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A general theory of collective spin wave edge modes in semi-infinite and finite periodic arrays of
magnetic nanodots having uniform dynamic magnetization (macrospin approximation) is developed.
The theory is formulated using a formalism of multi-vectors of magnetization dynamics, which allows
one to study edge modes in arrays having arbitrarily complex primitive cells and lattice structure.
The developed formalism can describe spin wave edge modes localized both at the physical edges of
the array and at the internal “domain walls” separating the array regions existing in different static
magnetization states. Using a perturbation theory, in the framework of the developed formalism
it is possible to calculate damping of the edge modes and to describe their excitation by external
variable magnetic fields. The theory is illustrated on the following practically important examples:
(i) calculation of the FMR absorption in a finite nanodot array having the shape of a right triangle;
(ii) calculation of the spectra of nonreciprocal spin wave edge modes, including the modes at the
physical edges of an array and modes at the domain walls inside the array; (iii) study of the influence
of the domain wall modes on the FMR spectrum of an array existing in a non-ideal chessboard

antiferromagnetic ground state.
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I. INTRODUCTION

1- 6,7

Novel magnonic' ® and spintronic®” signal process-
ing devices will require novel dynamically reconfigurable
magnetic materials which are able to operate without
an external magnetic field. These “self-biased” magnetic
materials, which can function without heavy and bulky
external permanent magnets, will be very attractive for
applications in microwave signal processing and magnetic
logic. One of the examples of such self-biased artifi-
cial magnetic materials are the arrays of periodically ar-
ranged and dipolarly coupled anisotropic magnetic nano-
elements, in which the nano-size of the element guaran-
tees its monodomain state, while the shape or/and crys-
tallographic anisotropy determines the definite direction
of its static magnetization® ?2. The static magnetiza-
tion of each anisotropic nanoelement can have more than
one stable direction, which means that an array can ex-
ist in several distinct meta-stable static magnetization
states'®2. Obviously, the static magnetization state of
an array strongly affects the array’s dynamic magneti-
zation properties, such as the spectrum of its spin wave
excitations and characteristics of the array’s interaction
with external electromagnetic waves'”'%23, Moreover,

the static magnetization state of an array can be dy-
namically switched between several metastable configu-
rations by application of a short pulse of an external bias
magnetic field of a particular direction and duration!®24.
Thus, a magnetic metamaterial based on an array of
dipolarly coupled magnetic nanoelements is, indeed, dy-
namically reconfigurable, as its static and dynamic mag-
netic and electromagnetic properties can be substantially
altered without any changes to its physical structure or
composition.

Although the recent progress in the electron and
ion beam lithography has made possible the fabrica-
tion of arrays of magnetic nanoelements (nanodots) on
a large scale®!1713:20,22,25-27 " tho fabrication of arrays
of elements with high aspect ratios (height substantially
larger than the radius), which is necessary for the ef-
fective dipolar interaction between the elements??, still
remains a challenging technological problem. Nonethe-
less, we believe that materials with uniaxial crystallo-
graphic anisotropy?®, like multi-layered composites of
CoPt, CosPt, FePt, CoPd??, which exhibit strongly per-
pendicular static magnetization in the absence of a bias
magnetic field, will make possible the physical realiza-
tion of the magnetic nanodot arrays for signal processing



applications in the near future.

Integration of nano-structured magnetic metamateri-
als with modern CMOS electronics will require minia-
turization, and, therefore, the presence of edge effects
in relatively small pieces if magnetic metamaterials will
play an increasingly important role with the progress in
the systems miniaturization3®33. Thus, the properties
of the edge excitations in such systems should be well-
understood. In one of our previous works®?® we calculated
the spectrum of collective spin wave edge modes in a pe-
riodic dipolarly coupled nanodot array having one dot
per a primitive cell. However, for an array of magnetic
nanodots to have such interesting and unusual properties
as non-reciprocity of a spin wave spectra® or non-trivial
topological properties of a spin wave pass-bands343%, it
is necessary to have a complex primitive cell, e.g. a prim-
itive cell containing several elements of a different kind
or several similar elements having different orientations
of their static magnetization.

