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Abstract

An atomic interaction is identified in all perovskite compounds, such as ABO3 oxides, that

can potentially result in unconventional structures. The term is harmonic in nature and couples

the motions of the A cations with the rotations of the oxygen octahedra in the perovskite lattice.

When strong enough, this coupling leads to hybrid normal modes that present both (anti)polar and

rotational characters, which are keys to understand a variety of exotic phases. For example, we show

that not only does this new coupling explain the long-period soft phonons characterizing prototype

antiferroelectric PbZrO3, but it also provides us with an unified description of the complex antipolar

structures of a variety of perovskites, including the possible occurrence of incommensurate phases.

This coupling is further demonstrated to result, in the continuum limit, in a energy invariant

adopting an analytical form that has been previously overlooked, to the best of our knowledge.

PACS numbers: 61.50.Ah,63.20.Kr,77.80.-e,77.84.-s,77.84.Dy,78.20.Bh
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I. INTRODUCTION

Antiferroelectrics (AFEs) form a class of important materials that are currently receiving

a lot of attention, mainly because they are promising candidates for obtaining high-density

energy storage1–5. They are also fundamentally challenging and interesting, as e.g. demon-

strated by recent activities aimed at understanding the unusual ground state of the prototype

compound PbZrO3 (PZO)6–12.

PZO’s ground state displays the Pbam symmetry and is mostly characterized by two

strongly unstable soft phonon modes6–9,12. The first of these modes is labeled R+
4 according

to its symmetry, and is rather simple: it features the typical antiphase tilting of the O6 oc-

tahedra in the perovskite lattice. This mode is therefore associated with the zone-boundary

2π/alat(1/2,1/2,1/2) k-point of the cubic first-Brillouin zone, where alat is the lattice con-

stant of the 5-atom cubic perovskite cell. The second mode is more complex, as evidenced

by the unusual pattern of lead and oxygen displacements shown in Figs. 1(a) and 1(b). It is

labeled Σ2 and is associated with the 2π/alat(1/4,1/4,0) k-point. The anti-polar Pb motions

in Fig. 1(a) are usually mentioned as the essential feature characterizing the PZO’s anti-

ferroelectric phase. (Here we use the terms antipolar and antiferroelectric indifferently. As

regards the definition of antiferroelectrics, we adopt the one proposed in Ref. 13.) Finally,

the Pbam ground state also presents a relatively small distortion inherent to a third, weaker

soft mode; this final mode has S4 symmetry and is associated to the 2π/alat (1/4,1/4,1/2)

wave vector (see Figs. 1(d)-(f)).

Recent works6–8 suggest that a trilinear coupling between the predominant R+
4 , Σ2 and

the weaker S4 modes plays an important role to stabilize PZO’s Pbam ground state. More

precisely, first-principles calculations6 show that, while the contribution of the trilinear term

to the energy is relatively small – 27 meV per formula unit (fu) out of the 392 meV/fu energy

gain of the ground state with respect to the cubic high-symmetry phase –, it is nevertheless

critical for the AFE phase to prevail over competing polymorphs. Now, while valuable,

the existing theories have not addressed a critical, necessary ingredient for the preeminence

of the Pbam phase, namely, the strongly unstable character of the exotic Σ2 mode, which

accounts for about 250 meV/fu of the energy reduction. In this work, we reveal the atomistic

couplings responsible for the occurrence of such an unusual structural instability.

Interestingly, such atomistic couplings exist in all perovskite compounds, and involve
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(anti)polar displacements of the A cations in the perovskite lattice (Pb in PZO’s case)

and rotations of the O6 octahedra. Remarkably, they can also explain and hold the key

to understand many other non-trivial antipolar states (see e.g. Refs. 14–16 and references

therein) and even incommensurate phases17,18 in various perovskites possessing a structural

complexity that has acted as a major deterrent of detailed studies. In other words, the

presently discovered couplings also provide an unified description of many antiferroelectric

and incommensurate perovskites.

The manuscript is organized as follows. Section II describes these atomistic couplings,

while Section III demonstrates their relevance to antiferroelectrics and incommensurate crys-

tals. Section IV provides a further discussion that establishes, and compares with previous

works, the analytical form that these atomistic couplings take in the continuum limit. Fi-

nally, Section V concludes this article.

