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The Coulomb gap observed in tunneling between parallel two-dimensional electron systems, each
at half filling of the lowest Landau level, is found to depend sensitively on the presence of an in-plane
magnetic field. Especially at low electron density, the width of the Coulomb gap at first increases
sharply with in-plane field, but then abruptly levels off. This behavior appears to coincide with the
known transition from partial to complete spin polarization of the half-filled lowest Landau level.
The tunneling gap therefore opens a new window onto the spin configuration of two-dimensional
electron systems at high magnetic field.

I. INTRODUCTION

In the presence of a large perpendicular magnetic field,
Coulomb interactions between electrons confined to a
two-dimensional plane compete with disorder in deter-
mining the system’s physical properties. In the clean
limit interactions dominate and give rise to a wealth
of exotic collective states, including both compressible
and incompressible quantum liquids, various solid phases,
and quantum nematic liquid crystals1,2. Moreover, the
relatively small spin Zeeman energy in typical two-
dimensional electron systems (2DES) can be so over-
whelmed by these interactions that ground state spin
configurations which defy simple Pauli counting rules
can be stabilized3. These unusual spin configurations
have been detected and studied experimentally by var-
ious means, including conventional electrical transport,
photo-luminescence and inelastic light scattering, nuclear
magnetic resonance, etc.4.

The effects of Coulomb interactions on 2D electron
systems at high magnetic field are most dramatically il-
lustrated by the numerous fractional quantized Hall ef-
fect states5 and the emergent gapless metallic phases of
composite fermions (CFs)6,7, all of which exist at spe-
cific fractional fillings of the Landau levels created by
the magnetic field. Nevertheless, these exotic phenom-
ena actually represent relatively subtle variations in the
strong electronic correlations that exist throughout the
high field regime. For example, experiments8–10 have
revealed a suppression of the zero bias conductance for
electrons tunneling perpendicularly into the 2DES over
a wide range of high magnetic fields. This suppression
of the tunneling conductance is observed regardless of
whether the 2DES is in a thermodynamically gapped or
gapless phase, and extends over a range of voltages about
the 2DES Fermi level9,10. These observations are by now
well understood11–17 to reflect a Coulomb-interaction-
induced pseudo-gap in the tunneling density of states.
This pseudo-gap arises from the inability of the corre-
lated 2DES to rapidly relax the charge density defect

created by the rapid injection of an electron by tunnel-
ing at low energies. Put another way, at low energies
the (N+1)-particle states created by tunneling are es-
sentially orthogonal to the (N+1)-particle eigenstates of
the 2DES.
In this paper we report experimental observations

which indicate that the tunneling Coulomb gap is sen-
sitive to the spin configuration of the 2DES, a possibility
not considered in prior theoretical work11–17. Our ex-
periments consist of measurements of the current-voltage
characteristics for electrons tunneling between parallel
2D electron systems in semiconductor double quantum
wells in the presence of magnetic fields both perpendic-
ular and parallel to the 2D planes. We focus on the case
of the half-filled lowest Landau level (in each 2D layer),
both for simplicity and the existence of a well-developed
theory7,12 for this situation. We find that the tunneling
Coulomb gap increases and then saturates as the parallel
field is applied in a manner consistent with the known
transition from partial to complete spin polarization of
the 2DES.

II. EXPERIMENTAL

The samples used in this experiment are GaAs-
based semiconductor heterostructures grown by molecu-
lar beam epitaxy. Each contains two 18 nm GaAs quan-
tum wells separated by a 10 nm Al0.9Ga0.1As barrier
layer. Silicon delta-doping layers, positioned in the thick
Al0.32Ga0.68As layers above and below the double quan-
tum well, populate the lowest subband of each quantum
well with a 2DES of nominal density n ≈ 5× 1010 cm−2

and low temperature mobility µ ≈ 106 cm2/Vs. Stan-
dard lithographic methods are used to pattern the 2DES
into a mesa structure; for the data presented here this
mesa consists of a 250 µm square with 60 µm-wide arms
extending from each side. Ohmic contacts (NiAuGe) to
the individual 2D layers18 are positioned at the ends of
these arms. These separate layer contacts enable direct
measurements of the interlayer tunneling characteristics
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FIG. 1. (color online) (a) Typical tunneling IV characteristic
at ν = 1/2. Data taken at T = 50 mK with B⊥=4.09 T and
B||=0. Imax and Vmax denote location of maximum tunnel-
ing, while ∆ is voltage where tunneling current has reached
0.02Imax. (b) Density dependence of Vmax at B||=0. Solid

line is an unweighted least-squares fit of Vmax versus n1/2; the
fit extrapolates to Vex = −2.0 mV at n = 0.

