. 1), and their amplitude slowly dies
out with increasing d.
In fact, the quantum beats of Q12 have a rather gen-

eral origin. Indeed, excitation of an electron-hole pair
with energy ω is accompanied by momentum transfer
p0 ∼ ω/vF and occurs in a region with the size r0 ∼
vF /ω. Therefore, oscillations of the pair excitation rate
with changingD = d/r0 reflect the nonlocality of surface-
scattering mechanism of momentum relaxation.
In Fig. 3, normalized dissipated power for the bright

dipole plasmon mode Q1 is plotted vs. aspect ratio κ for
overall NS sizes R2 = 30 nm and R2 = 10 nm. Numerical
calculations were performed using the full expression for
G(ξ) given by Eq. (A.1) in the Appendix. While for
larger NS with overall size R2 = 30 nm, oscillations of
Q1 are relatively weak [see Fig. 3(a)], they become more
pronounced for smaller NS (R2 = 10 nm) [see Fig. 3(b)].
Note that, for smaller R2, same values of κ correspond
to smaller shell thicknesses. Another striking feature is
the decrease of dissipated power for κ larger than 0.4.
The reason for this behavior is that, with decreasing shell
thickness, the local field is pushed outside the metal shell
(see inset in Fig. 1) which, in turn, leads to the reduction
of the transition matrix element.

V. LANDAU DAMPING OF PLASMON MODES

IN NANOSHELLS

The plasmon damping rate, ΓL = QL/UL with QL and
UL given by Eqs. (36) and (19), respectively, takes the
form

ΓL =
2ω2

pγL

ω3
L

(

∂ε′m
∂ωn

)−1

, (37)

where

γL =
3vF
4R2

εd(L+ 1)

|ε′m(ωL)|
1 + κ2q2L − 2κ2qLG

1 + κ3q2L(L+ 1)εd/Lεc
(38)
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FIG. 3. Normalized dissipated power by bright dipole plas-
mon modes in gold NS with various core and outside di-
electrics is plotted vs. NS aspect ratio for (a) R2 = 30 nm
and (b) R2 = 10 nm.

is the LD rate. Here qL = E1L/E2L is the electric fields’
ratio at the interfaces given by Eq. (18). In deriving Eq.
(38), we used the relation ω2

p = 4πn/m = 4p3F /3πm (for
e = 1), where n is the electron concentration.
Equations (37) and (38) represent our central result.

Apart from the dimensional factor vF /R2, the LD rate
(38) is determined by the ratio of plasmon local fields
at the metal-dielectric interfaces qL. The last factor
describes the relative contribution of the NS interfaces
and includes the interference correction. Importantly,
comparison of Eqs. (37) and (7) indicates that LD rate
can be incorporated into the Drude scattering rate as
γ = γ0 + γL, where γ0 is the bulk scattering rate, so the
full plasmon damping rate is still given by Eq. (7), but
with modified Drude dielectric function.
For solid NP (κ = 0), the plasmon eigenfrequency is

determined from Lεm(ωL)+(L+1)εd = 0, and we recover
the LD rate of the Lth mode in a spherical NP43–47,

γnpL =
3L

4

vF
R2

. (39)

 !  !"  !#  !$  !% &! 

 !"

 !#

 !$

 !%

&! 

'()

 

 

γ
 

 
γ
 

!
"

 

 

! 

!

* +(,-./-+(,

* 012

 

-./-012

 

* 012

 

-./-3

 

2

4

 

* 5* 6 * 78

 !  !"  !#  !$  !% &! 

 !"

 !#

 !$

 !%

&! 

 

 

γ
 

 
γ
 

!
"

 

 

! 

!

'9)

* +(,-./-+(,

* 012

 

-./-012

 

* 012

 

-./-3

 

2

4

 

* 5* & * 78

FIG. 4. Normalized Landau damping rate for bright dipole
plasmon modes in gold NS with various core and outside di-
electrics is plotted vs. NS aspect ratio for (a) R2 = 30 nm
and (b) R2 = 10 nm.

In thin NSs, the electric field is pushed out of the metal
shell, leading to the reduction of electron-hole excitation
rate. For thin NS (d/R2 ≪ 1), the explicit dependence
of the LD rate on the shell thickness is obtained from Eq.
(38) as (for L = 1)

γ1 ≈ 3

2

vFd

R2
2

[

1− 4εcεd
ε̃2cd

(1−G)

]

, (40)

indicating a linear dependence on the shell thickness.
In Fig. 4, we show the calculated LD rate γ1 for the

bright dipole plasmon mode in gold NSs of overall sizes
R2 = 30 nm and R2 = 10 nm and several choices of core
and outside dielectrics. The rate shows approximately
linear decrease with increasing κ (i.e., decreasing d), con-
sistent with Eq. (40). The oscillations of γ1 are quite
pronounced for smaller overall NS size (R2 = 10 nm)
and could be observable for typical experimental range
of aspect ratios (0.6-0.8) provided that NS overall size
is sufficiently small, so that the LD is not shunted by
the bulk scattering. Note that these oscillations should
be distinguished from those observed in solid NP51,52,57

due to size-quantization of the electron energy levels in
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a confined nanostructure, while here they are quantum
beats between electron scattering paths from different NS
interfaces.