II. INTERATOMIC COUPLINGS

Let us start by adopting the convention that the B cations of the ABO3 perovskite

compounds are at the corners of the reference 5-atom cell, the A cations being at the cell

center. Let us denote by ui the vector representing the off-centering displacement of the

A cation at cell i with respect to its ideal position in the cubic reference structure. For

instance, the pattern of ui’s associated with the Pb displacements in the Σ2 mode of the

AFE ground state of PZO is shown in Fig. 1(a). In that case, these ui vectors are either

parallel or antiparallel to the pseudo-cubic [1̄10] direction. Figure 1(a) further indicates that

the ui’s in the Σ2 mode follow a “++−−” pattern when one moves along the [100] or [010]

pseudo-cubic directions in the (001) plane.

Let us also introduce a pseudo-vector ωi that characterizes the tilting of the oxygen

octahedron centered at the B-site in unit cell i. (Modes characterized by long-range ordered

ωi tiltings are usually termed antiferrodistortive (AFD).) More precisely, the direction of

ωi gives the axis about which the oxygen octahedron rotates and its magnitude yields

the rotation angle19. It is important to realize that, by using the rotations of individual

octahedra as independent variables, we can reproduce any rotational pattern, including

cases in which the tiltings are truncated and the octahedra distort. To emphasize this point,

Fig. 1(b) displays the oxygen motions associated with the tilting of the oxygen octahedra in
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the Σ2 mode characterizing PZO’s AFE; one can see that, out the four in-plane oxygen ions

surrounding any B cation, only two move. Such distortions arise when the individual ωi,z

rotations (about the z or [001] axis) display a “+ + −−” modulation pattern as we move

along the in-plane [100] or [001] directions. Note that these AFD modes are qualitatively

different from the Glazer rotational patterns20 that are most usual in perovskites, which

always involve “+ − +−” (zone-boundary) modulations in the plane perpendicular to the

rotation axis.

Interestingly, different types of energies coupling the {ui} and {ωi} variables have been

reported in the literature. For example, bi-quadratic couplings (i.e., quadratic in both u

and ω variables) account for the well-known repulsion between polar and O6-rotational

distortions19. Additionally, coupling terms linear in u and either quadratic or cubic in ω

have been shown to yield collaborative effects involving both types of variables21, as e.g.

in the so-called hybrid improper ferroelectrics22–24. Further, interactions that go as u2ω

have been shown to be at the origin of inhomogeneous states and novel magneto-electric

effects25. However, none of these interaction terms can account for the occurrence of hybrid

soft phonons like PZO’s Σ2 mode. Indeed, in that case we need to explore the possibility

that the polar and rotational variables couple at the harmonic level, a question that, as

far as we know, has never been discussed in the literature on perovskites. Notably, model

studies for perovskites in which both distortion types are relevant have either focused on the

effects associated with the anharmonic couplings26 or even assumed that local dipoles and

O6 rotations are decoupled harmonically27. It is thus worth to emphasize that there is no

fundamental (symmetry) reason for such modes to not interact at the harmonic level, and

that such a feature constitutes an approximation in most existing models.

Here, we set up to identify the simplest O(uω) couplings that may potentially lead to

hybrid phonons as PZO’s Σ2 and S4 modes. The simplest (in the sense that it involves

relatively close neighbors) interaction that we found has the form:

∆E = K
∑

i

∑

l,m,n=0,1

∑

α,β,γ=x,y,z

ǫαβγ ui,α ωilmn,β(−1)(lx+my+nz)γ , (1)

where K is a material-dependent constant that characterizes the strength of this coupling.

The sum over i runs over all the 5-atom cells of the perovskite structure, and the x, y, and z

subscripts denote the Cartesian components of the ui vectors and ωi pseudo-vectors – with

the x, y and z-axes being chosen along the pseudo-cubic [100], [010] and [001] directions,
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respectively. ωilmn (with l,m,n = 0 or 1) represents the rotation of the O6 group in the

cell that is reached from i by following the lattice vector Rlmn = alat(lx + my + nz).

(lx +my + nz)γ is the γ component of the vector in parenthesis. Finally, ǫαβγ is the Levi-

Civita symbol, i.e., it equals 1 when the ordered triad αβγ forms a right-handed system, −1

when left-handed, and 0 when there are repeated indexes. Figure 2 schematizes coupling

terms inherent to Eq. (1).

Let us now consider distortions given by:

ui,α =Aα{exp[i(kα ·Ri + φα)] + c.c.},

ωi,α =A′

α{exp[i(k′

α ·Ri + φ′

α)] + c.c.},
(2)

where Ri is the lattice vector corresponding to cell i and α = x, y, z. The kα wave vectors

characterize the spatial modulation of each of the components of the ui vectors. Similarly,

the k′

α vectors define, in direction and length, the modulated distortions of the Cartesian

components of the ωi pseudo-vectors. The Aα and A′

α scalars quantify the magnitude of the

u and ω distortions, respectively, and are taken to be real. The φα and φ′
α angles are phases

characterizing specific u and ω patterns, respectively.