of the sample via conventional dc and low frequency ac
methods. The individual layer densities n1 and n2 in the
central mesa region are controlled by electrostatic gates
deposited on the top and back side of the thinned sam-
ple. We focus here on the balanced case, n1 = n2 ≡ n,
with n varied from about 3.9× 1010 to 6.3× 1010 cm−2.
Via in situ tilting of the sample relative to an applied
magnetic field Btot, field components both perpendicular
(B⊥) and parallel (B||) to the 2DES plane could be ap-
plied. Except where otherwise noted, the tunneling data
presented here was obtained with B⊥ adjusted to render
the Landau level filling factor ν = hn/eB⊥ = 1/2 in each
layer19. The density n was kept high enough that con-
densation into the total filling factor νT = 1/2+ 1/2 = 1
bilayer excitonic phase did not occur.

III. RESULTS

Figure 1(a) shows a typical tunneling current-voltage
IV characteristic at ν = 1/2. A pronounced suppression
of the tunneling current I around zero interlayer voltage
V is readily apparent. This feature, a Coulomb pseudo-
gap, is the main focus of this paper. Away from V = 0
the tunneling current rises and forms a broad peak. Both
the Coulomb gap around V = 0 and the broad peak at
finite V are due to the strong electron-electron interac-
tions which dominate the physics of Landau quantized 2D
electron systems. These features have received substan-
tial theoretical scrutiny11–17 and are qualitatively well-
understood. We emphasize that these theoretical studies
assumed the electron spins were fully polarized by the
magnetic field20.
Figure 1(b) presents the density dependence of the

voltage Vmax at which the ν = 1/2 tunneling current
reaches its maximum value. As noted previously21, if
Coulomb interactions within each 2DES dominate the
tunneling IV curve, one expects Vmax (at fixed filling
factor) to be proportional to n1/2. As Fig. 1(b) shows,
Vmax is linearly dependent on n1/2, but extrapolates to
a negative value Vex in the n = 0 limit. This nega-
tive value, Vex = −2.0 mV for the data in Fig. 1(b),
represents the excitonic attraction, in the final state, of a
tunneled electron and the hole it leaves behind. In agree-
ment with earlier work, Vex ≈ −0.5e2/ǫd, with d = 28
nm, the center-to-center spacing between the quantum
wells21.
For a single layer 2DES, adding an in-plane magnetic

field B|| to a pre-existing perpendicular field B⊥ increases
the spin Zeeman energy (EZ = gµBBtot, with g the
Lande g-factor and µB the Bohr magneton) and cou-
ples to the finite thickness of the 2DES thereby inducing
mixing between Landau levels and the subbands of the
confinement potential. For electrons tunneling between
two parallel 2DESs separated by a distance d there is
an additional effect arising from the Lorentz force as-
sociated with the in-plane field; a tunneling electron
acquires a “momentum boost” ~q, with q = edB||/~.
At B⊥=0 this momentum boost can completely sup-
press the zero bias tunneling conductance if ~q > 2kF ,
with kF the Fermi wavevector22. At high B⊥, with the
Fermi level in the lowest Landau level, the momentum
boost leads to an exponential suppression of the tunnel-
ing matrix element t. Ignoring all other effects of the
in-plane field, the tunneling current is expected to fol-
low I(B||) = I(0) exp(−q2ℓ2/2), with ℓ = (~/eB⊥)

1/2

the magnetic length23. This B||-induced suppression of
the tunneling current at high B⊥ is clearly displayed in
Fig. 2(a). The figure plots the maximum tunneling cur-
rent Imax in the broad peak above the Coulomb gap,
normalized by its value at B||=0, versus qℓ. Data for
four different 2DES densities, ranging from n = 3.9 to
n = 6.3× 1010 cm−2 are shown; in all cases B⊥ is set to
produce ν = 1/2 in each 2DES layer. Plotted in this way
the various data sets collapse onto a single curve and the
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FIG. 2. (color online) Effect of an in-plane magnetic field on
the tunneling IV curve at ν = 1/2. (a) Maximum tunneling
current versus qℓ at various densities. Dashed line is theory
prediction described in text. (b) Normalized ν = 1/2 tunnel-
ing IV curves at n = 4.24×1010 cm−2 for B||=0 and B||=2.9
T. Upward arrows near lower left show change in ∆ induced
by the in-plane field. Data taken at T = 50 mK.

agreement with theory (dashed line) is excellent.