VI. CONCLUSIONS

In conclusion, let us discuss the role surface potential,
dielectric environment and nonlocal effects near the metal
surface on the plasmon LD that was extensively studied
in solid NPs51–58. These effects mainly affects the overall
magnitude of LD rates, but plays no significant role in de-
termining the LD dependence on the nanostructure shape
which, according to our findings, is mainly determined by
the local field ratio at the interfaces. Extensive theoret-
ical and experimental studies of spherical NPs indicate
that surface effects mainly affect the phenomenological
constant A [see Eq. (1)], but the overall 1/R dependence
of the LD rate is unchanged1. In fact, the important role
of local fields in plasmon LD rate can explain the rela-
tively wide range of measured A (0.3-1.51), which raised
questions about the validity of scattering model56. In-
deed, as we mentioned in Sec. IV, excitation of an e-h

pair by plasmon local field takes place in a surface layer
of thickness r0 ∼ vF /ω. For vF ≈ 1.4 × 106 m/s in Au
and Ag, we have vF /ω ≈ 1 nm for ~ω = 1.0 eV, i.e., for
typical plasmon frequencies in the range 1.5-3.5 eV, the
layer thickness is just a few Å. In a thin surface layer, the
local fields are strongly affected by the electron spillover
and surface roughness effects as well as by the dielec-
tric environment, which can lead to large variations of
overall LD rate magnitude for different samples and/or
environments. Within our approach, the constant A can
be estimated by computing the effect of the above factors
on the local field, which is, however, out of scope of this
paper.
In summary, we calculated the Landau damping rate of

surface plasmons in metal nanoshells with dielectric core.
We found that the damping rate decreases with the shell
thickness due to the reduction of the local field magni-
tude inside a thin metal shell. We also found that the
Landau damping rate exhibits quantum beats caused by
the interference between electron scattering paths from
the nanoshell inner and outer metal-dielectric interfaces.
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Appendix

Here we analyze function G(ξ) in the interference term
(34). After shifting integration variables in Eq. (33) as
ǫ → EF + ǫ − ωL/2 and ǫ′ → EF + ǫ + ǫ′ and rescaling

to x = ǫ/ωL and s = l2/(pFR1)
2, we arrive at (34) with

G(ξ) = 2

∫ 1/2

−1/2

dx

∫

ds
√

f(ξ, x, s)f(ξ, x, κ2s)

× cos

[

πωL

∫ 1/2

−1/2

dx′ρl
[

EF [1 + ξ(x+ x′)]
]

]

, (A.1)

where f(ξ, x, s) =

√

(1 + ξx− s)
2 − ξ2/4, and the par-

tial density of states is given by

ρl(ǫ) =
m

π

∫ R2

R1

dr

pl(ǫ, r)
=
R2pl(ǫ, R2)−R1pl(ǫ, R1)

2πǫ

(A.2)

=
R2

πvF

[

√

1 + ξ(x + x′)− κ2s− κ
√

1 + ξ(x+ x′)− s

1 + ξ(x+ x′)

]

.

For ω/EF ≪ 1, the x′-integrals are easily evaluated,
yielding

G(ξ) = 2

∫ 1/2

−1/2

dx

∫ 1+ξx

0

ds
√

f(ξ, x, s)f(ξ, x, κ2s)

× cos [w(ξ, x, s)ωL/ǫ0] , (A.3)

where w(ξ, x, s) =
(

√

f(ξ, x, κ2s)− κ
√

f(ξ, x, s)
)

/(1 +

ξx) with f(ξ, x, s) ≈ 1 + ξx − s (here ǫ0 = vF /R2).
Rescaling s by 1 + ξx, Eq. (A.3) factorizes as G(ξ) =
∫ 1/2

−1/2
dx (1 + ξx)

2
S(ξ, x), where

S(ξ, x) =2

∫ 1

0

ds
√

(1− s)(1 − κ2s)

× cos
[

a(ξ, x)
(

√

1− κ2s− κ
√
1− s

)]

, (A.4)

with shorthand notation a(ξ, x) = (ωL/ǫ0)/
√
1 + ξx.

With substitution s = 1 − 1−κ2

κ2 sinh2 α, S is brought
to the form

S(ξ, x) =
4(1− κ2)2

κ3

∫ α0

0

dα (sinhα coshα)
2

× cos
[

a(ξ, x)
√

1− κ2e−α
]

, (A.5)

where sinhα0 = κ/
√
1− κ2. For a(ξ, x) ≫ 1, the integral

is dominated by the upper limit, and for thin shells, 1−
κ≪ 1, corresponding to α0 > 1, can be evaluated as

S ≈ −4
sin(a

√
1− κ2e−α0)

a
√
1− κ2e−α0

= −4
sin [a(1 − κ)]

a(1− κ)
. (A.6)

With the above S and after change of variable t =√
1 + ξx, the expression for G(ξ) takes the form

G(ξ) = − 8

ξD

∫ t+

t−

dtt3 sin(tD), (A.7)
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where t± =
√

1± ξ/2, and D = (1−κ)ωL/ǫ0 = ωLd/vF .
Note that even though for ξ ≪ 1 the integration interval

is small, the integrand is still an oscillating function since
D ≫ 1 and so the product Dξ can be arbitrary. In this
case, a straightforward evaluation yields Eq. (35).
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22 C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feld-
mann, O. V. Wilson, and P. Mulvaney, Phys. Rev. Lett.
88, 077402 (2002).

23 S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas,
Phys. Rev. B 66, 155431 (2002).

24 G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A
Klar, and J. Feldmann, Nano Lett. 4, 1853 (2004).

25 A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallëe, J. R.
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