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We study the real-space entanglement renormalization group flows of topological band insulators in (2+1) di-
mensions by using the continuum multi-scale entanglement renormalization ansatz (c(MERA). Given the ground
state of a Chern insulator, we construct and study its cMERA by paying attention, in particular, to how the bulk
holographic geometry and the Berry curvature depend on the topological properties of the ground state. It is
found that each state defined at different energy scale of cMERA carries a nonzero Berry flux, which is em-
anated from the UV layer of cMERA, and flows towards the IR. Hence, a topologically nontrivial UV state
flows under the RG to an IR state, which is also topologically nontrivial. On the other hand, we found that there
is an obstruction to construct the exact ground state of a topological insulator with a topologically trivial IR
state. Le., if we try to construct a cMERA for the ground state of a Chern insulator by taking a topologically
trivial IR state, the resulting cMERA does not faithfully reproduce the exact ground state at all length scales.
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I. INTRODUCTION

Entanglement renormalization', as a real space renormal-
ization group (RG), has received substantial attention recently
because of the following two main reasons: firstly, its effi-
ciency in numerically finding ground states of quantum many-
body systems; secondly, on the conceptual side, its close con-
nection with the Anti-de Sitter space/conformal field theory
(AdS/CFT) correspondence.

An entanglement renormalization method addresses the
computational obstacle (‘entanglement’) of finding a highly
entangled many-body ground state. One defines a set of uni-
tary transformations, which efficiently removes the amount of
short range entanglement, the obstacle to finding the ground
state. Combining such transformations with the coarse-
graining procedure of the real space RG, the multi-scale en-
tanglement renormalization ansatz (MERA) enforces that the
quantum entanglement at different length scales is removed
under successive applications of the RG transformation, al-
lowing one to study highly entangled quantum states. As
a powerful variational ansatz, the lattice MERA has been
demonstrated to accurately approximate ground states of var-
ious quantum many body systems, including symmetry bro-
ken phases®>® and topologically ordered phases’® in (1+1)
and (2+1) dimensions. In addition, to apply entanglement
renormalization to quantum field theories (which are defined
in an inherently continuous spacetime), a continuum version



of MERA, namely continuum MERA (cMERA), was recently
developed®'©.

It is conjectured that the lattice MERA may be understood
as a discrete ‘realization’ of the AdS/CFT Correspondence“,
where it is suggested that the MERA may capture the key ge-
ometric properties of AdS spacetime. Some recent develop-
ments along this idea can be found in Refs. 12-22. See also
Refs. 23 and 24 where a similar construction was proposed
under the name of “Exact holographic mapping”.

The connection between the lattice MERA and AdS/CFT
may also be understood based on the observation that the en-
tanglement entropy in the lattice MERA can be estimated in
a way similar to the holographic formula of the entanglement
entropy in AdS/CFT. In the classical limit of AdS/CFT, i.e.,
when the gravity is described by the Einstein equation, the en-
tanglement entropy S4 of a subsystem A can be obtained by
calculating the minimal area surface®
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where 74 is the minimal area surface embedded in a higher
dimensional AdS spacetime whose boundary is A, and G
is the Newton constant of gravity in the AdS space. In the
lattice MERA, the entanglement entropy of a subsystem A is
estimated by partitioning the MERA tensor network into two
parts, one which includes the subsystem A and its comple-
ment. It should be noted that there is no unique way to bipar-
tition the network, and we label a set of partitions at different
levels of the RG flow by v4. S4 is then bounded by
Sa < Min,,Bonds(va) - log J. (1.2)
where Bonds(v4) represents, for a given choice of the parti-
tioning 74, the number of bonds connecting the two parts of
the MERA network, and J is the dimension of bonds of the
disentangler (see below). In particular, if each bond is max-
imally entangled, then the entanglement entropy S4 will be
determined by the minimal area of 4, in a fashion similar to
the AdS case as shown in Fig. 1. By identifying 4 in the
lattice MERA and the area v4 in AdS space, we can find

Bonds(v4) ~ A

~ G- (1.3)

up to a constant.

The requirement of maximally entangled bonds is crucial
for this identification; as discussed in Ref. 10, if the bonds
are not maximally entangled, the estimation of entanglement
entropy S 4 becomes more complicated, as one needs to con-
sider the bonds which are far from the minimal area. Equiv-
alently, the calculation in terms of tensor network is expected
to become ‘non-local’. At the same time, it is known that the
bulk gravity in AdS space is non-local if one does not take
the ’t Hooft limit. The case of non-maximal entangled bonds
in the lattice MERA may, therefore, correspond to the quan-
tum gravity limit in AdS space. The strong parallelism be-
tween MERA and AdS/CFT in calculating entanglement en-
tropy suggests that the ‘emergent’ geometry appearing in the
tensor network representation of the lattice MERA might be
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FIG. 1. Comparison between the calculations of entanglement en-
tropy in the lattice MERA and AdS/CFT frameworks, respectively.
The purple surface represents the minimal surfaces y4. The green
solid bonds in the lattice MERA represent disentanglers. For the
lattice MERA, the entanglement entropy of a subsystem A can be
expressed as S4 o min[#Bonds(-y4)], while for AdS/CFT one has
Sa o min[Area].

the dual AdS space of the quantum states at the boundary (see
Fig. 1).

Although a complete understanding of the connection be-
tween AdS/CFT and the lattice MERA is still lacking, some
progress has been made recently. In Ref. 10, the expression
for the holographic metric in the extra dimension (which is
parametrized by the RG step) has been proposed based on
quantum field theory data in the continuous version MERA.
Furthermore, in a following work?®, the holographic met-
ric after a quantum quench is also studied. It is found that
the quenched holographic metric qualitatively agrees with its
gravity dual given by a half of the AdS black hole spacetime.
From the point view of cMERA, it has also been shown that
the conformally invariant boundary states are dual to trivial
spacetimes of zero volume??, and the bulk local states and
corresponding operators in the three-dimensional AdS space
can be constructed using Ishibashi states in two-dimensional
CFTs?!2227:28 In a different approach, MERA has been pro-
posed to be related to the kinematic space, i.e. the space of
geodesic surfaces in AdS space?®0.

In the previously mentioned references, the cMERA study
is mainly focused on free boson or free fermion systems with
trivial topological properties. In the context of non-trivial
topology, the AdS/CFT correspondence of Chern-Simons
(CS) theories has been studied recently®'. It is now therefore
desirable to construct the cMERA dual to such AdS/CS corre-
spondence — the main aim of our work. To achieve this goal,
we develop the cMERA analysis of Chern band insulators in
(2+1) dimensions.

Besides the cMERA dual of AdS/CS, there are other moti-
vations for our study as follows:

(i) Recently, tensor network methods have been applied ex-
tensively to topological phases in two dimensions*?>=3*. In
these works, the exact projected entangled pair states (PEPS)
representations of chiral topological states are obtained, al-



though the correlations decay as an inverse power law. On
the other hand, MERA has been constructed for exactly solv-
able lattice models with topological order including the Ki-
taev toric code, the Levin-Wen string-net models and the
AKLT model”®35, It is noted, however, that topological
insulators’*-38_ ¢.g. Chern band insulators, have not been ex-
plicitly constructed with the lattice MERA, despite some re-
lated recent studies®®. In Ref.39, it is shown that the lattice
MERA representation of a gapped topological phase, includ-
ing Chern band insulators, should exist. By taking a bond
dimension of order polynomial L, where L is the system size,
the corresponding lattice MERA should be able to achieve
high overlap with the true ground state in the thermodynamic
limit. Finding a concrete MERA network fulfilling this con-
struction has, nonetheless, proved to be a hard task. In the
present work, we find that the ground state of Chern band in-
sulators may be straightforwardly constructed in the frame-
work of cMERA, which may shed light on our understanding
of the lattice MERA structure of topological insulators.

(i1) In the previous studies, the IR state of cMERA is usu-
ally chosen as a topologically trivial state with no entangle-
ment whatsoever”!%%_ In contrast, the ground state of a Chern
insulator in (2+1)D carries a nonzero quantized momentum-
space Berry-flux (in units of 27). It is thus interesting to ask
what happens to such Berry flux if one performs entangle-
ment renormalization procedures. Before the calculation, one
may guess that there are mainly three possibilities, depend-
ing on the choice of IR states as follows. (i) If the IR state
carries a zero Berry-flux, then there must be a drain for the
Berry curvature in the (3+1)D bulk of cMERA towards the
IR, corresponding to a magnetic-monopole-like structure. It
is expected that a phase transition may happen through the
renormalization procedure in this case. (ii) If the IR state car-
ries a nonzero Berry flux whose amount does not equal to the
Berry flux at the UV layer, i.e., ®(IR) # ®(UV), we expect
that part of the Berry curvature flows to the IR layer, and the
other part is absorbed by the magnetic-monopole in the bulk
of cMERA. Again, there may be a phase transition in this case.
(iii) If the IR state carries the same amount of Berry flux as the
UV state, i.e., P(IR) = ®(UV), we expect that all the Berry
curvature emanated from the UV layer flows to the IR layer,
and there is no magnetic monopole in the bulk of cMERA. In
this case, no phase transition happens. It is thus necessary to
obtain quantitative and exact picture on the pattern of Berry
curvature flow in the bulk of cMERA.

(iii) Besides the aforementioned topological properties, it is
also interesting to study the geometric properties of cMERA.
From the AdS/CFT correspondence point of view, different
phases at the boundary correspond to different bulk space ge-
ometries in a higher dimension. In the prior studies on topo-
logical insulators, it is known that the momentum-metric can
capture new aspects of topological phases*’. Now in cMERA,
we have an emergent holographic metric in the renormaliza-
tion direction'?. It is interesting to ask if this holographic met-
ric can display novel information about topological insulators,
and how the topological properties and geometric properties
affect each other in the bulk of cMERA.

In this paper, we set up towards answering some of these

questions. The paper is organized as follows. In Sec. II, we
give a short review of cMERA in various versions. In Sec.
I, starting from a topologically trivial IR state, we construct
cMERA for four different fermionic systems in (2+1) dimen-
sions, i.e., non-relativistic Chern insulators, non-relativistic
trivial insulators, relativistic insulators with positive mass and
relativistic insulators with negative mass, respectively. Then
we study the holographic geometry, band inversion, and Berry
curvature flow in the bulk of cMERA for different phases. In
Sec. IV, we construct the cMERA for Chern insulators with a
topologically nontrivial IR state, and study the corresponding
holographic geometry, band inversion as well as Berry curva-
ture flow in the bulk of cMERA. In Sec. V, we summarize our
work and mention some future directions.