By inserting Eqs. (2) into Eq. (1), we can identify which combinations of kα and k′

α wave

vectors result in an interaction via this new coupling. Hence, the expression for the energy

can be rewritten as:

∆E

K =
∑

α,β=x,y,z

AαA
′

β

∑

G

[fαβδ(G− kα − k′

β) + f ∗

αβδ(G+ kα + k′

β)

+ gαβδ(G + kα − k′

β) + g∗αβδ(G− kα + k′

β)],

(3)

where δ is the Dirac delta function and G runs over the reciprocal lattice vectors corre-

sponding to the 5-atom cubic perovskite structure. The fαβ and gαβ coefficients are given

by

fαβ = exp [i(φα + φ′

β)]aαβ (4)

and

gαβ = exp [i(−φα + φ′

β)]aαβ , (5)

where

aαβ =
∑

η=x,y,z

ǫαβη
∏

γ=x,y,z

[1 + (−1)δγη exp (ik′β,γalat)] (6)

with δγη being the Kronecker delta and k′β,γ the γ-component of the k′

β vector.
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III. APPLICATIONS OF THE INTERATOMIC COUPLINGS

Having introduced the basic equations for this new coupling energy, let us inspect what the

implications are as regards the possible occurrence of AFE and other complex instabilities in

perovskite lattices. More precisely, we will consider a number of complex distortion patterns

and show that they lead to reduction of the energy of the cubic perovskite phase via the

new interaction term.

A. The Σ2 antiferroelectric mode

Let us first consider the case of kx = ky = π
2alat

(x + y). The Dirac functions of the

type δ(G − kα − k′
β) in Eq. (3) imply that for k′

β = −kx = −ky we can in principle have

interactions contributing to ∆E
K
. Now, it is immediate to see from Eq. (6) that axy = ayx = 0

for this choice of wave vectors. (We also trivially have axx = ayy = 0.) Nevertheless, we do

have a non-vanishing result when we consider k′

z = −kx = −ky. For such a k′-point we can

prove that axz and ayz are finite and Eq. (3) becomes:

∆E(Σ2)

K = −8AxA
′

z cos(φx + φ′

z) + 8AyA
′

z cos(φy + φ′

z) (7)

Further, it is clear from Eq. (7) that the interaction is maximized in specific cases; for

example, when both φx + φ′

z and φy + φ′

z take values of the form πn, with n ∈ Z, provided

Ax and Ay have opposite signs.

For instance, we get a maximum coupling for φx = φy = −3π
4

and φ′

z = −π
4
. In that

case, the A-cation displacements are out-of-phase with respect to the AFD distortions by

90◦ (since φ′

z − φx = π
2
), and the resulting patterns for the u- and ω-distortions are exactly

those shown in Figs. 1(a) and 1(c), respectively, which correspond to the soft Σ2 phonon

mode in PZO – i.e. they are of the form “+ + −−”. Therefore, the coupling in Eq. (1)

naturally explains the exotic character of the AFE order in PZO and other materials that

share similar features (e.g., PbHfO3 or PHO12,28).

It is also interesting to realize that maximizing the interaction in Eq. (7) can also lead

to solutions that are not those associated with PZO’s AFE pattern. For example, if we

choose φx = φy = φ′

z = −π
2
, we have a second solution that has exactly the same energy,

K(8AxA
′
z−8AyA

′
z), as the first case discussed above. However, this alternative choice yields

a rather different pattern for the A-cation displacements and oxygen octahedral tiltings.
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More specifically, Eqs. (2) correspond to “0+0−” modulations in which positive and negative

values of the u and ω vectors intercalate with null distortions as we move along any of the

three Cartesian axis. Note that these two “++−−” and “0+0−” cases are indistinguishable

(i.e., perfectly degenerate) at the harmonic level. The fact that materials like PZO and PHO

adopt the former pattern over the latter is, in fact, related to anharmonic couplings involving

local dipoles and tiltings, and in particular to energies of the form αu

∑

i(u
2
i,x + u2i,y + u2i,z)

2

and αω

∑

i(ω
2
i,x+ω2

i,y +ω2
i,z)

2, where αu and αω are positive constants and where i runs over

all the sites. As a matter of fact, such energies are higher in the “0 + 0−” pattern than in

the “++−−” case because the “+” and “-” displacements in the “0 + 0−” modulation are

larger by a factor of
√
2 in magnitude than the “+” and “-” displacements in the “++−−”

pattern (when the “+ + −−” and “0 + 0−” waves of Eqs. (2) have the same Aα and A′

α

amplitudes).