The idea to use analytical methods capable of describ-
ing magnetization dynamics in arrays of magnetic ele-
ments goes back to the time when the first ferrite com-
puter memory arrays were developed. One of the first
attempts to calculate the distribution of the static de-
magnetization magnetic fields in an infinite 3D array of
magnetic spheres arranged in a periodic lattice was un-
dertaken by Kaczér and Murtinova3®, where they used a
Fourier expansion of a magnetization distribution across
the 3D lattice, and solved the Poisson equation in the
reciprocal space. Later, several theoretical approaches
were developed to describe spin-wave excitations in sys-
tems where magnetic properties are spatially periodic.
The developed approaches include the method of plane
wave expansion (PWE)37 40 which was adopted from the
theory of periodic dielectric*' and acoustic *? structures,
the dynamic matrix method'243 45, the transfer matrix
method?6:47, the multiple scattering theory®?, and several
other. The above mentioned methods have proven their
applicability and convenience for the analysis of infinite
periodic magnetic systems.

The attempts to handle problems of spin wave excita-
tions in finite periodic structures with boundaries, how-
ever, faced significant difficulties. An accurate treatment
of the finite magnetic systems require: (i) taking into
account the boundary conditions at the system’s edges,
and (ii)taking into account the demagnetization field for
all the periodic structure. This demagnetization field is
shape-dependent (and not lattice-dependent), and, also,
is non-uniform across the structure3'33. Several at-
tempts were undertaken to treat finite magnetic peri-
odic structures, either by using the PWE methods*®49
or by developing dedicated methods for special cases 34.
However, since the spatial Fourier harmonics of the mag-
netization and magnetic field do not satisfy the bound-
ary conditions at the edges of the finite magnetic struc-
ture automatically, in finite systems with boundaries the
PWE-based methods lose their simplicity and elegance.

Dynamics of spin wave excitations in a finite array of

dipolarly coupled magnetic dots, in principle, can be sim-
ulated using one of the available micro-magnetic numer-
ical techniques?34%:50, However, using only the results of
micromagnetic simulations, that provide the frequencies
and profiles of the system’s eigenmodes, it is, sometimes,
difficult to extract the symmetry properties of the sys-
tem 9! or to describe the system’s behavior in a crit-
ical regime, when the stable static state of the system
is changed 824, Also, direct micromagnetic simulations
could be computationally intensive, while their results
would be neither scalable nor reusable, since the change
of any of the system parameters, such as the quasi-stable
state of the array’s static magnetization or/and the ma-
terial properties of the array’s elements, would require a
complete rerun of the entire simulation.

Thus, below, in our attempt to describe the general
properties of collective edge modes in magnetic dot ar-
rays, we decided to use approximate analytical methods
based on the Fourier transform of the mutual demagne-
tization tensor of individual array’s elements!”33:36:52,53
and an operator form of the linearized Landau-Lifshitz
equation?®. The analytical approach developed by Verba
et al.'™ calculates the spin wave spectra in spatially infi-
nite periodic arrays of magnetic nanodots using the fun-
damental tensor F'x of the array. This tensor contains
all the information about the array (including the lattice
symmetry and other geometrical properties of the array’s
element) that is necessary for the calculation of the spin
wave spectrum of the array. The symmetry properties of
the fundamental tensor F'y, can be evaluated analytically,
providing an opportunity to check the symmetric fea-
tures of the spin wave spectrum, such as non-reciprocity,
analytically without preforming time-consuming numer-
ical calculations'®. The operator from of the linearized
Landau-Lifshitz equation developed by Buijnsters et al.*®
allows one to reduce the calculation the spectrum of col-
lective spin wave excitations of the array to solving a
generalized Hermitian eigenvalue problem.

In this paper, we will generalize the analytical method
developed in [17 and 33] to include the possibility of the-
oretical analysis of the spectrum of collective edge spin
wave modes in a semi-infinite array of magnetic nan-
odots with a compler primitive cell. Our method uses
the “macrospin” approximation, which assumes that each
individual magnetic dot has a spatially uniform distri-
bution of magnetization. In general, the modes having
a uniform spatial distribution are expected to be dom-
inant in magnetic nanodot arrays'!3 however, one can
easily extend the theoretical formalism developed below
to handle the cases with non-uniform mode profiles sim-
ply by adjusting the form of the mutual demagnetiza-
tion tensor. A brief description of the possible extension
of our formalism beyond the macrospin approximation
is presented in Appendix A. The formalism presented
below can describe both the spin wave modes localized
at the physical edge of a semi-infinite array of magnetic
dots and the spin wave excitations localized at the ar-
ray’s internal boundaries formed e.g by the domain walls



separating the regions existing in different meta-stable
states of static magnetization. The latter type of the lo-
calized spin wave excitations is analogous to the Winter
magnons®* existing near the domain walls in a continuous

ferromagnetic medium.

