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We show the emergence of a new type of dispersion relation for neutral atoms with an interesting
similarity with the spectrum of 2-dimensional electrons in an applied perpendicular constant magnetic
field. These neutral atoms can be confined in toroidal optical traps and give quasi Landau spectra. In
strong contrast to the equi-distant infinitely degenerate Landau levels for charged particles, the spectral
gap for such 2-dimensional neutral particles increases in particular electric field configurations. The
idea in the paper is motivated by the development in cold atom experiments and builds on the seminal
paper of Aharonov and Casher.
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I. INTRODUCTION

It is a well known that charged particles, like elec-
trons, when subjected in two dimension to an applied
perpendicular constant magnetic field generate Landau
levels. The spectrum of these particles is infinitely de-
generate. This happens because of the minimal coupling
of the electromagnetic gauge field A(x) to the momenta
of the particles in the 2-dimensional Hamiltonian. Lan-
dau levels are generated due to the interference of orbital
motion of charged particles in the external magnetic field
with a spectrum that is controlled by the magnitude of
the physically observed field. A similar question on the
possibility of Landau levels generated by neutral parti-
cles can be asked. Following the same logic we need
to find a field that would couple to the orbital motion
of neutral particles. A natural possibility would be to
consider the spin-orbit coupling of these particles.

In this paper, we address the question of formation of
discrete Landau like states for neutral atoms. In addition
to similarities, the spin-orbit nature of the coupling in-
dicates clear differences for these states compared to the
normal electronic Landau level problem as we explain
below. According to the celebrated result from 1984 of
Aharonov and Casher1, we know that neutral particles
with magnetic moment exhibits the Aharonov-Bohm ef-
fect under certain circumstances. Due to relativistic ef-
fect a particle moving with velocity v in an electric field
E will feel an effective magnetic field B = −(v × E)/c22.
Therefore, theoretically in the non-relativistic limit, one
can write down a Rashba type interaction between a
neutral particle with a magnetic moment and an electric
field E. The Hamiltonian for the system is given by3,

H =
p2

2m
+ ασ · (p ×E) (1)

In Eq. (1) p is the momentum of the particle in two
dimensions (assuming xy plane), m is its mass, E is the

applied electric field and α is related to the magnetic
moment as α ≈ gµB

2mc2 , where c is the speed of light, g is
the Lande-g factor and µB is the Bohr magneton.

There are several earlier works on the interaction be-
tween neutral atoms and magnetic field which are of
relevance to the present one - Paul and Philips et. al.
discussed trapping of neutral atoms4,5; Schmiedmayer
discussed the trapping neutral atoms along a wire6;
Ribeiro et. al analysed the Landau quantization of elec-
tric dipoles in the presence of crossed electric and mag-
netic fields7; Spielman et. al8 discussed synthetic gauge
fields in cold atomic spin-orbit (SO) physics. Motivated
by the recent advances on cold atom physics, here we in-
vestigate the effect of synthetic electric fields on neutral
atoms9.

The outline of this paper is as follows. In Sec. 2, we
explain the basic model and experimental setup for the
interaction of neutral atoms and electric (synthetic) fields
and its utilization to derive Landau like states for the
atoms. In Sec. 3, we outline some realistic estimates
of the typical Landau gaps and some other parameters
of the model in context of cold atom physics. In the
concluding Sec. 4, we discuss our work and also outline
some possible future works based on this idea.

II. NEUTRAL ATOMS IN SYNTHETIC ELECTRIC FIELD

In this section, we describe the physics of the interac-
tion between the neutral atoms and an effective electric
field and how to utilize this interaction to find Landau
like states for the atoms. We rewrite the Hamiltonian in
Eq. (1) as,
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H =
p2

2m
+ α(σ × p).E

=
p2

2m
+ αp.Ae f f (2a)

Ae f f = E × σ (2b)

We see an analogue of the ’gauge’ field coupling to
the momentum of the neutral particles compared to the
electromagnetic gauge coupling to the momentum of the
charged particles10. This "Gauge" field is related to the
physical electric field11. We know that the Pauli matri-
ces form an SU(2) representation. Therefore, the compo-
nents of this gauge field (Eq. (2a) also forms an SU(2) rep-
resentation12,13,14. These are non-abelian gauge fields.
We assume an electric field E applied in the ŷ direction
in the 2-Dimensional xy plane of the form E = γy2ŷ
with a linear charge distribution. The specific choice of
the electric field as E = γy2ŷ, which couple to the mag-
netic moments of the neutral particle, can be contrasted
to the Landau level physics for charged particles.