B. The S4 antiferroelectric mode

Let us now consider the case of the S4 mode, which is also known to contribute to the

Pbam ground state of PZO and PHO6–9,12. The corresponding patterns for the u’s, oxygen

atomic motions and ω’s are shown in Figs. 1d, 1e and 1f, respectively. For such mode, we

choose kx = ky = π
2alat

(x + y) + π
alat

z in Eq. (2). Then, it can be checked that in this case

we have non-vanishing interactions for k′
x = k′

y = −kx = −ky via the δ(G− kα − k′
β) in

Eq. (3). The resulting ∆E/K solely involves the axy and ayx terms defined in Eq. (6) and

becomes

∆E(S4)

K = 8AxA
′

y sin(φx + φ′

y)− 8AyA
′

x sin(φy + φ′

x) (8)

The magnitude of the interaction is thus maximized for φx + φ′
y = φy + φ′

x = π
2
+ πn, where

n ∈ Z, if AxA
′

y and AyA
′

x have opposite signs. One such solution is φx = φy = −π
4
and

φ′

x = φ′

y = 3π
4
, which yields the patterns of A-cation displacements and tiltings shown in

Figs. 1(d) and (f), respectively. Hence, the coupling of Eq. (1) can also explain the complex

atomic distortion associated with the soft S4 mode of PZO and PHO.
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C. The Λ3 symmetry antiferroelectric mode

Let us now consider other complex atomic patterns as those displayed in Fig. 3. Such

patterns have been demonstrated to contribute to a stable and complex antipolar Pnma

structure in BiFeO3 and BiFe1/2Sc1/2O3
15,16, involving a cell that is a

√
2×4×2

√
2 multiple

of the 5-atom perovskite unit, and are associated with Λ3 modes. As shown in Fig. 3a,

the x- and y-components of the A-cation displacements can be described by ui,x = ui,y =

A cos({k1x ·Ri + φx}) + A cos({k2x · Ri + φx}), with φx = π
4
, k1x = π

2alat
(x + y + z), and

k2x = π
2alat

(x+y−z). In other words, and as consistent with Ref. 16, two different k-vectors

(related by symmetry, but not by inversion) are needed to describe such waves. Similarly,

Fig. 3a further shows that ui,z = C cos({k1x · Ri + φz}) − C cos({k2x · Ri + φz}), with

φz = −3π
4
. Figure 3c also tells us that the x- and y-components of the ω’s are activated

in this mode, while the z-component is null; we thus have ωi,x = −ωi,y = A′ cos({−k1x ·
Ri + φ′

1x}) + A′ cos({−k2x ·Ri + φ′

2x}), with φ′

1x = 0 and φ′

2x = π
2
. It is straightforward to

generalize Eq. (2) to the case of a superposition of two waves with different k-vectors (using

these new A, C and A′ coefficients), and then insert it in Eq. (1), to yield the following

non-vanishing ∆E:

∆E(Λ3)

K = 8CA′[cos(φz + φ′

1x) + sin(φz + φ′

1x)− cos(φz + φ′

2x) + sin(φz + φ′

2x)]

− 8AA′[cos(φx + φ′

1x) + sin(φx + φ′

1x)− cos(φx + φ′

2x) + sin(φx + φ′

2x)]

=− 16
√
2(CA′ + AA′)

(9)

It is thus clear that the bi-linear coupling of Eq. (1) can also explain the occurrence of the

atomic patterns displayed in Fig. 3.

D. Modes along the Σ line

Let us now consider the case in which kx = ky correspond to a wave vector along the Σ

line that connects the center of the first Brillouin zone with the boundary M-point given by

π/alat(x+ y). We thus have kx = ky = λπ/alat(x+ y), where λ is a real number between 0

and 1. We find that in this case case Eq. (3) reduces to

∆E(Σ)

K = 8 sin(λπ)[AxA
′

z sin(φx + φ′

z − λπ)−AyA
′

z sin(φy + φ′

z − λπ)]. (10)
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Several important conclusions can be drawn from this result. First, the sin(πλ) function in

Eq. (10) automatically implies that the effect of our new coupling is null at the Γ (λ = 0)

and M (λ = 1) points. In contrast, the modes associated to intermediate k-points along

the Σ line are affected by the new coupling. Note that such a coupling could thus explain

modulations of the O6 rotations as those discussed in Ref. [30] in Li-doped NdTiO3, provided

these are accompanyed by A-cation displacements. Second, for any selected k-point in the

Σ line, the magnitude of the coupling is maximum when φx + φ′

z and φx + φ′

z take values of

the form π/2+ λπ+ πn, where n ∈ Z, provided that Ax and Ay have opposite signs. Third,

it is important to realize that non-rational values of λ can also yield a coupling energy, i.e.,

our new interaction can potentially be the driving force for the formation of incommensurate

perovskite phases.