Another feature of the analytical formalism developed
below is that it makes possible to use a conventional a
perturbation theory to find the damping rates of the edge
spin wave modes and their coupling to spatially uniform
external magnetic fields. In particular, this technique al-
lows one to calculate the ferromagnetic resonance (FMR)
absorption spectra of finite magnetic nanodot arrays, in
which the influence of the edge spin wave modes could
be quite significant.

The paper is organized as follows: Sec. II gives a basic
description of the dipolar interaction between the nan-
odots in an array and formulates the general equations
that are used in the further spectral calculations; Sec. II1
introduces a multi-vector formalism for magnetic dot ar-
rays having a complex primitive cell and presents equa-
tions necessary for the calculations of the spectra of bulk
and edge spin wave excitations in such arrays; Sec. IV
formulates a perturbative technique used to calculate a
response of a finite magnetic dot array on an externally
applied microwave magnetic field; Sec. V is devoted to the
discussion of the specific features of the numerical solu-
tions for the equations derived in Sec. III, while Sec. VI
deals with the several examples showing the applications
of the developed analytical theory to real physical sys-
tems:(i) calculation of the FMR absorption spectrum in
a finite magnetic nanodot array having the shape of a
right triangle; (ii) calculation of nonreciprocal spin wave
spectra of edge modes, including the modes at the phys-
ical edges of an array and the modes localized at the
domain walls inside an array;(iii) study of the influence
of the domain wall modes on the FMR spectrum of an
array existing in a non-ideal chessboard antiferromag-
netic ground state; Sec. VII formulates the conclusions
of our work. The developed theoretical formalism is im-
plemented in a computer program which is available to
general public at [55].

II. BASIC FORMULATION

A. DMutual demagnetizing tensor with uniaxial
anisotropy

Let us consider an array of dipolarly coupled magnetic
nanodots. For the sake of mathematical simplicity we
consider dots having the identical shape and saturation
magnetization M. The dots may, however, have different
values of the uniaxial crystalline anisotropy. The spatial
position of a dot denoted by the index ¢ and having the
static magnetization vector M; is determined by the po-
sition vector ;. For a dot having the index ¢ the effective

magnetic field acting on the dot can be written as:
2K¢

B — B4 22 g,
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where B$*' is the external magnetic field, K¢ is the en-
ergy of the first order uniaxial anisotropy®%°7 of the i-th
dot, m; is the unit vector directed along the anisotropy
axis, and N;; = NM(r; — r;) is the mutual demagneti-
zation tensor between the dots ¢ and j. This tensor is
defined by the dot shape and the interdot distance!”-%3.
The second term in the right-hand-side part of (1) is the
anisotropy of the i-th dot. This field can be represented

in terms of a tensor &; having the following form®:

~ 2K
Ki=—-——5n;®n;, 2
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where @ is the direct vector product.
The tensors A;; and KC; enter (1) in a similar way, so
that it is possible to introduce an effective demagnetiza-
tion tensor:

Nij = Nij +05K;, 3)
and to rewrite (1) in the form:

B?ZB?Xt_HOZNij'Mja (4)
J

which formally coincides with equation (3.4) in Ref. [17]
for dipolarly coupled isotropic magnetic nanodots. The
introduction of the effective demagnetization tensor INV;;
in the form (3) allows us to use some results from the
previous works!™1? in the case of anisotropic magnetic
dots, since the symmetric properties of the tensor IN;

remain the same, with the exception that Tr(N;;) =1—
2K/ (10 M2).