II. ENTANGLEMENT RENORMALIZATION

In this section, we give a brief introduction and review of
cMERA. For the completeness of this work, we also give a
short review of the lattice MERA in Appendix VII A. Both the
lattice MERA and cMERA are developed in order to find the
ground state of many-body systems by making use of the vari-
ational principle. As an implementation of real space renor-
malization group, they are different from the conventional
method developed by Migdal, Kadanoff and Wilson*'~*3. For
the lattice MERA and cMERA, short-ranged entanglement is
removed during the process of coarse graining, instead of re-
moving high-energy degrees of freedom as in the conventional
RG formalism.

A. Brief review of cMERA

The continuum version of MERA (cMERA) was proposed
to understand quantum field theories within the lattice MERA
scheme’. The formulation of cMERA is very helpful for mak-
ing an explicit connection between the entanglement renor-
malization and the AdS/CFT duality. In particular, it is found
that an emergent metric in the extra holographic direction can
be defined in cMERA, where the holographic metric shows
properties expected from AdS/CFT'?.To avoid confusions in
later discussions, in the following parts, we discuss three dif-
ferent pictures of cMERA respectively.

We start from an IR state

| (ur = —o0)) = (), 2.1
which may be either entangled or unentangled, and aim to find
a UV target state

[ (uyy = 0)) = |¥), (2.2)
where |U) represents the ground state of a given Hamiltonian
at the UV length scale, e.g., a lattice in the condensed mat-
ter systems. With the same spirit as in the lattice MERA, at
each layer u, we use the disentangling operators to remove
short-ranged entanglement and perform isometry operationts
to coarse-grain (see Appendix VII A). Compared to the lattice



MERA, we can formally replace the disentanglers and isome-
tries as follows

Vi = Viu) —e K (Wdu,
L (2.3)
Wy — W(u) =e™* (w)du
where du represents the infinitesimal RG step and K (u) rep-
resents a local interaction of the form

K(u) = / k(r,u)d’r, (2.4)

with k(r, u) being a local combination of local field operators
(r) and O¢(r), r = |r| (in which we have assumed rota-
tional symmetry of the wavefunctions so that the disentangler
is also rotationally symmetric), and their adjoints. Here one
may make the Gaussian ansatz’

K=Y / (W8T (1) (r) + () D7) () (),

n=0
(2.5)
where a,, (u)(a,(u)) is a complex function which depends on
the layer u. L is the generator of scale transformations

L= W@ Vevl) = x- Vool @(r)dr, 26)
based on which one can find

e—iuL,(/)(r)eiuL :eguw(eur%

, , 4 2.7
e—luLw(k)emL :e_fui/)(e_“k).

1. Schrodinger picture

The continuum version of many-body wavefunction in
layer u (see Eq.(7.3) for the lattice version) may be written
as

0

|05 (u = 0)) = Pexp [—z/u (K (u) + L)du} 1Q%),

(2.8)
where P is the path ordering operator as in Eq. (7.3), and S
represents the ‘Schrodinger’ picture. The physical interpre-
tation of cMERA is similar to that of the lattice MERA, i.e.,
the UV target state |U¥(u = 0)) = |¥) can be constructed
from an IR state |2°) by adding short-ranged entanglement
with K (u) and doing scale transformations by L repeatedly.
The opposite way from the UV limit to the IR limit may also
be interpreted straightforwardly. As u varies from uyy = 0 to
ur = —00, by removing entanglement and doing scale trans-
formations repeatedly, we end up with a state |2°) which may
be unentangled. Eq. (2.8) can be generalized to an arbitrary
layer u as

IR

S _ _ s 0 / / S
[T (u = 0)) Pexp[ z/ (K (u') + L)du'| [0 (u)).

(2.9)

U=-%

ugy=0

v
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FIG. 2. Scheme of the momentum region where the Hilbert space
in the ‘Schrodinger’ picture is defined. At layer u, the Hilbert space
is defined within 0 < |k| < Ae™", as indicated by the solid line.
The disentangler K (u) creates/removes entanglement with a con-
stant cut-off A, as indicated by the red dotted line. Effectively, as w
goes deeper towards ur, the disentangler creates/removes entangle-
ment for smaller |k| (i.e., |k|e!) in the original system at uyv, which
corresponds to a larger length scale in real space.

Based on this, we obtain ‘Schrodinger’s equation’

i%ﬂls(u» = [K(u) + L] [&5 (u)). (2.10)
It is beneficial to check the Hilbert space in which [¥(u))
is defined. First, one notes that the disentangler K (u) only
creates (or removes) entanglement and will not change the
Hilbert space. Therefore, one only needs to check the effect
of L. Now we consider a single particle state in momentum
space in (d + 1) dimensions. At layer uyy = 0, the single
particle state can be written as

=0 = [

k| <A

d'kp (k)T (k)|vac),  (2.11)

where A is a UV cut-off in momentum space. Then the single
particle state at layer v according to Eq. (2.10) reads

6% (u)) =e~"""|¢(u = 0))

_ / dTkp(k)e P (ke Pepvae), )
K|<A

where we have used e~ *%|vac) = |vac). By using the for-
mula in Eq. (2.7) one can find

165 () = /|k<A e (ke () ac), - 213)



which means |¢ (u)) is now defined in the region 0 < |k| <
Ae™™. Atthe same time, K (u) is assumed to create or remove
entanglement with a constant cut-off |k| < A, which is inde-
pendent of the layer «.° As shown in Fig. 2, we plot schemat-
ically the region where the Hilbert space at layer w is defined,
as well as the region within which entanglement is created or
removed (on which the disentangler operates). It can be found
that as u goes deeper towards ur, the disentangler K (u) ef-
fectively creates/removes entanglement for smaller |k| in the
layer u = uyy. This is as expected because in the lattice
MERA as u goes deeper towards wugr, entanglement is cre-
ated/removed in a larger length scale, which corresponds to a
smaller momentum scale.

2. Heisenberg picture

For convenience, we define the unitary operator

0

U(0,u) = Pexp {z / (K(u')+ L)du (2.14)

Suppose O is some local operator defined in the layer u =
uyy = 0, then by moving to the ‘Heisenberg picture’, one can
define O(u) at layer u as the following

O(u) =U(0,u)~ -0 -U(0,u), (2.15)
based on which one can get ‘Heisenberg’s equation of motion’

dO(u)
du

= —i[K(u) + L,0(u)). (2.16)

It is noted that the ‘Heisenberg’ picture is used in Ref. 9.

3. Interaction picture

As will be seen later, it is useful to move to the ‘interaction’
picture, i.e.,

107 (w)) = LTS (u)). 2.17)

Combining with the Schrodinger’s equation in Eq. (2.10), one
can obtain

i%ﬂll(u)) = K(u)|¥!(u)), (2.18)
where

= LK (u)e™™E, (2.19)

Then the wavefunction | ¥ (u)) at layer u can be expressed as

| U1 (u)) = Pexp <z /u u f((u’)du') Qh, (220

or

1! (1)) = Pexp (z /uo f{(u')du’> |0l (u=0)), (.21

where P represents the path ordering operator which orders
operators in an opposite order relative to P. In this way, at
each layer u, |W!(u)) is defined in the same Hilbert space
with 0 < |k| < A. The unitary operation defined in Egs.
(2.20) or (2.21), after factoring out scale transformation, cre-
ates/removes entanglement within |k| < Ae" (See also Eq.
(3.5) in the next section for example.). Note that in the lan-
guage of AdS/CFT, the factor e ~*“¥ corresponds to the warp
factor of the AdS metric.

Layer u

FIG. 3. Scheme of the momentum region where the Hilbert space in
the ‘interaction’ picture is defined. The Hilbert space at each layer
u is the same, in correspondence with the ‘interaction’ picture of
MERA in Fig.16. The boundary |k| = Ae™ defines a cone within
which quantum entanglement can be created/removed. The region
defined by |k| < A is the low energy physics region.

The merit of the ‘interaction’ picture is that at each layer
u of the cMERA, we have the same Hilbert space defined in
0 < |k| < A in momentum space. This allows us to define
and calculate the overlap (U(u)|¥(u + du)), from which we
extract the emergent metric gy, (u) in the holographic direc-
tion, as will be discussed later. To have an intuitive picture, in
Fig. 3 we show schematically the momentum region where the
Hilbert space is defined in the interaction picture. The bound-
ary |k| = Ae™ defines a cone in which entanglement can be
created/removed. Given an IR state |2) at u = ug, the region
outside the cone is trivial because no entanglement is added.
This is in analogy with the dangling unentangled |0)s in Fig.
16.

In the rest of this paper, we will work in the ‘interaction’
picture, and for convenience we will simply write | ¥ (u)) as

W ().

III. CMERA OF TOPOLOGICAL INSULATORS WITH A
TOPOLOGICALLY TRIVIAL IR STATE

Here we refer the IR state to be topologically trivial (non-
trivial) if the corresponding cMERA constructed wavefunc-
tion | ¥ (u)) at each layer u carries a zero (nonzero) Berry flux.



A. cMERA of Chern insulators in (2+1)D

In Refs. 9, 10, and 26, cMERA of a relativistic free fermion
system has been studied. This method can be generalized to
various gapped phases in a straightforward way. Here we fo-
cus on a two-band free fermion system in (2+1) dimensions,
defined by the Hamiltonian

1= [ k00 R o] w), G
where (k) = [t1(k) v2(k)]T, and 11 2(k) are fermion
operators satisfying the canonical anti-commutation relation
{1(k), v (K)} = {¥a(k),](K)} = 6(k — K). As a
comparison, besides the Chern insulators, we will also con-
sider non-relativistic trivial insulators and relativistic insula-
tors with m > 0 and m < 0, respectively. For convenience
of labeling, we will use a, b, ¢, d to represent non-relativistic
Chern insulators, non-relativistic trivial insulators, relativistic
insulators with m > 0, and relativistic insulators with m < 0
respectively*, with

R(k) = (ku, ky,m — k%),  m>0
RY(k) = (ky, ky,m — k), m<0 32)
Re(k) = (kz, ky,m), m >0
R (k) = (ky, ky,m), m <0

where k = |k|. The ground state corresponding to the Hamil-
tonian in Eq. (3.1) can be expressed as

0) = TT (vl = vl (1)) Ivac),

[k|<A

(3.3)

where uy and vy are expressed in terms of R(k) (See Ap-
pendix VII B for details.). Our aim is to find a proper IR state
|2) and the associated disentanglers which generate |U) as the
UV state. Next, we will derive the expression for the wave-
function | ¥ (u)) at each layer u of cMERA. The wavefunction
| ¥ (u)) is supposed to interpolate |2) to | ¥) as u sweeps over
(UIR; UUV] = (700, O]

In the ‘interaction’ picture of cMERA, the fermion operator

¥(k,w) in layer u is related with ¢ (k) as
Bk, u) = Pe i KOsy qeypei Jug KOs (3 4y

Since the free fermion model is gaussian, one may make the
gaussian ansatz for the disentangler

AWMﬂ/fH%@M&Wwdﬂﬂw%®@&%
(3.5)

where gy (u) is chosen of the form

k k , .
o) = )0 (47 ) e = k(e ™ GO

where I'(z) = O(1 — |z]|) is the hard cut-off function, g(u)
is a complex function that we need to solve for, and 6y is

defined through k cos 6 = k, and ksin 6y = k,. The disen-
tangler in Eq. (3.5) indicates that at each layer u, the quantum
entanglement can be created/removed only within the region
|k| < Ae“, as schematically shown in Fig. 3. In fact, based
on the expression of gk (u) in Eq. (3.6), one can find that the
disentangler adds/removes entanglement mainly in the region
|k| ~ Ae*. In addition, compared with the previous works on
cMERA of (1+1)D free fermion systems,”!%?6 an extra factor
e~ is included in Eq.(3.6), which plays an important role
in studying the topological property of a (2+1)D free fermion
system.