E. Phonon spectra and incommensurability

Let us now discuss how our new coupling energy affects the phonon bands of a perovskite

material. To do this, we consider the ideal cubic structure and assume that the second

derivatives of the energy (at the harmonic level) with respect to the atomic displacements

associated with the polar distortions and octahedral rotations are given by:

E ′′

u(λ) =
∂2E

∂u(λ)2
= Fu +Gucos(λπ)

E ′′

ω(λ) =
∂2E

∂ω(λ)2
= Fω +Gωcos(λπ)

E ′′

uω(λ) =
∂2E

∂u(λ)∂ω(λ)
= Huωsin(λπ) ,

(11)

where, as before, we use λ to label k-points in the Σ line31. The diagonal terms of this

k-dependent Hessian matrix represent the typical energetics of polar and AFD bands in

perovskites. The off-diagonal elements have the form of the coupling that we are introducing

in this work, as it is derived from Eq. (10) by taking sin(φx+φ
′

z−λπ) = sin(φy+φ
′

z−λπ) = 1.

The F , G and H parameters characterize the energetics of the u and ω variables and their

mutual coupling (the Huω coefficient is therefore related to the K parameter of Eq. (1)).
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Diagonalizing this k-dependent Hessian results in two bands that are given by

κ−(λ) =
E ′′

u(λ) + E ′′

ω(λ)

2
−

√

(E ′′
u(λ)−E ′′

ω(λ))
2 + 4H2

uω sin
2(λπ)

2

κ+(λ) =
E ′′

u(λ) + E ′′

ω(λ)

2
+

√

(E ′′
u(λ)− E ′′

ω(λ))
2 + 4H2

uω sin
2(λπ)

2
,

(12)

These two bands are associated with eigenvectors that display a hybrid u–ω character at

all k-points except for the λ = 0 and λ = 1 limits. The degree of hybridization depends on

the relative magnitude of the coupling parameter Huω. Note also that, whenever we have

negative eigenvalues κ− or κ+, the corresponding eigenvector constitutes an instability of

the cubic perovskite structure.

Let us consider two choices of parameters and thus discuss the phenomenology that

our simple model can yield. Figures 4a, 4b and 4c illustrate the situation for a case (1)

characterized by the following features: (i) E ′′

u(λ) is lowest at Γ and rapidly increases with

λ (i.e., we have a strong ferroelectric instability of displacive character) ; (ii) E ′′

ω(λ) is

minimal at the M-point (i.e., we have a strong AFD instability) and rapidly increases

for decreasing λ; and (iii) the minimum of E ′′

ω(λ) is lower than the minimum of E ′′

u(λ)

(i.e., the AFD instability is stronger than the ferroelectric one). Figures 4(a)-(c) further

display the resulting κ−(λ) and κ+(λ) eigenvalues of Eq. (12) for three different choices

of the Huω coupling parameter. Moreover, Fig. 4d shows the dependency on Huω of the

value of λ at which κ−(λ) is minimum, which we denote λmin. Figure 4a indicates that a

relatively small Huω results in a small gap between the κ−(λ) and κ+(λ) bands. Note that

the associated eigenvectors change character as a function of λ. Thus, for example, the

distortion mode associated to the smaller eigenvalue κ− is strongly polar close to Γ (with

κ−(λ ≈ 0) ∼ E ′′

u(λ ≈ 0)), but rotational-like close to M (with κ−(λ ≈ 1) ∼ E ′′

ω(λ ≈ 1)).

Such features are typical of an avoided crossing (anticrosssing) between bands, as we have

in this case. As Huω grows (Fig. 4b) we find that κ−(λ) is rather insensitive to λ for a large

region around λ = 1/2. Furthermore and as shown in Fig. 4d, λmin moves away from the

value of 1 when Huω is above a critical value (as it is straightforward to analytically prove

when considering Eqs. (11) and (12)). It then rapidly converges to λmin = 1/2 (see Fig. 4c)

when further increasing Huω, i.e., the dominant instability is a mode with hybrid u − ω

character for large enough Huω.