Recollecting the problem of Landau quantization in
electrons, a constant magnetic field is obtained for a spe-
cific electromagnetic gauge as Ax = By (considering a
2-dimensional electron gas). The magnetic moments of
the neutral particles couple to the electric field similar
to the minimal coupling of electromagnetic gauges for
charged particles. The Hamiltonian in Eq. (1) becomes,
(See Eq. (A2) in Appendix. A)

H
± =

p2
x

2m
+

p2
y

2m
± αγ y2 px (3)

We see that the Hamiltonian in Eq. (3) separates into
two branchesH± considering the eigenvalues of σz and
does not depend on x. As we proceed with the sim-
plification of the above Hamiltonian, we use px as a
good quantum number, which in a way will give Lan-
dau likes states. We can express the wave function as
ψ (x, y) = ei kx x φ(y). Inserting ψ (x, y) in Eq. 3, we get
an effective one-dimensional Hamiltonian which acts on
φ (y);

H±e f f = −
~2

2m
O2

y ± αγ ~ kx y2 (4a)

= −
~2

2m
O2

y ±
1
2

mω2
c y2 (4b)

In Eq. (4b) the cyclotron frequency is ω2
c =

2αγ ~ kx

m .
It depends on the mass of the neutral atoms as well as
the on the x component of the momentum, kx. Only the
σz = +1 branch of the Hamiltonian in Eq. (4b) gives the
bound potential, 1

2 mω2
c y2, and the other branch σz = −1

is scattered and remains non-confined.
We find the wave-function and the dispersion of the

σz = +1 branch as

FIG. 1: (Color Online) The plot of the spectrum [Eq. (5b)] of the
neutral atoms as a function of the momentum along x-direction.
In contrast to the Landau levels of the charged particles, which
are infinitely degenerate and equally spaced, the Landau like
spectrum of the neutral particles, is non-degenerate and the
non equi-spaced but similar to the standard Landau levels.
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The function Hn(x) defined in Eq. (5a) is a Hermite
polynomial and we find the dispersion relation En in Eq.
(5b) to be similar to that for the standard Landau levels.
In contrast to the standard landau levels of the charged
particle, which are infinitely degenerate, the dispersion
relation in Eq. (5b) is not degenerate but depends on the
momentum ~kx, the spectrum is plotted in Fig. (1). It
is important to realize that only half of the particles will
produce the landau-like spectra and the other half of the
particles will scatter and behave like free particles.

III. REALIZATION OF THE LANDAU PHYSICS OF
NEUTRAL ATOMS IN OPTICAL TRAPS

In this section, we describe the physical background
for realizing the Landau like spectra (Fig. 1) for neu-
tral particles. We consider neutral atoms in laser driven
optical traps15. Several laser beams are focused to in-
terfere and create potential profiles such that the neutral
atoms can reside near the minima of these potentials
and create a quantum many-body system of ultra cold
atoms. Our motivation to incorporate cold atoms in op-
tical traps is that the analogy between the pseudo ’spins’
and magnetic moments for the charge-less particles can
be used16. Consequently, we can ask if we can get sim-
ilar type of spin-orbit (SO) coupling as in Eq. (1) in this