If the momentum-boost was the only effect of the in-
plane magnetic field then, aside from an amplitude scale
factor, the basic IV curve would be independent of B||.
We find that this is clearly not the case. Figure 2(b)
presents a typical example of how the normalized tunnel-
ing IV curve responds to the application of an in-plane
field. (For these ν = 1/2, n = 4.24 × 1010 cm−2 data,
the perpendicular field is fixed at B⊥= 3.51 T.) Roughly
speaking, the entire IV curve expands to higher voltages
as B|| is applied.

Figures 3(a) and 3(b) demonstrate that the B||-
induced expansion of the IV curve is not a simple rigid
shift to higher voltages. In Fig. 3(a) the voltage location,
Vmax, of the peak tunneling current is shown to increase
linearly with Btot as the in-plane field is applied. Over
the density range studied, we find that the rate of this
increase is essentially constant.

In contrast, the voltage width of the region of strongly
suppressed tunneling, i.e. the Coulomb gap, behaves
quite differently. To illustrate this, Fig. 3(b) plots ∆,
the voltage at which the tunnel current first reaches 2
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FIG. 3. (color online) Effect of in-plane magnetic field on
ν = 1/2 tunneling critical points, Vmax and ∆, at three dif-
ferent densities, plotted versus total magnetic field Btot. For
each density, the perpendicular field B⊥ is fixed while the in-
plane field B|| is varied. The left-most data point of each set
corresponds to B||=0 (tilt angle θ = 0). The arrows indicate
our assignment of the “knee” in the ∆ vs. Btot data.

percent of its subsequent maximum value, versus Btot.
These data obtain from the same set of tunneling IV
curves used to create Fig. 3(a). In general, ∆ at first
rises swiftly as B|| is applied, but then quickly levels off.

For the lowest density data (solid red dots; n = 3.9×1010

cm−2), the initial increase of ∆ is almost two-fold. As
the 2D density is increased, the net increase in ∆ declines
until, at n = 6.33× 1010 cm−2, little effect remains. We
emphasize that the precise definition of ∆ is not impor-
tant here, so long as it corresponds to a voltage where
the tunneling current is a small fraction of Imax.

The relatively sharp “knee” in the dependence of ∆ on
Btot suggests that a qualtitative transition in the nature
of the 2DES at ν = 1/2 occurs as the in-plane field is
applied. Moreover, the transition is most prominent at
low density, disappearing almost entirely at the highest
densities investigated here. These observations are at
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least consistent with a change in the spin configuration
of the 2DES, a possibility which we now consider.

IV. DISCUSSION

There is by now copious evidence that the ground
state of the 2DES at ν = 1/2 is not fully spin polar-
ized at low density24–33. For example, Tracy et al.30, us-
ing resistively-detected nuclear magnetic resonance (RD-
NMR) methods, observed a relatively sudden increase in
the nuclear spin lattice relaxation time T1 as the den-
sity of a 2DES, maintained at ν = 1/2, was increased.
This observation was readily explained by the disappear-
ance of both up and down electronic spin states at the
Fermi level as the 2DES transitions from partially to com-
pletely spin polarized. Similarly, Li et al.32, using both
conventional transport and resistively-detected nuclear
spin relaxation methods, showed that the ν = 1/2 spin
transition could be driven either by increasing the 2DES
density or by adding an in-plane magnetic field.
The composite fermion (CF) theory of the ν = 1/2

state provides a simple way to understand this transition.
In this theory the 2DES at ν = 1/2 resembles a Fermi gas
at zero magnetic field, only the constituent fermions are
CFs, electrons with two fictitious magnetic flux quanta
attached. In general, both up and down spin CFs are
present at the Fermi level, their relative populations de-
termined by the comparison between the spin Zeeman
energy EZ and the CF Fermi energy EF . The Zeeman
energy is presumed to be the same as for ordinary elec-
trons, EZ = gµBBtot, with the g-factor that appropriate
to the host crystal band structure (|g| = 0.44 for elec-
trons in GaAs). In contrast, the CF Fermi energy is un-
related to the band structure and, ideally, is determined
only by electron-electron interactions. Dimensional argu-
ments alone then require EF = γe2/ǫℓ, with γ a univer-
sal, though only approximately known, constant34. Since