Although the above described procedure cannot be ap-
plied to some types of the crystalline anisotropy (e.g. cu-
bic), in most practical cases the uniaxial crystalline and
shape (defined by the tensor N ;) anisotropies of a mag-
netic nanoelement are dominant. Then, the effective de-
magnetization tensor IN;; gives an adequate description
of the magnetic properties of a magnetic dot array.

We would also like to note, that, although the above
presented approach cannot be directly used for the arrays
of dots having different shapes and volumes, one can ap-
proximate such arrays by arrays of dots having the same
shape and volume, but different uniaxial anisotropies,
and the above presented approach will allow one to ob-
tain results that are qualitatively correct!®.

B. Equation of motion in the operator form

Spin wave dynamics for an array of magnetic nanodots
is described by the Landau-Lifshitz equation for each dot:
dM

TZW(BZ- x M), (5)



where v/2m =~ 28 GHz/ T is the modulus of the gyro-
magnetic ratio. In this work we are interested in spin
waves with small precession angles. To linearize (5) we
decompose the magnetization vector into the static and
dynamic parts:

M; = My(p; +mq) + O(|mi?), (6)

where m; is a small dimensionless deviation of the mag-
netization of i-th dot from the equilibrium. The direction
of the static magnetization of a dot is defined by the unit
vector p,. Since the length of the magnetization vector
M ; is conserved, the vectors p; and m; are orthogonal
to each other:

pi-m; = 0. (7)

In equilibrium, the effective magnetic field acting on each
dot is parallel to the static magnetization of the dot:

B} = Bip,, ®)

where B; is the scalar internal field in the ¢-th dot. To
solve the equation of motion one should plug (4) and (6)
into (5) using condition (7), and retain only the terms
linear in m;. Spin-wave eigenmodes are the harmonic
solutions of the linearized equations, m;(t) = m;e= ™! +
c.c., where w is the frequency of the mode and m; is the
complex mode profile. Using this decomposition one can
linearize (5) and split it into two equations, for static and
dynamic parts of the magnetization, respectively:

Bip; = B — oM, ZN” “ M, 9)
J
—lwm,; = p; X Z Qij -my, (10)
J
where
Qij = ")/Bziszjj + "Y,UJOMsNij; (11)

and I is the identity matrix. These equations completely
define the behavior of the nanodot array. Solutions of
these equations for a finite aperiodic array and an infinite
periodic array have been discussed previously in [17].

Equation (10) contains a cross product operation,
which is not convenient for the further analysis. One
can eliminate the cross product by formally replacing it
by the operator J; = e - pu,; where e is the Levi-Civita
symbol®®. It can be shown by direct substitution that
the tensor J; has the following properties:

_jgzpi:j_p’i@p’ia (12)

Here, P, is the projection operator to the plane that is
perpendicular to the vector p,.

4

Substituting the operator J; for the cross product in
(10), multiplying the resulting expression by J;, and us-
ing the properties in (12) one obtains the following equa-
tion:

—iwji -m; = ZQ;J -mj, (13)
J

where
Q,=P;-Q; P;. (14)

Equation (13) is a generalized eigenvalue problem, where

J; is an antisymmetric matrix and Q;j is a real symmet-
ric matrix (in the sense Qij = Q';i) Using the properties
of the tensors J; and Q;] one can immediately show that
the eigenfrequencies w are real for all stable static mag-
netic configurations of the array'”. We note, that the
similar operator approach was successfully used to study
Goldstone’s modes in spin exchange-coupled systems*®.

The vector my; is a three-dimensional vector in our
notation. However, because of the condition (7) only
two components of the vector are independent. Thus,
the eigenvalue problem (13) is degenerate. This degener-
acy can be avoided by using circular coordinates of the
Holstein-Primakoff transformation®, however, we keep
three-dimensional presentation of the vector m; to re-
tain notational flexibility. Of course, during actual nu-
merical simulations the non-physical solutions should be
discarded. This can be easily done, as in (13), all the non-
physical solutions (m;||wp,;) have zero eigen-frequencies,
w = 0.