3

ultra cold many-body system11. We actually can have
a Rashba type SO coupling by coupling the internal or
′Dressed′ states of the cold neutral atoms with the laser
field17,18,19. The coupling strength of these ′Dressed′
states, in comparison with α in Eq. (1), depends on
the laser profile. Hence, we use a pseudo spin-orbit
interaction with trapped neutral atoms. The coupling
constant α relates these pseudo ’spins’ to the magnetic
moments of the neutral particles20. We know that for
optical traps of cold atoms (neutral) one can talk about
a synthetic electric field which couples to the ’pseudo’
spins or dressed states of the neutral atoms9. The idea
is to generate a synthetic quadratic electric field E∗ of
the form as discussed in Sec. 2. Coupling of this field to
the dressed states of the atoms in the trap will generate
the Landau like physics as we proposed in the previous
section. Carefully examining the Hamiltonian in Eq. (3)
we see that both σz = 1, kx > 0 and σz = −1, kx < 0
channel particles satisfy the harmonic oscillator Hamil-
tonian H+. However, there is a subtlety with realizing
our model in realistic 2-dimensional optical traps. In a
finite trap, the particles will be reflected from the bound-
ary and change their momentum direction. Half of the
particles following H+ channel in Eq. (3) will also be
scattered when reflected from the boundary, as they will
change the sign of the momentum kx (positive kx channel
particles will become negative kx channel particles).

The most conducive way to prevent the loss of the
particles from the trap is to incorporate toroidal optical
traps21,22. In such traps there will be no reflections be-
cause of the absence of any boundary and the particles
following H+ branch will always remain in this branch
and we can realize the Landau physics for these neutral
atoms. A quasi two-dimensional toroidal optical trap is
shown in Fig. (2).

We also consider the effect of temperature within the
traps. The finite temperature of the traps will result in
a momentum distribution for the particles. We may as-
sume a Bose-Einstein distribution for these particles as

1
exp(β(p2/2m))−1

. Therefore, we will see smeared out Lan-

dau spectra for these particles although the temperature
in an cold atomic optical trap is close to absolute zero.
We assume fermionic atoms (viz. 40K)23,24 in the traps
so that they do not form any Bose-Einstein condensate
(BEC). We therefore exclude the effects of vortices which
will be important if there are BEC is in the traps8. The
spin-orbit coupling for the neutral particles in the Hamil-
tonian [Eq. (3) and (A2)] is an example of equal admix-
tures of Rashba and Dresselhaus interactions in standard
solid state physics25. Generalized Rashba-Dresselhaus
SO coupling can be generated in the cold atomic traps26.
Using accurate laser profiles and couplings we can gen-
erate a similar coupling as in Eq. (A1).

FIG. 2: (Color Online) A schematic of toroidal potential trap
used for realizing the Landau physics for neutral particles is
shown in the above figure. The toroidal traps are incorporated
to prevent the loss of particles from the trap due to reflection
from boundary (See Eq.(3)). For simplicity only the schematic
of a typical toroidal potential trap is shown, exclusive of the
laser sources used to create the trap and also the necessary
"Spin-orbit" coupling for the Landau Physics (Eq.(5b)).

IV. PARAMETER TUNING FOR LANDAU PHYSICS OF
NEUTRAL ATOMS IN OPTICAL TRAPS

In this section, we discuss the tunability of the param-
eters of our model and whether it is possible for experi-
mentally verify our proposal. A typical energy gap is of
the order of ~ωc which is ~

√
(2αγ vx). As discussed ear-

lier, assuming the neutral particles inside the trap will
satisfy a Boltzmann distribution, there will be a mean
speed for the particles corresponding to the temperature
of the trap. We estimate the typical level spacing for the
Landau like states by assuming some realistic values of
the parameter for our theoretical model as γ = 1010V/m3

and vx = 10−1m/s and α = 3.6×10−16m2s−1/V of the order
of 5.504 × 10−19eV. The estimate for α is calculated from
atomic masses of the relevant atoms and the magnetic
moment of the hyperfine spin state and speed of light c.
We see that the gap is extremely small. It is impossible
to measure such small gaps with current technology. In
contrast, in atomic traps we can produce the synthetic
electric field which can couple to the dressed states of
the trapped atoms as discussed in Sec. 3. If we can pro-
duce a similar synthetic electric field with a SO coupling
as Hso = βy2kxσz we can use the freedom of tuning the
coupling constant β to get a substantial measurable gap
in the spectrum (Eq. (5b)). The typical energy gap in
this case is ~ω′c = ~