It is noted that Eq. (3.4) can be considered as a unitary
transformation, i.e.,

Pk, u) = My (u)y(k),

where we have introduced the matrix My (u) as

3.7

.7 Pk(u) Qk(u) D “ ’ ’
Mic(u) = (—Q;:(u) P (u) ) = Pep (/ Gl )d“) ’
(3.8)
with | P (u)|? + |Qk(u)]? = 1 and
Gx(u) = ( gfi(“) (;ng) ) : (3.9
Equivalently, one has
dM,
d‘;(”) = Gie(u) Mic(u). (3.10)

By solving the differential equation above, one can obtain the
general solution as

Qi (u) = — ie" " (A*e_i J*gi(u)du” _ prei [ g':(u/)dUI> ,

Pk(u) — At I gp(u)du’ + Be~ ' I g;(u,’)du'.
(3.11)
The wavefunction | ¥ (u)) at layer u constructed from cMERA
is defined by

U1 (k)| W(u) =0, $i(k,u)|T(u) =0,  (3.12)
with the explicit expression
() = [] ¢Sk w)lvac)
k|<A
=TT (P 0) = Quw10)) jvac).
k<A
(3.13)

Therefore, now our task is reduced to solving differential
equations in Eq. (3.10) under the boundary conditions

U (u=uRr)) =19Q), [¥(u=uyy))=|¥). (3.14)
It is noted that there may be many choices of |(2). In the prior
study on free fermion systems”!%6_ |Q) is chosen as an unen-

tangled state, e.g., [©2) =[] <a ¥l (k)|vac).




For the non-relativistic Chern insulator, by comparing
| ¥ (u)) with the boundary condition at the UV limit (see Eq.
(7.10)), one can simply set A and B in Eq. (3.11) to be real,
so that A = B = 1/2. Then one can obtain

u

Qulu) == ¢ sin [ gy
u r (3.15)
Pulw) =cos [ gi(u/)a

UIR

based on which one can find that in the IR limit,

(u = uw)) = [ ¢k u)lvac),

k| <A

(3.16)

which is the unentangled IR state used in the prior studies on
free fermion systems.®!%-26
The same procedure applies to the other three phases in Eq.
(3.2). In particular, for the relativistic insulators with m > 0
(e, i = ), Q% (u) and PE(u) have the same expressions as
those in Eq. (3.15). On the other hand, for the two phases with
m < 0 (i.e., i = b, d), one has
u
QU w) =~ cos [ giuan
e (3.17)

u

Pl (y) = — ¢k sin/ g (u")du'.
UIR
It is straightforward to check that the IR states for the four
phases are |Qe(¢)) = [ix<a ?/1; (k)|vac) and |Q°(4)
[Tix<a 11}1 (k)|vac), all of which are un-entangled states. The

difference between |Q%(¢)) and |QY(9)) are simply caused by
the sign change of the mass term m.

Next, by considering the boundary condition at the UV
limit, i.e.,

[T (0 = upy)) = [T, (3.18)

where i = a, b, c,d, one can fix the form of g(u) (and thus
those of ¢y (u) and gk(u)) in the disentangler (see the Ap-
pendix for details of calculation) as follows

" 1 Ae“(m+ A%e?v)
g*(u) =5 2,2u)2 202u
2 (m — A2e?v)2 4+ A2e
Ae*
—arctan 5
\/(m _ A262u)2 + A2e2u + (m _ A2e2u)
(3.19)
1 Ae*(m+ A2%e?
g'(u) = (2 2u)2 2)2/
2 (m — A2e?%)2 4 A2¢2v
Ae"
—~arctan R
\/(m — A2e2u)2 f A\2e2¢ — (1 — A2e2v)
(3.20)
“(u) _L mher arctan Act
g 2 m? + A2 Vm? + A28 4 m

(3.21)
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FIG. 4. g*(u) for (a) a non-relativistic Chern insulator (b) a non-
relativistic trivial insulator (c) a relativistic insulator with m > 0 and
(d) a relativistic insulator with m < 0. The parameters we use are
@m=20b)m=—-2()m =2and (d)m = —2. And A = 1000
is used for all cases.

and
() 1 mAe* + arctan Ae"
U) = ——————— .
9 2m2 + A2e2u m2 + A2e2% —m

(3.22)

As shown in Fig. 4, it is noted that in the IR limit, one has
g(u) = 0 for all the four phases, which indicates that no en-
tanglement is added/removed in the IR layers. In the UV limit,
one has

g*(uuy) = — /2,
b
g’ (uuv) =0,
o (uny) = — /4, (3.23)
gd(uUV) =+ /4.

Furthermore, there are some more interesting features in
g'(u). For example, one can observe a peak as well as a sign
change in g%(u). We will see how these features play an im-
portant role in determining the Berry curvature flow in the
bulk of cMERA later. In addition, by considering the limit
|m| — 0in Egs. (3.21) and (3.22), one can obtain

g“(u,m = 0") = — (3.24)

I

and

g4 (u,m —07) = —|—%, (3.25)
which reproduce the result in Ref. 10. g“(?) (v) is independent
of layer u because the |m| — 0 limit in relativistic insulators
corresponds to a critical point, and therefore the correspond-
ing bulk theory in cMERA is scale invariant. This is similar
to the scale invariant lattice MERA***¢, where both the tensor
network structure and disentanglers do not change as one goes
deeper towards ug.



B. Emergent Holographic Metric in cMERA

The definition of holographic metric g, (u) for a general
quantum field theory in cMERA was discussed in Ref.26. By
comparing with the classical gravity limit of AdS/CFT, the
authors find the metric g,,,,(u) should measure the density of
the strength of the disentanglers. One natural choice is the
quantum metric defined through the overlap between wave-
functions |V (u)) and |¥(u + du)) in the following

Guu(U) = %/koguu(u,k), (3.26)

where

Guu(k, w)du® =1 — [((k, w)| ¥ (k,u+du))|*,  (3.27)

and N is the normalization factor with the concrete form N =
J dk. |¥(k,u)) is a single-particle wavefunction defined as

w0k, w) = (Bew)p} () — Qu(w)](19)) vac). (3.28)

To have a better understanding of this definition, one may
consider the limit that no entanglement is added at layer w,
which means (¥ (k, u)|¥(k,u 4+ du)) = 1, and therefore one
ends with g, (u) = 0. On the other hand, if more entangle-
ment is added at layer u, then the overlap (¥ (k, u)|¥(k, u +
du))| becomes smaller, and therefore one has a larger g,,,, (u).
This means g, (u) can indeed measure the density of the
strength of disentanglers. To see clearly the relation between
guu(u) and disentanglers K (k,u), one notes that Eq. (3.27)
can be rewritten as

uu(k, u) =Re(9,, U (k, u)|0, ¥ (k,u))
— (0, (k, w)| U (k, u)){(U(k,u)|0,V(k,u)).
(3.29)

Then by using Eq. (2.18), one can immediately obtain

Guu (ks ) =(W (e, )| K2 (e, ) [ ¥ (k, w))
A > (330)
— Wk, )& (k)| @ (k, w)) |

Next we will apply the definition of g, (u) to concrete sys-
tems, e.g., Chern insulators in (2+1) dimensions. The cMERA
constructed wavefunction for Chern insulators at layer u has
been obtained in Egs. (3.13) and (3.15). Based on Eq. (3.29),
one can find

k2 k
i) = (G0) = Pzt () - B30

Therefore, for Chern insulators in (2+1) dimensions, one can
get

2
( ) - f\k|§/\e“ koQQ(U)ﬁ . } ( )2
Guu\U) = f‘kKAeu d2k - 29 w)-.

(3.32)

In addition, by checking the other three phases, it is straight-
forward to obtain

. 1 .
G (1) = 5gl(u)27 (3.33)

where i = a, b, c,d, and the explicit expression of g¢(u) has
been obtained in Egs. (3.19)~(3.22). Note that for all the four
cases, ¢',,, vanishes in the IR layers.

For other components of the metric, one can find their gen-
eral expressions in Appendices VII C.

C. Band inversion in cMERA of Chern insulators

To study the Chern band insulator, it is helpful to
check the behavior of pseudo spin configuration cz?(k, u) =
(U(k,u)|d|¥(k,u)), the z component of which can be used
to track the band inversion of the corresponding Hamiltonian.

For convenience, we denote

ox(u) = / g (u)du'. (3.34)
UR
Then based on Eqgs. (3.15) and (3.17), one has
d%©) (k, u) = — cos 20" (),
2 (k. w) LA .

d¥D (k, u) = cos 2902(‘1) (u),

where the minus sign difference results from m > 0 for phase
a(c) and m < O for phase b(d).

As shown in Fig. 5, we plot (¥ (k, u)|0%| ¥ (k, u)) as a func-
tion of layer u and momentum |k| in the region |k| < A.
One can find that the band inversion happens only for the non-
relativistic Chern insulator, which agrees with our knowledge
in the UV limit. As shown in Fig. 5(a), for cMERA of Chern
insulators, band inversion happens in the UV layer u = uyy.
As u goes deeper towards ug, the band inversion insists until
u is near u*, which is defined by

Im| = A%e? . (3.36)
It is noted that for relativistic insulators, u* is defined by
|m| = Ae*". Next we will discuss how the band inversion
in region |k| < A is related with the behavior of ¢(u). For
convenience, we divide each plot in Fig. 5 into three regions
as follows.