III. SPIN WAVE DYNAMICS IN A PERIODIC
LATTICE

A. Multi-vector notation

Both bulk!'” and edge3? collective spin wave excitations
were considered previously in the arrays having a single
dot in a primitive cell. Below, we will develop an analyt-
ical model for a periodic lattice with a non-trivial prim-
itive cell containing several identical magnetic nanodots
(having several sublattices), as shown in Fig. 1. For this
purpose we introduce a multi-vector notation, which will
allow us to significantly simplify the theoretical formal-
ism for the case of arrays having multiple magnetic dots
in a primitive cell and, basically, to formally reduce it
to the well-developed formalism describing dynamics in
arrays with a simple primitive cell33.

The lattice of the array is defined by the primitive vec-
tors a; and a3, and the primitive cell consists of P iden-
tical dots. Relative positions of the dots inside the prim-
itive cell are defined by a set of vectors d,, p € [1, P] de-
fined in the local coordinate system of the cell, see Fig. 1.
The static and dynamic magnetization of the dots in the

cell are defined as m ;) and H(;py. and the modulus of
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FIG. 1. A sketch of a semi-infinite spatially periodic array
of magnetic nanodots with a complex elementary cell. The
primitive vectors of the lattice are a1 and a2, while vectors
4, define the positions of nanodots within the cell. Directions
of [ and n cell enumeration are shown in red.

the effective static field is denoted as By;,, where i is the
index of a cell and p denotes an individual dot inside the
i-th cell.

Using the (ip)-enumeration of the dots, equation (13)
takes the following form:

P
—iwod (ip) - Mipy = D Y Qg MGy (15)
J q=1

where
Qip)ja) = VB(ip)OpgOis I+ 110 M N (ri =1 +8,), (16)

and 0, = 6, — d,. Unfortunately, this representation
is rather cumbersome and restricts further analysis, as it
obscures the structure of the problem.

To simplify equation (15) we introduce a multi-vector
of the length P as:

mjl

- M2

m;p
Analogously, we  introduce  multi-vectors  for
the static components of the magnetization
[llj = (lJle y ll’j27 ety IJ’]P) . In the fOHOWing the

multi-vectors are used as ordinary vectors in all the
vector-vector and vector-matrix operations. As we will
see further, the multi-vector notation is rather conve-
nient in both the analytical and numerical analysis.
The algebra of the multi-vectors is briefly formulated in
Appendix B.

Rewriting equation (15) by replacing the sum over ¢
with a formally written matrix-vector multiplication and
by using the multi-vector notation (17), one can represent

it in the following form:

—iwf]i . ’ﬁ’l,i = Zéij "rhja (18)
J

where i, j denote the cell index, flij and f]l are the 3P x
3P block-matrices defined as:

and 131- = —:IZ- . :Tl Here, the tensor flij is also repre-
sented by a block-matrix:

Qij = ’)/(Siij + ’Y/L(JMSN(’I"Z' — ’l"j), (21)
where éi = diag(B(ﬂ)j, e ,B(,L'p)j) and
N(r) N(r+81p)

N(r) = (22)

N(r+6p1) -~ N(r)

The block-matrix flij describes the behavior and inter-
actions of a whole primitive cell of the array in contrast
to the tensor €;; (defined by equation (11)), which de-
scribes the behavior of a single dot. The block-matrix

fl;j is the projection of the block-matrix flij in the same
sense as presented by equation (14).

Using the same procedure, one can rewrite the equa-
tion (9) for static magnetization in terms of multi-vector
notation in the following form:

B;-fi; = BY — oM,y Ny - fuy,  (23)
J

where the “components” of the multi-vector Bf"t repre-
sent the external magnetic fields acting on the each dot
in the i-th cell.

B. Edge modes

In this section we consider collective spin wave exci-
tations in a semi-infinite array. The array occupies a
half-plane and has an edge parallel to one of the lattice
primitive directions, see Fig.1. In this case the static
magnetic properties of the array demonstrate a transla-
tion symmetry along one of the principal directions, but
there is no translational symmetry along the other lat-
tice direction. Using this arrangement, we will develop
an analytical model to describe the collective spin wave
excitation localized near the edges of a semi-infinite array
of magnetic dots.

We define the position vector r; of i-th cell as:

Ty = Ty = lay +nas, (24)



where [ and n are the integers enumerating cells in the
directions a; and asq, respectively (Fig. 1). The half-
plane occupied by the array corresponds to n > 0, while
the index [ can take any integer value.