These results are reminiscent of what was found for the phonons of cubic PZO along the

Σ line, as computed from first principles32. More specifically, PZO seems to correspond to
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the case in Fig. 4b, for intermediate values of the u − ω coupling. Indeed, PZO presents

soft Σ modes with a hybrid character, associated with a very flat band; yet, the dominant

instability of the cubic phase is the AFD one at the boundary of the Brillouin zone. (More

precisely, PZO displays a very flat branch of AFD-like phonons connecting the M and R

k-points6, where kR = π/alat(x + y + z).) Hence, at the harmonic level we would predict

PZO to present a regular AFD ground state, as opposed to the AFE one it actually displays.

Indeed, as demonstrated in Ref. 6, the additional factor that permits the stabilization of

PZO’s AFE phase is the trilinear coupling between R+
4 , Σ2, and S4.

Let us now tackle a case (2) that corresponds to a different choice of parameters and

yields the results shown in Fig. 5. In case (2), the E ′′
u(λ) still has a minimum at λ = 0 but

its dependence with λ is relatively weak (i.e., we have a ferroelectric instability that tends to

be of the order-disorder type). Further, this minimum of E ′′

u(λ) is only slightly higher than

the M-point minimum of E ′′

ω(λ). Figures 5(a), (b) and (c) depict E ′′

u(λ) and E
′′

ω(λ), along

with the coupled κ− and κ+ eigenvalues, for increasing magnitude of the coupling coefficient

Huω. One can see that the minimum of κ−(λ) = κ−(λmin) is displaced from the M-point

towards λ = 1/2 as Huω increases above a certain value. This is because the minimum of

κ−(λ) corresponds to the minimum of E ′′

ω(λ), that is λ=1, for small Huω, while the cross-

coupling E ′′

uω(λ) of Eq. (11) always favors the minimum of κ−(λ) to be at λ = 1/2 for

arbitrarily large Huω. λmin therefore possesses different values, depending on the strength of

Huω, with these values being not necessarily inverse of integers. For instance, as also seen

in Fig. 5b, λmin is equal to 0.69 for Huω=54.8 (note that this value of Huω rather yields, in

Fig. 4b (i.e. in case (1)), a κ−(λ) having a minimum at the M-point, i.e. at λ=1). In other

words, the dominant instability of our model may correspond to arbitrary long-range, even

incommensurate, distortions of the perovskite lattice33, with the period of incommensurate

distortions being related to the coupling coefficient K of Eq. (1). Let us stress that the

incommensurate distortion involves both the A-cation displacements and AFD motions,

since the eigenvector corresponding to κ−(λ) combines both features. The results of this

analysis are thus reminiscent of the Neutron Rietveld refinement of the incommensurate

phase of the Pb(Co,W)O3 compound, which was described as presenting both significant

shifts of the Pb atoms and a rather complex mixing of tilt and deformation of the oxygen

octahedra17.
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IV. DISCUSSION

Our prediction that non-periodic structures can arise from the (microscopic) coupling

between polar and rotational variables bears a strong resemblance with the (phenomeno-

logical) theory proposed by Heine and McConnell (HM)35, which is based on the coupling

between two different modes of transformation. More precisely, these authors worked with

two modes denoted as ψ and ϕ, which they considered to be coupled by the interaction

energy

∆EHM
int = h(ϕ∇ψ − ψ∇ϕ), (13)

where h is a constant and∇ the gradient operator in one dimension. Note that the right-hand

side of Eq. (13) is a Lifshitz invariant36, and has also been used in other phenomenological

approaches to incommensurate crystals37.

It is interesting to determine the form that our microscopic coupling in Eq. (1) takes in

the continuum limit, in order to (i) check whether it is similar to Eq. (13) that was previously

proposed in Refs.35,37 and (ii) have an expression that can be used in the development of

phenomenological theories. Indeed, if we focus on the terms involving a certain ui in our

Eq. (1), it is apparent that this quantity is coupled to the spatial derivatives of ωi. More

precisely, if we take u and ω to be the continuum limit of our local dipoles and O6 rotations,

we can see that Eq. (1) can be rewritten as ∼ u · (∇× ω). Alternatively, the microscopic

Eq. (1) can equally be rewritten by choosing a specific ωi at a given B-site i and considering

its coupling with the spatial derivatives of the u-displacements. In that case, the continuum

limit goes as ∼ ω · (∇× u). It is therefore more elegant to adopt the following form for the

continuum version of Eq. (1):