RegionI: wuRr <u <u®,
RegionII: u* <u < wuyy, k< k™,
Region Il :  u* < u <wuyy, k* <k <A,

where k* is defined by |m| = (k*)? for non-relativistic insu-
lators, and |m| = k* for relativistic insulators. The relation
between k* and u* is
Bt = Ae" . (3.37)
Then the behavior of d? (k,u) can be analyzed as follows.
(i) Region I: From the behavior of g*(u) in Fig. 4, we have
g'(u < u*) >~ 0. Therefore, by using the definition in Eq.
(3.34), one has ¢} ~ 0. Then one can immediately obtain

d¥O(k,u) ~ — 1, 338)
2D (k,u) ~ + 1. ‘
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FIG. 5. d(k,u) for (a) a non-relativistic Chern insulator (b) a non-
relativistic trivial insulator (c) a relativistic insulator with m > 0 and
(d) a relativistic insulator with m < 0. Band inversion happens only
for case (a), which is related with the UV behavior of g*(u). The
parameters we choose are mq, = m. = 10, mpy = mgqg = —10 and
A = 1000, based on which one has u* ~ —5.76 by using Eq. (3.36).

Note that the result is independent of momentum k. In other
words, for ulg < u < u*, as we change momentum £k, there
is no band inversion happening.

(ii) Region II: In this region, g’(u) has a finite value for
u* < u < uyy. However, the factor |k|/Ae in Eq. (3.6) goes
to zero as we increase u from u = u*. Then, again, one has
¢t (u) ~ 0 and d’ (k, u) shows the same feature as that in Eq.
(3.38).

(iii) Region III: In this region, one can replace g‘(u) with
g'(uyvy) as an approximation. Then ¢ (u) in Eq. (3.34) can
be expressed as

. , u k
()02 u > u* — gz U / du/ —_—
k( ) ( UV) log /A Aev

which can be simplified as
> u*) = gt (uuy) 17i
Pk = g (uuv Aev |

By considering the limit u — wuyy and k < Ae“vV, it is
straightforward to obtain

ku—)uUV

dZ(

(k U — Uyv
(k U — uUyv
(

: ) =
d: ) =
ds ) =
d? )%OJr

kU%UUV

which can be observed in the upper right of each plot in Fig.
5.

In short sum, with appropriate approximation, we show that
(i) Foruir < u < u*, there is no band inversion for all the four
phases as we change momentum k. (ii) For v* < u < uyy,

as we increase the momentum k across k& = k*, the value of
d: (k, u) changes as follows

dg(k,u): —1— +1,
do(k,u): +1— +1,
di(k,u): =1—07,
dd(k,u): +1—0T.

One can find that only the non-relativistic Chern insulator
shows the band inversion behavior for v > w*, which indi-
cates that the system is in a topologically nontrivial phase. On
the other hand, for v < w*, there is no band inversion happen-
ing as we change k, which indicates the system is in a topolog-
ically trivial phase. Therefore, as u goes across v* from the IR
side to the UV side, it seems that we have a phase transition
from a topologicaly trivial phase to a topologically nontrvial
phase. Therefore, it may be viewed as a ‘topological phase
transition’ in the direction of entanglement renormalization.

Before we end this part, we emphasize that the discussion
above is based on the assumption k£ < A, i.e., we focus on
the low energy physics region. In the following parts, we will
study the topological property of the four systems in the whole
region 0 < k < A.

D. Berry curvature flow in cMERA of Chern insulators

To further understand the ‘topological phase transition’ in
the previous part, we study the Berry curvature flow in the
bulk of cMERA for a Chern insulator. It is known that
Chern insulators are distinguished from trivial insulators by
a nonzero quantized Chern number, which can be viewed as
a Berry flux in momentum space. Therefore, there must be
some Berry curvature emanated from the UV layer of cMERA
for a Chern insulator. On the other hand, we know that the IR
state is unentangled and there is no Berry curvature. One may
ask where does the Berry curvature flow? We will study this
problem in this part.

Based on the cMERA constructed single particle wavefunc-
tion |¥(k,u)) in Eq. (3.28), one can obtain the Berry connec-
tion for a Chern insulator as follows

A (K, O 1) = — i{W(k,u) |0k ¥ (k,u)) =0,
] 1
Agy (k, s u) = — %(\If(k, )| Bo, ¥ (I, ) = — 1 sin® pic(u),
Au(k, O u) = — i(¥(k, u)|0u| ¥ (k,u)) = 0.
(3.39)
The Berry curvature can be obtained by calculating
F=VxA,
which can be explicitly expressed as
Fok, Oh; ) =aF2(k, b; u) + kFL(k, bxc; u)
N 1.
=1 [_k sin 2k (u) Ok Pk (u)] (3.40)

k[ sm2a )]
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FIG. 6. Comparison of the cMERA constructed Berry curvature
Fi(k,0x;u = uyy) and the exact results for (a) a non-relativistic
Chern insulator (b) a non-relativistic trivial insulator (c) a relativistic
insulator with m > 0 and (d) a relativistic insulator with m < 0.
The parameters we used are (a) m = 2 (b) m = —2 (c) m = 2 and
(d) m = —2. We use A = 1000 for all cases.

1 and k are unit vectors along the renormalization direction
and the momentum direction, respectively. This is an emer-
gent Berry curvature due to the extra renormalization direction
1. By checking the other three phases with the same proce-
dures, one can find that F° ¢(k, Ox; u) for the relativistic insula-
tors with m > 0 has the same expression as that in Eq. (3.40).
For the other two phases with ¢ = b and d, one has

fb(d)(k,Qk; u) =1 H sin 2902((1) (U)aksﬁz(d) (U)}

- 1
+k [_k sin 2902(‘1) (u)@unpz(d) (u)} .
(3.41)

Again, the sign difference between cases a(c) and b(d) is
caused by the sign change of mass term. To check the va-
lidity of the formulas in Egs. (3.40) and (3.41), we compare
the cMERA constructed F. (k, O ;u = uyy) with the exact
results in the low energy physics region. As shown in Fig. 6,
the cMERA results agree with the exact results in an excellent
way.

Next, we will fogus on the case of Chern insulators, and see
what happens for F (k, fy; u) if u deviates from © = uyy and
goes deeper towards ug. In other words, we hope to study the
Berry curvature flow in the bulk of cMERA. As shown in Fig.
7, according to Egs. (3.34) and (3.40), we plot ]?(k, Ox;u) as
a function of momentum %k = |k| and layer u. It is found that
the Berry curvature F (k, Ox; u) emanated from the UV layer
uyy flows towards the IR layer ujg. Before it reaches u = u*,
F(k, 0y; u) is bent backwards along k = Ae*. In addition, it
can be observed that a vortex feature develops near u = u*.

Then we may ask two questions. (i) How does the vortex
feature in F (k,Ox; u) arise? (In the appendices, we also cal-
culate the Berry curvature flow for the other three phases, and
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FIG. 7. Berry curvature flow in cMERA of Chern insulators. The
Berry curvature emanated from the UV layer is bent backward along
k = Ae", before it reaches v = u”. In addition, a vortex feature
develops near u = u*. The parameters we use are m = 10 and
A = 1000, based on which one has u* ~ —5.76.

there is no vortex feature for these three phases.) (ii) Now
that the Berry curvature is bent backwards along k = Ae“,
where does the Berry curvature flow finally? For question (i),
as discussed in detail in Appendices VIIB 5, it is shown that
the vortex feature in the Berry curvature flow is mainly caused
by the sign change of ¢%(u) in Fig. 4(a). Now we are mainly
interested in question (ii) as follows.

At the UV layer uyy, we calculate the Berry flux in the
region k' < k, i.e.,

k
O(k,u=0) = /dek/ K dl' Fo (K, O u = 0),

and compare it with the exact result, as shown in Fig. 8. For
the case of Chern insulators in Fig. 8 (a), one can find that
for k < A, the Berry flux ®(k,u = 0)/27 calculated from
cMERA agrees with the exact result very well, and it reaches
—1 at certain k&, which is much smaller than A. However,
as k increases further, the Berry flux deviates from the exact
result, and decays from —1 to 0 gradually as k — A. This in-
dicates that the cMERA result is not exact for large k, which
was also observed in Ref. 9. In addition, because we do not
find any ‘source’ or ‘drain’ for the Berry curvature in the bulk
of cMERA, this total zero flux ®(k = A,u = 0) = 0 indi-
cates that all the Berry curvature emanated from the low en-
ergy physics region of the UV layer flows back to the UV layer
itself.

In fact, the conclusion above can be more transparently un-
derstood by checking the cMERA constructed wavefunction.
It is noted there is no singularity in the cMERA constructed
wavefunction |¥(k, u)). Therefore, based on Eq. (3.39), the
Berry flux can be expressed as

D(k,u =0)

1
o _ﬂ/‘A(k’ek’u = O)kd(gk

= —sin? i (u = 0).
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FIG. 8. Berry flux ®'(u = 0)/2r for (a) a non-relativistic Chern
insulator (b) a non-relativistic trivial insulator (c) a relativistic Chern
insulator with m > 0 and (d) a relativistic Chern insulator with m <
0. The parameters we used are (a) m = 2 (b) m = —2(c) m = 2
and (d) m = —2. We use A = 1000 for all cases.

Considering ¢ (v = 0) = 0 for & = A, one immediately
obtains

(k= Au=0)=0,

which agrees with our numerical calculation. Similarly, at
each layer u, one can find ®(k = A,u) = 0. Therefore, the
total Berry flux at each layer is conserved to be zero.

To conclude, in this part we study the Berry curvature flow
in the bulk of cMERA for a Chern insulator. In the low energy
physics region & < A, cMERA can reproduce the exact re-
sults on Berry curvature in the UV layer. However, it is found
that the Berry curvature, which is emanated from the low en-
ergy physics region, after bent back near u = u*, flows back-
wards to the large k region in the layer v = uyy, as schemati-
cally shown in Fig. 9 (a). Therefore, the cMERA constructed
wavefunction in the whole layer u = wuyy is topologically triv-
ial, although we can see the band inversion feature in the low
energy physics region. From this point of view, the ‘topologi-
cal phase transition’ we found in the previous part is not a true
phase transition.