EZ ∝ Btot while EF ∝ B
1/2
⊥ , it is clear that EZ can be

made to exceed EF either by increasing the density or by
adding an in-plane magnetic field. Defining the normal-
ized Zeeman energy η = EZ/(e

2/ǫℓ), the transition from
partial to complete spin polarization at ν = 1/2 should
occur at ηc = γ, independent of electron density. Vari-
ous non-idealities of the 2DES, e.g. the inescapable finite
thickness of the 2D layer and interaction-driven Landau
level mixing effects, can be expected to disrupt this uni-
versality and produce sample-to-sample variations in the
observed critical Zeeman energy ηc

35.
Using the “knee” observed in the ∆ vs. Btot data

shown in Fig. 3(b) as an indicator of the CF spin tran-
sition, the deduced critical Zeeman energy ηc is plotted
vs. 2DES density n at ν = 1/2 in Fig. 4. Also shown
is the ν = 1/2 spin transition point found by Tracy et

al.30 in their RDNMR experiment. While the agree-
ment between the present experiment and this earlier
one strongly supports the identification of the tunneling
critical point with the CF spin transition, the near quan-
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FIG. 4. (color online) Solid red circles: Critical normalized
Zeeman energy determined from “knee” in Coulomb gap ∆
data vs. 2DES density n. Open circle: CF spin transition
point found by Tracy et al.30. Dashed line: Theoretical esti-
mate of Park and Jain34.

titative agreement may be fortuitous. Both similar33 and
somewhat larger31,32 values of ηc have been observed in
other experiments. The dashed line is the theoretical es-
timate of Park and Jain34.

To support the identification of the “knee” in the ∆
vs. Btot data shown in Fig. 3(b) with the transition
from partial to complete spin polarization in the 2DES,
the underlying physical mechanism relating these prop-
erties of the 2DES needs to be determined. As is already
well-understood11–17, the Coulomb gap in the tunneling
density of states arises from the electronic correlations
created by Coulomb interactions in the Landau quan-
tized 2DES. These correlations are obviously sensitive
to the spin polarization of the 2DES: parallel spin elec-
trons avoid one another more strongly than anti-parallel
electrons owing to the Pauli principle. A partially spin
polarized 2DES is in this sense less strongly correlated
than a fully polarized one.

A more detailed picture emerges from consideration
of the wavevector-dependent conductivity, σxx(q), of the
2DES. The Coulomb gap itself reflects the inability of the
2DES to rapidly relax the charge defects created by tun-
neling. An electron tunneling into (or out of) a Landau
quantized 2DES creates a localized excess (or deficit) of
charge. The rate at which these defects can relax to equi-
librium is determined by the conductivity, with higher
conductivity producing a smaller Coulomb gap and lower
conductivity a larger one. This connection between the
magnitude of the Coulomb gap and the conductivity was
made concrete by He, Platzman, and Halperin (HPH)12.

Hence, we are led to ask how the spin polariza-
tion affects the conductivity. Since at voltages of or-
der ∆ the charge defects created by tunneling are lo-
calized on the scale of several magnetic lengths ℓ, the
disorder-dominated q=0 conductivity measured in an or-
dinary electrical transport measurement is not the rel-
evant quantity. Instead, it is σxx(q) at q ∼ ℓ−1 that
counts. In their study of the CF metal at ν = 1/2,
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Halperin, Lee, and Read7 calculated the conductivity for
the fully spin polarized case: σxx(q) = (e2/8π~)q/kF ,
where kF = (4πn)1/2 is the Fermi wavevector of the spin
polarized CF Fermi sea. This intriguing q-linear con-
ductivity was confirmed experimentally in high frequency
surface acoustic wave experiments by Willett et al.36.