∆Econt =
K
2
{u · (∇× ω) + ω · (∇× u)} (14)

Equation (14) therefore contains a term of the form (ux
∂ωz

∂y
− ωz

∂ux

∂y
), that is similar to the

previously suggested Eq. (13) when choosing ϕ = ux, ψ = ωz and taking the gradient to

be the partial derivative with respect to y. However, Equation (14) is more general than

the interaction proposed by Heine and McConnell, since it contains five other, symmetry-

equivalent terms, namely (−uy ∂ωz

∂x
+ ωz

∂uy

∂x
), (−ux ∂ωy

∂z
+ ωy

∂ux

∂z
), (uy

∂ωx

∂z
− ωx

∂uy

∂z
), (uz

∂ωy

∂x
−

ωy
∂uz

∂x
), and (−uz ∂ωx

∂y
+ ωx

∂uz

∂y
). In fact, the general form of Equation (14), that involves the

sum of (i) a dot product between a first vector, which is polar and the curl of the second

12



vector, which is axial, and (ii) another dot product that is now between the second vector

and the curl of the first vector, constitutes an energy invariant that has never been previously

proposed to the best of our knowledge while being perfectly valid on symmetry and physical

considerations.

We also performed first-principles calculations to extract the K coefficient of two different

materials, namely PbZrO3 and CaTiO3, that exhibit similar Goldschmidt tolerance factor29.

For that, we chose the configurations of oxygen octahedral tiltings depicted in Fig. 1b

and collected the force acting on the A atoms as a function of the magnitude of oxygen

octahedral tiltings (these configurations are thus associated with the 2π/alat(1/4,1/4,0) k-

point and possess A and B cations sitting at their ideal positions). Equation (1) tells us that

such force should be linearly dependent on this magnitude, with the resulting slope being

directly proportional to the K coefficient. These first-principles calculations did confirm such

linearity, and yield values of 0.013 and 0.011 atomic units for K in PbZrO3 and CaTiO3,

respectively. Moreover the fact that these two systems possess similar values of their K
coefficient, while CaTiO3, unlike PbZrO3, does not adopt the complex Pbam phase as ground

state, can also be understood thanks to additional information provided by these first-

principles calculations, namely the computed energy first decreases, before increasing, with

the magnitude of oxygen octahedral tiltings in PbZrO3 while such energy always increases

with the strength of the oxygen octahedral tiltings in CaTiO3. In other words, the “bare”

octahedral tilting mode (i.e., the one related to E ′′

ω(λ) in Section III.E) is unstable with

respect to the ideal cubic structure at the 2π/alat(1/4,1/4,0) k-point in PbZrO3 while it is

stable in CaTiO3. E
′′

ω(λ) taken at λ=1/2 should thus be negative in PbZrO3 while being

positive in CaTiO3. To illustrate the consequence of such features, Figure 6 displays the

κ−(λ) and κ+(λ) eigenvalues of Eq. (12) when choosing Huω being the same as in Fig. 4b

as well as E ′′

u(λ) being identical to the one selected for Case (1), but now taking a E ′′

ω(λ)

that has a positive value at λ = 1/2 (while having the same value as in Case (1) for the

M-point indexed by λ=1). Figure 6 (which can be thought as corresponding to the case of

CaTiO3) reveals that the resulting κ− at λ = 1/2 is further away from the (minimum) κ−

at λ = 1 than in Fig. 4b (which can be thought as representing the situation for PbZrO3).

As a result and unlike in PbZrO3, no realistic trilinear coupling between R+
4 , Σ2, and S4 can

make Pbam become the ground state of CaTiO3.
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V. CONCLUSIONS

In summary, we have introduced an elemental atomistic energy that exists in all ABO3

perovskites and which naturally explains, in an unified way, a variety of structurally complex

phenomena. This energy couples, in a collaborative fashion, polar distortions driven by the

A-site cations with O6-rotational modes. Analytical derivations starting from this atomistic

energy allow us to understand the nature and (in)stability of complex long-period phonons

associated to k-points in the interior of the first Brillouin zone. Examples are the modes

that play a key role in the stabilization of the antiferroelectric phases of PbZrO3, PbHfO3,

BiFeO3 and BiFe1/2Sc1/2O3.

The newly-proposed couplings should be relevant to explain the behavior of perovskites

in which the A-site cations have a tendency to move off-center (as it is, e.g., the case of those

containing Pb+2 or Bi+3 cations) and also present oxygen-octahedral rotational instabilities.