It is interesting to compare the Berry curvature flow in
cMERA for all the four phases. By repeating the same pro-
cedures for Chern insulators (see Appendices VII B), we ob-
tain the Berry curvature flow in the low energy physics region.
(See Fig. 17, Fig. 18 and Fig. 19, respectively.) It is found that
there is no vortex feature in cMERA for the other three phases,
because there is no sign change in the corresponding g (u).

We also check the Berry flux distribution in the whole re-
gion 0 < |k| < A for the four phases, as shown in Fig. 8.
For relativistic insulators with both m > 0 and m < 0, one
has similar conclusions as that of non-relativistic Chern insu-
lators. The Berry flux ®(k,u)/2m reaches ~ F3 at certain k
which is much smaller than A, and then decays to zero grad-
ually as k increases to A. On the other hand, for the non-
relativistic trivial insulators, the Berry flux ®(k,u)/2m ob-
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tained from cMERA agrees with the exact result in the whole
region 0 < |k| < A. In addition, one can find that the to-
tal Berry flux in the low energy physics region |k| < A is
already zero, and the large k region does not contribute any
Berry curvature.

Based on the analysis above, we summarize the features of
Berry curvature flow in cMERA for the four phases as follows,
with the schematic plotting shown in Fig. 9:

(a) Non-relativistic Chern insulator:

A bundle of Berry curvature with a total Berry flux —27
is emanated from the low energy physics region in the UV
layer u = uyy. These Berry curvature is bent backwards near
u = u*, and flows back to the large k region in the UV layer.
In addition, a vortex feature develops near u = u*.

(b) Non-relativistic trivial insulator:

A bundle of Berry curvature is emanated from the low en-
ergy physics region in the UV layer u = uyy. These Berry
curvature is bent backwards near v = u*, and flows back to
the low energy physics region itself in the UV layer. No Berry
curvature is emanated or absorbed in the large & region.

(¢) Relativistic insulator with m > 0:

A bundle of Berry curvature with a total Berry flux —7 is
emanated from the low energy physics region in the UV layer
u = uyy. These Berry curvature is bent backwards near u =
u*, and flows back to the large k region in the UV layer.

(d) Relativistic insulator with m < 0:

A bundle of Berry curvature with a total Berry flux —7 is
emanated from the large k region in the UV layer u = uyy.
These Berry curvature is bent backwards near v = u*, and
flows back to the low energy physics region in the UV layer.
In other words, we simply reverse the direction of Berry cur-
vature flow in (c).

IV. CMERA OF TOPOLOGICAL INSULATORS WITH A
TOPOLOGICALLY NONTRIVIAL IR STATE

We show in the previous section that, with a topologically
trivial IR state, one cannot construct the exact ground state of a
Chern insulator with a nonzero Chern number. To recover the
nontrivial topological property of the exact ground state, we
may have to consider a cMERA with a topologically nontrivial
IR state.

Before we move on to the cMERA with a topologically
nontrivial IR state, it is helpful to review the prior works on
the lattice MERA construction of topological phases. In Refs.
7 and 8, the lattice MERA of Kitaev’s toric code model and
Levin-Wen’s string-net model have been constructed in an ex-
act way. It is found that the state at each layer of the lattice
MERA has nontrivial topological properties, and it will never
flow to a topologically trivial IR state. Recently, the symme-
try protected entanglement renormalization was proposed??,
which is applied to the lattice MERA construction of a sym-
metry protected topological (SPT) phase. In particular, for the
AKLT state, it is found that as long as the ZJ symmetry is pre-
served in the process of RG flow, the state in each layer of the
lattice MERA is nontrivial in topology. In addition, in Ref.
39, although a concrete lattice MERA network for a Chern
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FIG. 9. Schematic plot of Berry curvature flow for (a) a non-relativistic Chern insulator, (b) a non-relativistic trivial insulator, (c) a relativistic
Chern insulator with m > 0 and (d) a relativistic Chern insulator with m < 0.

band insulator is still difficult to find, procedures to construct
the lattice MERA are proposed: Starting from a ‘top’ tensor,
which represents the exact ground state of a small cluster of
a Chern insulator, by using disentangler and isometry oper-
ations on and on, one may be able to construct the ground
state of a Chern insulator in a very large size. Apparently, the
state at each layer inherits the topologically nontrivial prop-
erty from the ‘top’ tensor. In short, based on previous works,
it suggests that in the lattice MERA, a topologically nontrivial
UV state always flows to a topologically nontrivial IR state.
Therefore, we believe that in cMERA, a continuous version
of the lattice MERA, we may have a parallel story.

A. cMERA of Chern insulators in (2+1)D with a topologically
nontrivial IR state

The main procedures are the same as those in Sec. III. The
cMERA constructed many-body wavefunction at each layer
has the form

W) = [T (Pwelto) - Qeel<) vae). (44

[k|<A

where the expressions of Qx(u) and Pk (u) can be found in
Eq. (3.11). For convenience, we rewrite them here

Qi (u) = — ie™ " (A*e_i J* gicuhdu” _ B*eifug‘r‘(w)du) ,

Pk(u) :Aeif“ g{;(u')du' + Be_i fu g;(u’)du'.

4.2)

where g;. (u) is defined through Eq. (3.6). Instead of choosing

A = B = 1/2, to have a topologically nontrivial IR state, we
choose A = —B = —i/2. Then one can obtain

Qul) = cos [ gi(u )
w R 4.3)
Py (u) :Sin/ gr(u')du',

1R

In particular, in the IR limit, one has

|Qn0nlrivial> = |\I/(’LL N UIR)> _ H (—€7i9k¢1(k)> IVaC>.
[k|<A
“4.4)
Here we use ‘nontrivial’ because the cMERA constructed
wavefunction |¥(w)) at arbitrarily finite layer w carries a
nonzero Berry flux ®/27 = —1, as discussed in detail later.
Next, by requiring

|V (u = uyy)) = |¥), (4.5)
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FIG. 10. d.(k,u) in the bulk of cMERA for a non-relativistic Chern
insulator with a nontrivial IR state. The parameters we use are m =
10 and A = 1000, based on which one has ©* ~ —5.76. Note that
band inversion happens at each layer, which indicates that the state
at each layer is topologically nontrivial.

where |¥) is the exact ground state of a Chern insulator in Eq.
(3.3), one can obtain

Aet(m + A%e?)

nomrivial(u) _ 1
- 2 (m _ A2e2u)2 +A2€2u

9

t
+arctan Aev
(4.6)
It is straightforward to check that
gnontrivial (u) _ gtrivial(u) 4 g7 (47)

where ¢""V#!(y) is g(u) obtained from the cMERA with a
topologically trivial IR state(see Eq. (3.19)).

Following the same procedures in Sec.IIl, one can also de-
fine the emergent holographic metric with the expression

gz(gltrivial (u) _ [gnontrivial (u)] 2 .

(4.8)

N | =

B. Band inversion in cMERA of Chern insulators

To understand the topological property of the state
at each layer, we study the band inversion behavior in
the bulk of cMERA with a topologically nontrivial IR
state. As discussed in SecIll, we use d.(k,u) =
(¥(k,u)|o?|¥(k,u)) to track the band inversion, where

0 (k, u)) = (Pk(u)wg(k) - Qk(u)z/q(k)) Ivac) is the sin-

gle particle wave-function. By using the expression of Py (u)
and Qx (u) in Eq. (4.3), one can obtain

d,(k,u) = cos2pk(u), 4.9)

\/(m — A2e20)2 { \2e2u 4 (m — A2e?%)
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where @y (u) is now expressed in terms of g"o"iVial(y,) (see
Eq. (3.34)). The plot of d.(k, ) is shown in Fig. 10. Dif-
ferent from the case with a topologically trivial IR state, it is
found that the band inversion happens at each layer u, which
indicates that the state at each layer is topologically nontrivial.

To have a better understanding of the band inversion, it is
helpful to see how d. (k,u) is related with g°"Vial(y), In
the following, we discuss the behavior of d. (k, u) in separate
regions:

w<u<uyy, k>k*
ur < u < u*, k>Ae"

Region I :
Region II :
Region Il :  wupr < u < upy, k<K min[Ae“*,Ae“].

(i) Region I : This region corresponds to the upper right
corner in Fig. 10. In this region, one has g"°"Vi#!(y) ~ 0, and
therefore @y (u) ~ 0. Then we have

d,(k,u) = cos 2¢y(u) ~ 1. (4.10)

(i1) Region II : This region is trivial in the sense that the
single-particle state |W(k,u)) is the same as the IR state
|Qrontrivial ()} because no entanglement is created/removed

in this region. Based on Eq. (4.4), one has
dz (k, U) _ <Qn0ntrivial(k)‘O_z|Qnontrivial(k)> =1. (411)

(iii) Region III : In this region, to make an estimation of
d.(k,u), we use the approximated expression of gnomrivial (y;),
Le.,

ﬁ
gnomrivial (u) ~ 2 ’ (4 1 2)
0,

Then ¢y (u) can be expressed as

T min[u*,u] k T k
~ A . —
i) 2/1 “Nes 2 < min[Ae“*,Ae“])’

og £
4.13)
based on which one has
k

By considering k < min[Ae* , Ae*], then d.(k,u) can be
evaluated as

d.(k,u) = cos [71' (1 — 0+)] ~ —1. (4.15)

Based on the discussions above, it is apparent that as we
increase k from k = 0, d. (k, u) changes as follows:

d.(k,u): —1—+1, (4.16)

which happens in each layer u from ur to uyy. In other
words, the band inversion happens in each layer u. This is
in agreement with the calculation in Fig. 10. It is empha-
sized that the discussion above applies to the whole region
with 0 < k& < A and uir < u < uyy, which indicates that the
state in each layer is topologically nontrivial.
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FIG. 11. Comparison of cMERA constructed Berry curvature

Fu(k,6x;u = 0) with the exact result for a Chern insulator. The
parameters we use are m = 10 and A = 1000.

C. Berry curvature flow in cMERA of Chern insulators

To further identify the topological property in each layer of
cMERA, in this part, we will study the Berry curvature flow
in the bulk of cMERA.