If instead of completely spin polarized, the CF Fermi
sea were completely unpolarized, the Fermi wavevector
is reduced to kF = (2πn)1/2 and the conductivity σxx(q)

thereby increased37 by a factor of
√
2. Between these ex-

tremes, where the 2DES is partially spin polarized, we
can expect the conductivity to steadily decrease with in-
creasing spin polarization. Given the connection between
conductivity and the width of the Coulomb gap estab-
lished by HPH12, this dependence qualitatively explains
the behavior of ∆ vs. Btot shown in Fig. 3(b) and thus
fortifies our association of the “knee” in the Coulomb gap
data with the transition to complete spin polarization.

V. OPEN QUESTIONS AND CONCLUSION

There are, of course, issues that require further study.
For example, as Fig. 3(a) demonstrates, Vmax, the volt-
age at which the maximum in the tunneling current oc-
curs, does not exhibit any evidence of a transition similar
to that displayed by ∆. We find this behavior unsurpris-
ing. The voltage Vmax is the cross-over point between two
regions of suppressed tunneling. At low energies the slow
dynamics of the correlated 2DES produce the Coulomb
gap at the Fermi level. At high energies, in the single
particle cyclotron gap between Landau levels, there are
no final states in which to tunnel. In between these ex-
tremes, at energies of order the net Coulomb broadening
Ec ∼ e2/ǫℓ of the Landau level, the tunneling current has
a maximum. Since Ec depends only on the mean spacing
a between electrons (a = n−1/2 = 2π1/2ℓ at ν = 1/2), no
particular sensitivity to the spin state of these electrons
is expected. The modest38 linear increase of Vmax with
Btot shown in Fig. 3(a) nevertheless remains a puzzle.
One possibility is that it is due to a stiffening of the ef-
fective Coulomb interaction between electrons due to a
‘squeezing’ of their wavefunctions. Such squeezing can
result from the subband/Landau level mixings induced
by the in-plane magnetic field.

A more interesting question concerns the role of inter-
layer Coulomb interactions. That such interactions exist
is made evident by the linear extrapolation to zero den-
sity of the Vmax vs. n1/2 data shown in Fig. 1(b). The
substantial negative intercept, Vex = −2.0 mV, is be-
lieved to be due to a final-state excitonic attraction be-
tween a tunneled electron and the hole it leaves behind.
At low energies, e.g. inside the Coulomb gap, the charge
defects created by tunneling are larger in lateral extent39

than they are at Vmax. While this reduces the magnitude
of the excitonic attraction, some effect undoubtedly re-
mains. HPH considered interlayer Coulomb interactions
and concluded that in addition to an excitonic ‘down-
shift’ of the peak in the tunnel current, the detailed shape
of the IV curve deep in the gap was altered12. To what
extent these interactions change the way spin influences
the Coulomb gap is not presently known.
A more dramatic interlayer interaction effect is the

condensation of the double layer 2DES into an intrin-
sically bilayer collective state possessing spontaneous in-
terlayer phase coherence40. This state, with its remark-
able superfluid-like properties, occurs at the same total
filling factor as studied here (i.e. νT = 1/2 + 1/2 = 1)
and is observable in the present samples, but only at
densities lower than those explored here. While some
hypothetical precursors of this transition might be influ-
encing the present tunneling results, two considerations
suggest otherwise. First, we have observed that a very
similar increase of the Coulomb gap is induced by an in-
plane magnetic field when each 2DES is at filling factor
ν = 0.45 or ν = 0.55 (i.e. at total filling factors νT = 0.9
and 1.1, respectively). Thus, unlike the coherent bilayer
νT = 1 state, the effects reported here exist over a rela-
tively wide range of filling factors. Second, we have found
that the in-plane field-induced increase in the Coulomb
gap persists to at least T = 0.6 K. This is well above
the temperature at which the bilayer νT = 1 interlayer
coherent state has collapsed41.
In conclusion, we find that the Coulomb gap which

dominates the low energy tunneling between two paral-
lel 2DESs at high magnetic field can be acutely sensitive
to the application of an in-plane magnetic field. This
sensitivity appears to coincide with the transition from
partial to complete spin polarization which the in-plane
field drives by increasing the spin Zeeman energy. The
wavevector-dependent conductivity of the 2DES provides
a plausible link between the Coulomb gap and the sys-
tem’s spin configuration. The Coulomb gap thus appears
to offer a new perspective on the spin state of highly cor-
related 2D electrons.
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