√
(2βvx)/~, where the cyclotron fre-
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quency ω′2c = (2βkx)/m. If we choose β ≈ 10−20kg m/s216,
the level spacing between n = 0 and n = 1 level for the
same mean speed is approximately 2.8 × 10−9 eV. The
corresponding temperature scale is of the order of few
microKelvin 2.8× 10−9eV ∼ 3.25× 10−5K which is attain-
able in optical traps. Therefore, we may observe neutral
atoms Landau levels in optical traps27.

V. DISCUSSION AND CONCLUSION

In this paper we demonstrated that upon the appli-
cation of quadratic electric field and induced spin-orbit
coupling in optically trapped cold atoms, one can induce
non-trivial spin dependent levels in the spectrum of the
atoms. In contrast to normal Landau levels where the
energy spectrum is equispaced, we find here a differ-
ent energy spectrum with continuously increasing level
spacing as a function of the phase momenta. We note that
a new type of gauge field arises and couples to the mo-
mentum of the neutral particles with magnetic moments
in the presence of specific charge distribution. This is
to be contrasted with the Landau level physics of elec-
trons in applied magnetic fields. The scattering of half
of the particles in the optical trap due to the presence of
σz in the Hamiltonian in Eq. (3) can be prevented with
toroidal optical traps as presented in Fig. (2).

We have given an order of magnitude estimate of the
gaps in the spectrum with some reasonable values of the
parameters. We also keep in mind the technical diffi-
culty of creating a spatial spin-orbit coupling with gra-
dient Zeeman splitting. If we choose the synthetic SO
coupling constant β as small as 10−26kg m/s2, the corre-
sponding temperature scale for the level spacing at the
same mean speed is approximately 10−9 K. We see that
the range of the level spacing is from µK to nano-Kelvin
for a range of choice of the value of the coupling con-
stant β. This level spacing can be measured experimen-
tally and it makes our proposal more prone to practical
verification. Another important point to note is that the
cyclotron frequency depends on the x-component of the
phase momentum kx. For big wave numbers one can
therefore tune the energy gap to any value that is practi-
cal. At same time there are experimental limitations for
observing a very large kx. The cold atomic experiments
are performed at a very low temperature and so these
atoms can not have a large momentum.

While we considered the trapped atoms being
Fermionic like 40K, our approach is still valid for non-
BEC bosonic system, for example; if one takes 87Rb the
transition temperature for the gas cloud to form Bose-
Einstein condensates is approximately 0.2 Micro-kelvin.
In our estimate, the temperature range is of the order of
10 Micro-kelvin. In that case, the atoms do not condense

and a simple quasi-Landau spectrum can be found. Ul-
timately the proposed mechanism to control neutral par-
ticles might be useful for optical applications and indi-
cates the possibility to produce a Hall effect in neutral
particles.
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Appendix A: Spin-Orbit Hamiltonian

In this appendix we show the mathematical deriva-
tion of two branched Hamiltonian discussed in Sec. 2 in
Eq. (3). Taking the particular form of the Electric field
E = γy2ŷ as discussed in Sec. 2, the Hamiltonian in Eq. (1)
simplifies as follows,

H =
p2

2m
+ α(σ × p).E

=
p2

2m
+ αγy2ŷ.(σ × p)

=
p2

2m
+ αγy2p.(ŷ × σ)

=
p2

2m
+ αγy2(pxx̂ + pyŷ).(−σx ẑ + σz x̂)

=
p2

2m
+ αγy2pxσz

=
p2

x

2m
+

p2
y

2m
+ αγy2pxσz (A1)

The Pauli matrix σz has two eigenvalues. Hence, the
Hamiltonian separates into two branchesH± for σz = ±1
as,

H
± =

p2
x

2m
+

p2
y

2m
± αγ y2 px (A2)
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