Following the previous section, based on the wavefunction
in Egs. (4.1) and (4.3), one can obtain the Berry connection as
follows

Ak (k, Ox; u) = — i(P(k, u)|0k|¥(k,u)) =0,

1

1
Ao, (k,Ox;u) = A (U(k,u)|0s, |¥(k,u)) = % cos> ox(u),
Au(k, O u) = — i(V(k, u)|0u|¥(k,u)) =0,
4.17)
where ¢y (u) is defined as
“ nontrivial ke™*
Pr(u) = dsg (s)—— (4.18)
log k/A A

Therefore, the Berry curvature can be obtained by calculating
F =V x A. Then we have

F(k, b; ) :=0F, (k, Ou; u) + kFp.(k, Oc; )

|1
= {k‘ sin 2¢k(u)8k<ﬂk(u)} (4.19)

Lk [_]16 sin 2cpk(u)8u§0k(u)} :

As the first step, we check if the Berry curvature and Berry
flux obtained from cMERA agrees the exact results in the UV
layer u = uyy. As shown in Fig. 11, we compare the cMERA
constructed F,,(k,0x;uw = 0) and the exact result of Berry
curvature in Eq. (7.12) in the low energy physics region k <
A, and they agree with each other very well. Then in Fig.
12, we compare the Berry flux obtained from cMERA and the
exact result in the whole region 0 < k£ < A. For cMERA
with a topologically trivial IR state, the Berry flux agrees with
the exact result only in the region k& < A. As k increases,
the Berry flux deviates from the the exact result, and decays
to zero gradually. For cMERA with a topologically nontrivial
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FIG. 12. Comparison of cMERA constructed Berry flux ®(u =
0)/27 in layer v = uwyv = 0 with the exact result for a Chern insu-
lator. For cMERA with a topologically trivial IR state, the Berry flux
deviates from the exact result from certain momentum k, and decays
to 0 gradually as k — A. For cMERA with a topologically nontrivial
IR state, however, it agrees with the exact result in the whole region.
The parameters we use are m = 10 and A = 1000.

IR state, the Berry flux obtained from cMERA agrees with the
exact result in the whole region 0 < k£ < A, which indicates
that cMERA with a topologically nontrivial IR state respects
the topological property of the exact ground state.

Then we will study the Berry curvature flow in the bulk
of cMERA in the following. As shown in Fig. 13, we
plot the vector field F(k, fy;u) based on F,(k,bi; u) and
Fi(k, Ox; u). Quite different from the results in cMERA with
a topologically trivial IR state, here the Berry curvature is not
bent backwards near u*. On the contrary, the Berry curva-
ture is bent towards smaller k, and then flows towards the
IR layers. Note that the Berry curvature flow in IR layers
(ur < u < u*) is not shown here, because the Berry cur-
vature converges to smaller k and the field strength is very
strong (Therefore, to have a good contrast of display for the
Berry curvature flow near u*, we only plot F'(k, 0i; u) in the
finite region.). Nevertheless, the behavior of Berry curvature
flow in the whole region is schematically shown in Fig. 14. In
Appendix VIID, we give a detailed analysis on how the Berry
curvature flow F(k, 0y u) in the bulk of cMERA is related
with the behavior of grontrivial (y),

In addition, we check the total Berry flux ®(u) in different
layers, and find that the Berry flux in each layer is conserved
to be ®(u) = —27. This can be easily understood by writing
down the form of Berry flux explicitly

<I>(u, k= Aeu) = 7{ A(kv ek; ’U’)kdek‘k:Ae“

(4.20)
= — 21 cos? wi(u) |k=Aeu'
By noting that ¢y (u)|g=pe« = 0, one has
O(u, k= Ae") = —2m, 4.21)

which is independent of the layer w.
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FIG. 13. Berry curvature flow in the bulk of cMERA for a Chern
insulator with a topologically nontrivial IR state. The parameters we
use are m = 10 and A = 1000, based on which one has u* =~
—5.76.

As a short sum in this part, we find that a// the Berry curva-
ture emanated from the UV layer flows to the IR layer, and the
total Berry flux at each layer u is conserved to be —27. This
verifies that the cMERA constructed wavefunction |¥(u)) at
each layer w is topologically nontrivial. Our result parallels
with the story in the lattice MERA7-3:3,

We give some remarks before ending this part. It is noticed
that if we focus on the IR state |Q"nVial) in Eq. (4.4), there
is no real space entanglement. However, for an arbitrary finite
layer u, the state in Eq. (4.1) carries finite real space entangle-
ment, because of its topologically nontrivial property. This is
as expected, because we cannot remove all the entanglement
of a Chern insulator by simply using a local unitary operation
within finite depth.

In Appendices VII'F, we also discuss the cMERA construc-
tion for a Chern insulator with higher Chern numbers. Both
topologically trivial and nontrivial IR states are considered.
The physical pictures are basically the same as the case with
Ch; = —1 as discussed in the main text.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we studied the entanglement renormaliza-
tion group flows of topological band insulators in (2+1)D
with cMERA. In particular, we constructed the cMERA for
a Chern band insulator with topologically trivial and nontriv-
ial IR states, respectively.

For the cMERA of a Chern insulator with a topologically
trivial IR state, the UV state constructed from cMERA agrees
with the exact ground state in the low energy physics region
k < A. The topological properties in the bulk of cMERA
were studied through band inversion and Berry curvature flow.
In the low energy physics region, it was found that band in-
version happens in the region u* < u < wuyy, where u* is
determined by the mass term. In the region ur < u < u*,
however, there is no band inversion. This indicates a ‘topolog-
ical phase transition’ in the renormalization direction. Then
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FIG. 14.  Schematic plot of Berry curvature flow in the bulk of
cMERA for a Chern insulator with a topologically nontrivial IR state.
All the Berry curvature emanated from the UV layer flows to the IR
layer. The total Berry flux in each layer is conserved to be —27.

we studied the Berry curvature flow in the bulk of cMERA. It
was found that the Berry curvature, which is emanated from
the low energy physics region in the UV layer, is bent back-
wards near v = u*. Finally, these Berry curvature flows to
the large k region in the UV layer, which results in a total zero
Berry flux in each layer of cMERA. Therefore, the cMERA
constructed UV state cannot recover the exact ground state
of a Chern band insulator in the whole region 0 < k < A.
Besides the topological properties, we also studied the geo-
metric properties in the bulk of cMERA by calculating the
holographic metric.

For the cMERA of a Chern insulator with a topologically
nontrivial IR state, the UV state constructed from cMERA
agrees with the exact ground state in the whole region 0 <
k < A. It was found that band inversion happens in each layer
of cMERA, and the total Berry flux in each layer is conserved
to be —27. Furthermore, we studied how the Berry curva-
ture flows in the bulk of cMERA. We found that all the Berry
curvature emanated from the UV layer flows to the IR layer.
This means a topologically nontrivial UV state corresponds
to topologically nontrivial states in the bulk of cMERA. This
parallels with the story in the lattice MERA, where it is found
that if the UV state is nontrivial in topology, then the state in
each layer of the bulk is similarly nontrivial.

Finally, we mention some interesting future problems as
follows.

e Finite temperature effect on cMERA of topological insu-
lators

Our current work focuses on the cMERA construction of
topological insulators at zero temperature. Most recently,
topological insulators at finite temperature were studied by in-
troducing two quantities: the Uhlmann phase in (1+1)D sys-
tems and the Uhlmann number in (2+1)D systems*’°, which
are used to characterize the topological invariant of the sys-
tem at finite temperatures. In particular, it is found that, for
topological insulators, there exists a critical temperature T,
where thermal topological phase transitions may happen. It



may prove interesting to study how finite temperature 7" af-
fects the topological property as well as the geometric prop-
erty in the bulk of cMERA, and in particular, how the ther-
mal topological phase transition reveals itself in the bulk of
cMERA.

e cMERA for interacting topological phases

The topological band insulators we discussed here are non-
interacting systems. Generalizing our method to topologi-
cal phases with interactions, such as fractional quantum hall
states or fractional Chern insulators, remains an open prob-
lem. To obtain the ground state of fractional quantum hall
systems or fractional Chern insulators, one may project copies
of free fermion states onto a gauge invariant subspace®”. How
such projections affect the bulk properties of cMERA is un-
known at this moment.

e Quench dynamics in cMERA

Recently, quench dynamics in AdS/CFT correspondence
has been discussed intensively. In particular, the time evo-
Iution of cMERA after a global quantum quench has been
studied in free field theories. It is found that the behavior
of the holographic metric qualitatively agrees with its grav-
ity dual given by a half of the AdS Schwarzschild black hole
spacetime®'. As studied in our current work, the geometric
and topological properties are closely related with each other
through the disentangler in cMERA. Therefore, it will be of
great interest to study how the quantum quench affects the
topological quantities, e.g., the Berry curvature flow in the
bulk of cMERA.

o The relation of cMERA and exact holographic mapping

In a companion paper>?, by using the exact holographic
mapping (EHM), the holographic duality between a (2+1)D
Chern insulator and a (3+1)D topological insulator is studied.
In the EHM approach, the Chern number of the boundary the-
ory gets distributed to different positions of the bulk. There-
fore the two different approaches lead to different bulk theo-
ries. It will be interesting to have more direct comparison of
the dual geometry obtained in these two approaches in future
works.
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Layer u
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FIG. 15. Tensor network structure of the lattice MERA. Circles are
lattice sites at different coarse-graining scales. Blue squares are uni-
tary disentaglers which are used to remove short range entanglement
between neighboring blocks, and green triangles are isometric coarse
graining transformations which map a block of sites into a single site
in the next layer. In different layers, entanglements are removed in
different length scales. For a deeper layer u, we create/remove entan-
glement in a larger length scale ae™“, where a is the lattice constant.

VII. APPENDICES
A. Brief review of the lattice MERA

Some nice reviews of the lattice MERA can be found in
Refs. 45 and 46. For the completeness of this paper, we give
a brief introduction to the lattice MERA here. The construc-
tion of the lattice MERA can be understood in the following
two ways. First, it can be considered as a coarse graining
transformation (combined with disentangling operations) that
maps the lattice £,, in layer u to a sequence of coarser lattices
Ly—1,Ly—2, -, and therefore it leads to a real space renor-
malization group transformation. Secondly, the lattice MERA
can be viewed as quantum circuits with the output as the states
living on the lattice at u = 0 and the quantum gates as the dis-
entanglers and ‘coarse grainers’ (isometries). With appropri-
ate quantum gates, the lattice MERA can transform the input,
which is an unentangled state at the IR layer, into the target
state |¥), which faithfully represents the ground state.