For instance, the proposed theory is most likely relevant to explain the unusual tilting

pattern recently discovered in Nd1−xLixTiO3
30 as well as the large variety of antiferroelectric

structures that are known to exist in Pb-based compounds (see, e.g., Ref.14). A structural

determination of theA-site distortions and O3-tiltings would be required, at the experimental

level, to confirm such a connection.

Finally, we demonstrated that our theory can also naturally explain the occurrence of

incommensurate phases in perovskites. Indeed, we show that our work provides us with

an unified description that brings together ferroelectric, antiferroelectric, antiferrodistortive

(O6-rotational) and incommensurate structures. Our results thus appear to be critical for a

simple and complete understanding of the structural diversity in many perovskites, making

a clear connection between the simplest and most exotic structures.

The structural instabilities driven by our proposed mechanism are hybrid in nature, in

the sense that they combine (anti)polar and octahedra-rotational characters. Moreover, the

coupling tends to favor long-period distortions corresponding to wave vectors that are away

from the center or boundaries of the first Brillouin zone. In such cases, the pattern of O6

rotations is not perfect (we can say it is truncated) and the oxygen octahedra deform. Hence,

our newly proposed coupling is most likely to be relevant in perovskites with relatively soft

O6 groups. The existing examples suggest that this situation is favored by the presence of

relatively large B-cations in the perovskite structure.
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Interestingly, it should also be possible to incorporate our interatomic couplings in atom-

istic approaches, such as the so-called effective Hamiltonians27,38 (with, e.g., the K coefficient

of Eq. (1) being extracted from first-principles calculations), in order to, e.g., investigate

properties of antiferroelectrics and incommensurate systems, as a function of temperature,

applied electric fields, epitaxial strain, etc. Moreover, we have shown that it is straight-

forward to derive a continuum (original) version of our coupling energy, as needed for the

development of phenomenological Landau-Lifshitz theories.
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FIGURE CAPTIONS

FIG. 1 (Color online.) Patterns of the A-cation distortions, ui (Panel a), oxygen displace-

ments (Panel b) and corresponding B-centered oxygen octahedra rotation pseudo-vectors,

ωi (Panel c) for the Σ2 mode of ABO3 perovskites. Panels (d), (e), (f) show the correspond-

ing patterns but for the S4 mode. The A, B and O ions are shown by black, green and red

spheres, respectively. The different colors used for the arrows in each panel emphasize the

different directions of the corresponding vectors.

FIG. 2 (Color online.) Sketch of representative coupling terms in ∆E of Eq. (1). Only

the couplings involving ui,z are schematized here, since the remaining terms can be straight-

17



forwardly derived from the ones shown by applying the symmetry elements of the cubic

Pm3̄m space group. The blue arrow on the central A-cation stands for the ui,z displace-

ment. The green and red arrows on the corner B-cations represent the x and y-components,

respectively, of the ω pseudo-vectors.

FIG. 3 (Color online.) Same as Figs 1(a)-(c) but for the Λ3 modes of ABO3 perovskites.

FIG.4 (Color online.) Dependencies of E ′′

u(λ), E
′′

ω(λ), κ−(λ) and κ+(λ) along the Σ line,

choosing here (in arbitrary units) E ′′

u(λ) = −75−75 cos(πλ) and E ′′

ω(λ) = −75+125 cos(πλ).

κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω=31.6 (panel (a));

Huω=54.8 (panel (b)); and Huω=316.2 (panel (c)). Panel (d) further displays the λmin value

of λ at which κ−(λ) is minimum, as a function of Huω.

FIG. 5 (Color online.) Dependencies of E ′′
u(λ), E

′′
ω(λ), κ−(λ) and κ+(λ) along the Σ

line, choosing here (in arbitrary units) E ′′

u(λ) = −192.5 − 2.5 cos(πλ) and E ′′

ω(λ) = −75 +

125 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12) for three different cases: Huω=31.6

(panel (a)); Huω=54.8 (panel (b)); and Huω=438.2 (panel (c)). Panel (d) further displays

the λmin value of λ at which κ−(λ) is minimum, as a function of Huω.

FIG. 6 (Color online.) Dependencies of E ′′
u(λ), E

′′
ω(λ), κ−(λ) and κ+(λ) along the Σ

line for Huω=54.8, choosing here (in arbitrary units) E ′′

u(λ) = −192.5 − 2.5 cos(πλ) and

E ′′

ω(λ) = +100 + 300 cos(πλ). κ−(λ) and κ+(λ) are given by Eq. (12).
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