Here we choose the language of renormalization group
transformation for concreteness. Denoting £ as the lattice
with N sites living in (d+1) dimensions in which the bare lat-
tice Hamiltonian and its ground state are written on, the lattice
MERA is composed of tensors living in |T’| ~ log N different
layers, with each layer containing a row of disentanglers v and
arow of isometries w. Let us take the lattice MERA in (1+1)D
for example, as shown in Fig. 15. We start from the origi-
nal lattice £y = £. By applying disentanglers V., = JJ o'
to remove the short range entanglement between neighboring
blocks, and then applying isometries WL = [Jw' to map
blocks of sites in £y into single sites in the next layer, we ob-
tain £_; which is the first step coarse grained lattice of L.
Repeating this procedure, we get a sequence of lattices in the
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FIG. 16. ‘Interaction’ picture of MERA. We add a dummy |0) at
each isometry operation w to keep the Hilbert space conserved. The
circles, squares, and triangles have the same meaning as those in
Fig.15.

lattice MERA:

Ut ut, ul Ul

3 Ly =S Loyt —5 Ly, (1.1)
where Ul = W]VI. We get the increasingly coarse
grained states, corresponding to the increasingly coarser lat-

tices {Lo, L_1,--- , L}, as follows

1 t T

Ul—l U—2 Uu—l UT
[Wo) — [U_q1) — -+ |Ty) — [Tyoq) - — |Tp).
(7.2)
To be more precise, | ¥, 1) = U] _,|®,), from which one
can obtain
W) =U Uy Ur|r) = P [ VuWul¥r), (7.3
u

where the symbol P is a path-ordering which puts all opera-
tors with smaller v to the right. Eq. (7.3) is very useful for
the following reasons: (i) It is straightforward to generalize to
continuum MERA, as will be seen clearly later. (ii) It makes
the construction of the lattice MERA intuitive. Given |¥7)
which may be unentangled, by doing dilation (scaling) W and
adding short-ranged entanglement V repeatedly, we can ob-
tain the target state |¥o) which is the ground state for a given
Hamiltonian. (iii) It makes clear that at each layer the disen-
tangler W (u) acts in different length scales. As u goes deeper
towards 7', the quantum entanglement is created/removed in
larger length scales ae™", and thus smaller momentum scales
e*/a, where a is the lattice constant. For the algorithm to op-
timize the disentanglers V" and isometries W, one can refer to
the detailed descriptions in Refs. 45 and 46.

Next, we introduce the ‘interaction’ picture of MERA, as
shown in Fig. 16. The convenience of the ‘interaction’ picture
of MERA is that as the layer u varies, the size of the Hilbert
space is conserved. This is in contrast with the conventional
picture of MERA in Fig. 15, where the size of the Hilbert
space is reduced by a half as v — uw — 1. The strategy of
constructing the ‘interaction’ picture of MERA is simple; at
each isometry (scaling), we add a dummy state |0) replacing
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the state in the Hilbert space to be truncated in the isometry
process. Therefore, as u goes deeper towards ur, we get a lot
of extra |0)’s which are un-entangled in |¥7). This also sup-
ports an intuitive picture of the MERA that as u varies from
ur to ug, we are adding entanglement on the un-entangled
state |0) ® |0) ® ---|0) at different length scales depending
on the layer u. As discussed in the main text, the ‘interaction’
picture of MERA is useful in the construction of cMERA.

B. cMERA of different phases with topologically trivial IR
states

1. c¢MERA of nonrelativistic Chern insulators

A Chern insulator in (2+1) dimensions can be described by
a simple two-band model with the Hamiltonian*’-*® (See also
Eq. (3.1) for more details.)

H = / Pkt (k) [R(K) 0] p(k),  (74)

where

R(k) = (kz, ky, m — k- k), (7.5)
and m > 0. The Hamiltonian in Eq. (7.4) can be diagonalized

by using a unitary transformation

P(k) = Uk)(k), (7.6)
where
. 1 Rs+ R —(Rl—iRg)
0= i R )
o uwk —wvk
T\ v uk )
(1.7)
with R(k) = |R(k)|. Then one can get
7 = [ @k [R09310071(0) ~ RITH)7200]
(7.8)
and the ground state | V) is defined by
D1(K)[0) =0, Pi(k)|T) =0, (7.9

This condition is met uniquely by the state

= [ #b)hvac) = I (uk¢;(k)_vk¢1(k)) Ivac),

[k|<A [k|<A
(7.10)
where
1
Ug =—— ((m — k) +/(m — k2)2 + k2)
\/F (7.11)
v =—— (ke™ %) |
k=7 ()



and N is a normalization factor so that |uy|? + v |? = 1, k =
|k|, and Oy is defined through k cos 6y = k, and ksinfy =
k,. Based on the wavefunction, one can calculate the Berry
curvature at momentum k as follows

1 k2
Flhth) =— ~—F

2 (k2 + (m - k)]

Next we will use cMERA to construct the ground state in Eq.
(7.10). In the main text, we have found that the wavefunction
at layer u is expressed as (See Eq. (3.13))

H (Pk (k) — Qu(u Wq(k)) [vac).

[k|<A
(7.13)

B (7.12)

where the expression of Py(u) and Qx(u) can be found in

Eq. (3.15). Then, by requiring that |¥ (v = uyv)) = |¥), and
defining
“ !.r ! ¢ / / ke_u/
o) i= [ algy = [ o) @1
UR log k/A
one has
(uyy) = arctan —F (7.15)
Pty m—k2+\/(m K2tk

After some straightforward algebra, one can obtain the form
of g(u) in the following,

Ko (A
o) == 50 (Tt ) o
=0k (uuv) — kOkpr (uuv)|, s o

which, after plugging Eq. (7.15) in, results in

1 Ae*(m + A2e?)
g(u) =3 2,2u)2 2,2u
2 (m — A2e?4)2 + A%e
Ae*
\/(m — A2e2u)2 4 A2e2v + (m — Azezu)'
(7.16)

—arctan

Then we obtain g(u) in Eq. (3.19).

2. c¢MERA of nonrelativistic trivial insulators

The cMERA of non-relativistic trivial insulators is slightly
different from Chern insulators because of the sign change of
mass term m, as discussed below.

For non-relativistic trivial insulators, one has

R(k) = (ky, ky,m — k?), (7.17)
with m < 0. However, we should be careful when using the
expression of ground state |¥) in Eq. (3.3) (with u(k) and
v(k) expressed in Eq. (7.7)), since one can find that |¥) is not
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well defined at kK = 0 when m < 0. Therefore, we need to
change the gauge so that

R 4+ iRy
e AR(R—Ry)
— 13
R— R (7.18)
Vg = — —————.
2R (R — R3)
which can be written explicitly as
1 .
ug = — ——ke'%,
\/1N (7.19)
- _ 2)2 2 _ _ L2
vk = \/N( (m—k2)2+k%2—(m k‘))

The Berry curvature has the same form as that of Chern insu-
lators, i.e.,

m + k2

k2 + (m — k2)2}

1
]:(ka ek) = 5 |: E (7.20)
but with m < 0. By comparing the cMERA constructed
wavefunction |¥(u)) in Eq. (3.13) and the exact ground state

wavefunction, we can set A = —B = ie?% /2. Then one has
Qi = — cos i (u),
” SD_ ) (7.21)
Py = — e  sin gy (u).

For u = ujr, one has

1) = [¥(u — ur)) (7.22)

H 11}1 )|vac).

k<A

Then, by requiring |¥(uyv)) = |¥), where |¥) is the exact
ground state of a nonrelativistic insulator, one has

k
U = arctan , (7.23)
P(uv) m_E22 1 &2 — (m— k2)
based on which one can find
9(u) = pr(uvv) = ke (wov)|,_ s o
_ 1 Aet(m+ A2e2v)
2 (m — A2e2%)2 4 A2e2u
Ae"
+arctan .
\/(m — A2e2u)2 f A\2e2¢ — (1 — A2e2u)
(7.24)
One can simply check that in the IR limit and UV limit,
0 u=uRp,
= 7.25
s ={y T 125

With the wavefunction |¥(u)) in layer u, one can get the
Berry curvature

F(k, bx; u) =t H sin Z@k(u)akgok(u)}
) (7.26)
+k [_k sin 290k(u)au90k(u>:| ;

based on which one can plot the Berry curvature flow in the
bulk of cMERA as shown in Fig. 17.
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FIG. 17. Berry curvature flow in cMERA of a non-relativistic in-
sulator with m < 0. The parameters we use are m = —10 and
A = 1000.

3. ¢cMERA of relativistic insulators with m > 0

The ¢cMERA construction of relativistic insulators with
m > 0 in (2+1) dimensions is similar with that of non-
relativistic Chern insulators as discussed in the main text. In
this case, one has

R(k) = (kz, ky, m). (7.27)
Then based on Eq. (7.7), one can obtain
1
U =—— (m+ m2—i-l<:2)7
\/1N ‘ (7.28)
Vg =—— (ke*wk) ,

VN

where N is the normalization factor. Based on the ground
state wavefunction, one can get the Berry curvature :

1 m
F(k,b)=— s ——.
2 (m? + k2)>
The cMERA constructed Py (u) and Qx(u) have the same
expressions as those in Eq. (3.15). By requiring |¥(u)) =
| ), one can obtain

(7.29)

vk (uyy) = arctan (7.30)

—k
based on which one can get the form of g(u):
9(w) =pr(uvv) — ki (wov)],_ o
1 mAe" Ae®
:iimz T AZe2a — arctan imQ T AT m.
It is straightforward to check that in the IR limit and UV limit,
one has

(7.31)

0 U = UIR,

g(u) = ™ (7.32)
- Z U = uUyv-
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FIG. 18. Berry curvature flow in cMERA of a relativistic insulator
with m > 0. The parameters we used are m = 2 and A = 1000.

FIG. 19. Berry curvature flow in cMERA of a relativistic insulator
with m < 0. The parameters we use are m = —2 and A = 1000.

With the wavefunction |¥(u)) in layer u, one can get the
Berry curvature

.f(k, O; u) =0 [; sin 2g0k(u)8kcpk(u)}
) (7.33)

2 sin 2y, (U)au<,0k: (U):l )

+1;[

based on which one can obtain the Berry curvature flow in the
bulk of cMERA as shown in Fig. 18.

4.  c¢MERA of relativistic insulators with m < 0

The ¢cMERA construction of relativistic insulators with
m < 0 in (2+1) dimensions is similar with that of non-



relativistic trivial insulators. R(k) has the same expression
as Eq. (7.27) except that we use m < 0 now. ug and vy can
be obtained based on the expression in Eq. (7.18), and are ex-
pressed as

7kei0k,
VN

vk:f\/%(\/mQJerfm),

where N is the normalization factor. Based on the ground
state wavefunction, one can get the Berry curvature with the
same expression in Eq. (7.29), i.e.,

Uk = —
(7.34)

1 m
Flk,Og)=— ————,
(K, 0x) 2 2+ 17)7 (7.35)
with m < 0. In cMERA construction, similar with the case of
non-relativistic trivial insulators, Py and @k have the expres-

sions

{ e = —cos Pe(u) (7.36)
Py = — e sin i (u).
For © = ug, one has

Q) = [W(u— ur)) = [] ¥](K)lvac). (7.37)

k<A

By requiring that |¥(uyy)) = |¥), where |T) is the exact
ground state, one has

k
QDk(’LLUv) = arctan m,

based on which one can obtain the form of g(u):

(7.38)

9(u) =i (uuv) — kdkpic(uuy)|,_ ..
1 mAe® Ae®

=—————— - arctan .
3mZt AZezn T e e

It is straightforward to check that in the IR limit and UV limit,
one has

(7.39)

0
gluy=< =« (7.40)
4

With the wavefunctions |¥(u)) in layer u, one can obtain the
Berry curvature

F(k, b u) =t H sin 290k(u)6k90k(u):|
(7.41)

Lk H smzwk(umwk(u)} :

based on which one can obtain the Berry curvature flow in the
bulk of cMERA as shown in Fig. 19.
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5. Vortex feature in the Berry curvature flow

In this part, we analyze the vortex feature near © = u* in
Fig.7. Acrossing the vortex core, there are sign changes in
both F,(k, Ox;u) and Fy(k, 0x;w). For convenience, let us
rewrite the expression of F,,(k, Ox; v) and F(k, Ox; u) here

1.
Fulk,O;u) = — Z sin 2¢k (u) Ok px (u),
1.
Fi(k, Ox; u) =7 sin 20K (1) Oy i (1).
First, let us discuss the sign change in F, (k, Ox;u) as we

change k while keeping u = u* fixed. In F,(k,0x;u), the
explicit form of Oy i (u) is

u
9(s) N / 25908
s=log k/A logk/a  Aes

~ Aes
For k < k*, the boundary term — (/J\(es)

Opr(u) =

(7.42)

equals zero
s=logk/A
and does not play any role, and therefore one has positive
Okpx(u). As k — k*, however, the boundary term domi-
nates and one has negative J ¢y (), which explains the sign
change in F, (k, Ox; u).

Second, let us discuss the sign change in Fy(k, fy;u) as
we change wu across v* while keeping k fixed. This is directly
related with the sign change of ¢{*)(u)(see Fig. 4) by consid-
ering

k
Outpr(u) = Teug(u)- (7.43)

In a short sum, the vortex feature of F(k, 6y u) in cMERA
of Chern insulators is closely related with the sign change in
g(u). Note that in the other three phases, i.e., non-relativistic
trivial insulators, relativistic insulators with m > 0 and rela-
tivistic insulators with m < 0, there is no sign change in the
corresponding g*(u) (see Fig. 4). Therefore, the vortex fea-
ture in Berry curvature flow only exists in cMERA of Chern
insulators.

C. Other components of metric in cMERA

Given the wavefunction |Wi(u)), we can also calculate
other components of the metric at each layer w. Similar
with the method to define g, (k,u), we consider the over-
lap of wavefunctions |¥¢(k,u)) and |¥*(k + dk,u)), where
|W(k,u)) is the single-particle wavefunction. Then one can
get

gir(k,u) =Re(0, V" (k, u)|0p ¥ (k,u))
— (O (k, ) | (e, ) WU (k, ) |0 T (K, ).
(7.44)

which can be further simplified as

gin (k) = [l ()] (7.45)



Following similar procedures, one can calculate g,im(k7 u),
and the result is

Giw (k1) = Orppe (1) Ouipie (w), (7.46)

where Oy} (u) is expressed in Eq. (7.42) and 9,4} (u) is ex-
pressed as in Eq. (7.43).

D. Berry curvature flow in cMERA of a Chern insulator with
a topologically nontrival IR state

In this part, we study how the feature of Berry curvature
flow in Fig. 13 is related with the behavior of gnoivial (¢),

(i) Behavior of Fy(k, Ox; u):

Based on the expression of f(k:, Ox;u) in Eq. (4.19), one
has

1 .
Fi(k, O;u) = ~Z sin 2y (1) Oy i (1).

Then by using the expression of d,¢k(u) in Eq. (7.43),
Fi(k, Ox; u) can be expressed as

in 2 i,
fk(k, 0k§ u) — 7wgnomrmal(u)'

o (7.47)

To make an estimation of Fy,(k, f; u), we simply use the ap-
proximated form of g""Vidl (/) as follows

u < u*
(7.48)

T
gnontrivial(u) ~ 5’
0, u>u*.
Based on Eqs. (7.47) and (7.48), one can get
Fr(k,0;u) =0, Yu>u*,

which indicates that there is on Berry curvature flow in £ di-
rection. On the contrary, for u < u*, one has

7 sin 2k (u)

Fi(k, b u) = Aow
where
™ [ k T k
_ ds— =T (1 F ).
(w) = 5 /1ng *Aes 2( Ae“)

Considering that k& < Ae*, one always has sin 2y (u) > 0.
Therefore, one has

Fi(k, Ox;u) <0, Yu<u*.

From the analysis above, it is found that the Berry curvature
component Fi (k, fx; ) is finite only in the IR layers and it
points towards the smaller k direction.

(ii) Behavior of Fy,(k, Ox;u):

To study the bending of the Berry curvature flow, we are
interested in the region k < min [k*, Ae"]. From Eq. (4.19),
one has

1
Fulk,Ox;u) = Z sin 2k (u) Ok i (u). (7.49)
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By using the expression of Oy (u) in Eq. (7.42) and the ap-
proximation in Eq. (7.48) one has

0, u>u*
Fulk, O;u) = m 1 sin2pk(u) .
- — _— u<u’.
2 Aev k
(7.50)

Considering that sin2¢k(u) > 0, one always has
Fulk,O;u) < 0 for u < w*. This means that F, (k, Ox; u)
always flows towards the IR layer.

Based on the above analysis on Fy(k,6;u) and
Fu(k,0x;u), we understand that the Berry curvature em-
anated from the UV layer is bent towards smaller k£ near u*,
and then flows towards the IR layer (see Fig. 13 and Fig. 14).

E. Discussion on trivial and non-trivial IR states for cMERA
of Chern insulators

In the main text, we have studied the cMERA construction
of a Chern insulator with topologically trivial and nontrivial
IR states, respectively. In both cases, we require that

| (k,u =uyy)) = |¥), (7.51)
where |¥) is the exact ground state of a Chern insulator. One
may ask why the cMERA with a topologically nontrivial IR
state can recover |¥) in the whole region (0 < k£ < A) while
the cMERA with a topologically trivial IR state cannot ful-
fill this? Here we will discuss this problem mainly from the
mathematical point of view.

For cMERA of Chern insulators with a topologically triv-
ial IR state, the wavefunction at each layer is |U(u)) =

Mgen (Pelw)ehio) - Qulw)p] (1)) [vac), where

Py (u) = cos g (u).

By requiring |¥(k, u = uyy)) = |¥), we can obtain the form
of vk (u) by solving differential equations. However, It is
found that the solution does not match the boundary condition
at u = uyy for large k. Let us check this problem explicitly
as follows.

In the large & limit K — A, one has

uuv:O

k
dsg(s)— = 0.

ex(k — Ayjupy) = lim Aes =

(7.53)
k—A logk/A

Therefore, the cMERA constructed single-particle wavefunc-
tion for |k| — A at uyy reads
| (k, u)) = ¥ (k)|vac). (7.54)

On the other hand, the exact single-particle wavefunction at
large momentum |k| — A reads

|0 (k)) = —e "%yl (k)|vac). (7.55)



Apparently, | (k,uyy)) # |¥(k)) for k| — A, ie., the
boundary condition does not match. To solve this problem,
one needs to modify Qx(v) and Py (u) in Eq. (7.52) as

Qx(u) = — e~ sin (%Ok(U) - g)
r (7.56)
Py (u) =cos (gok(u) - 5) .
In this way, one can find that in the large & limit,
W' (k) ~ —e~ ] (k)| vac), (7.57)

which satisfies the boundary condition at large momentum k.
One may be worried whether | U’ (k, uyy)) satisfies the bound-
ary condition for small k. This can also be explicitly checked
as follows. In the small k limit, one can simply use the ap-
proximation in Eq. (4.13), and then one can obtain

(7.58)

vl 3

Yr—o(u) =~

Therefore, the cMERA constructed single-particle wavefunc-
tion [P’ (k, w)) in small k limit reads

W' (k — 0, upy)) ~ o (k)|vac), (7.59)

which agrees with the exact boundary condition for k — 0.

F. Generalization to higher Chern number cases

In this part, we generalize our cMERA method to construct
the ground state of the Hamiltonian

H = / P’k (k) h (k) (k), (7.60)

with

_ (=Gl (k= iky)
i) = ( (ky +tky)Y —(m— (k- k)'y)) ) (7.61)

where + is an integer and m > 0. Alternatively, h(k) can be

rewritten as
m— k¥ ke 0
h(k) = ( Kot (m - k%)) . (7.62)
The first Chern number corresponding to the ground state of
the Hamiltonian in Eq. (7.60) is Ch; = —+. The disentangler

K (u) has the expression

Rw) =i [ e [ 0)0a(0) + g ) () 00
(7.63)
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where

k k
g (u) == g(u)T (Ae") Aow (7.64)

Following the procedures of cMERA construction in the
main text, we can obtain the cMERA constructed wavefunc-

tion () = g (Awik) = Qulw)v] (K)) vac),
where

—1v0x

. 7.65
Qx(u) = — e~ gin wr(u), ( )

{ Py (u) = cos pp(u),

and the corresponding IR state is |[Q2) = [],<a 7/’; (k)|vac),
which is topologically trivial. By requiring that the cMERA
constructed wavefunction at the UV layer u = uyy matches
the exact ground state, one can obtain

(1) = 1 () [+ (A

trivial 9 [m _ (Aeu)}y]z + (Ae“)zV
— arctan (Aeu)v .
Jim— (e + (Aev)r +m — (Aer)

(7.66)

Note that when v = 1, we recover the results in Eq. (3.19).

Similar with our conclusion in the main text, to recover the
exact ground state in the whole region 0 < k& < A, one should
consider the cMERA with a nontrivial IR state. Then Py (u)
and Qx(u) have the following expressions

Fi(w) =sin ﬁk(u)’ (7.67)
Qu(u) =e™"7"* cos pi(u).
The corresponding IR state is
)= T] (—e—”@kwi (k)) vac).  (7.68)

Ik|<A

Compared to gyrivial in Eq. (7.66), gnontrivial can be expressed as

7T
Ynontrivial (u) = glrivial(u) + 5 (7.69)
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