Since the array has a translational symmetry along the
a; direction, the static configuration of the magnetiza-
tion depends only on the index n:

p’nl [l’n7
0 (25)

i, =
B; = B, = B,,

and elementary spin wave solutions m; can be found in
the form

My = M) = Mye (26)

where £ is the wave-number of the spin wave mode. Using
these expressions in equation (18) yields the equation for
the spin wave profile m.,:

—iwd = S QT (27)

n’=0

where

Qn,nn’ = 75nn’Bn + FY,UJOMSEK(n - n/)a (28)
|

(2m)2S

where K1 and K5 are the reciprocal primitive vectors
of the lattice and S is the area of a unit cell. Using the
well-known properties of the reciprocal primitive vectors
and the identity >, e’ = 27", 6(27l — a), equation
(33) can be simplified:

B n 27‘1’5 Z / N (I+ray/2m)K1+B8K2€ el Tmﬁdﬂ'

(34)
The analytical expressions for the Fourier image of the
dot demagnetization tensor Ny, are known for all the

practically interesting dot shapes (see equations (2.5)—
(2.8) in [17]). Therefore, equation (34) allows one to

calculate the components of the block-matrix E, (n) that
are necessary for the solution of the equation (27).

In general, the block-matrix E,(n) is not Hermitian
and has no symmetry in respect to Hermitian conjuga-
tion. However, from the properties of the Fourier trans-

form and the properties of the block-matrix Ny in the
equation (32) one can conclude that it has the following

and

B.(n) =3 N(la; +naz) el (29)
l

To compute the sum in (29) we introduce the Fourier
transform of the cell mutual demagnetizing tensor:

N = # / Ny dk. (30)

Using the well-known “shift property” of the Fourier
transform we obtain from (22):

Nk .. Nke—ik'51P
Ny = : : . (31

Nkeik'SlP e Ny

Considering that Ny is a real and symmetric tensor®? in

the sense that Nk = Nk =N_ k, the Fourier image of
the cell demagnetization block-matrix has the following
symmetry properties:

Ni=Ni=NT,. (32)

Using the expression for the Fourier image (31) for

]if(r) equation (29) one gets:

2 1 2 . .
E.(n) = D B ) (33)
l

[
symmetry properties:

Ex(n) = Ei(—n) = BT, (—n) = E*,(n),  (35)

~ P a
Tr (E,ﬁ (n)) = 0no <P - Zl uj(ﬂzQ) . (36)

The static equation (23) can be rewritten in a similar
way, considering that the static quantities (25) do not
change in the direction of the vector a:

Bi-ji, = BS — oM, S Bo(n—n') - fi. (37)

n’=0

Together, equations (27) and (37) are the central result
of this paper. Using these equations one can calculate the

distribution of the internal magnetic field (B;)in the ar-
ray, equilibrium directions of the magnetic moments in
each dot (f;), and the spectrum of collective spin wave
edge excitations in a semi-infinite array of magnetic nan-
odots with a complex primitive cell.



Although equations (27) and (37) were obtained using
purely analytical methods, further analytical solution of
these equations (e.g., using the nearest neighbor approx-
imation®?) is tedious and does not allow one to obtain
qualitative analytical results in a closed form. The inter-

nal structure of the tensors E,(n) is complicated, and,
moreover, the dispersion equation (27) leads to a general-
ized eigenvalue problem with an infinite block “Toeplitz-
like” matrix, in which blocks standing on the main diag-

onal are not equal, because B,, # B,, when n # m in
(28).

Certain analytical results may be obtained in a rather
artificial case when it is assumed that the internal mag-

netic field B, = B is uniform (in this case Q=

Q,,_,/, which simplifies the solution of (27) consider-
ably). However, even in this case the analytical calcu-
lation of the eigenvalues of the equation (27) with a non-
Hermitian block Toeplitz matrix is non-trivial®!, and the
spectrum of collective spin wave excitations of the array
may include distinct edge modes®3.

Therefore, in this paper we solve (27) and (37) nu-
merically. The details of the numerical procedure are
discussed in Sec.V. We would like to stress, that even for
the numerical solution of the equation (27), the knowl-
edge of the analytical structure of this equation provides
significant advantages. For example, one can scale the
results obtained numerically for relatively small systems
for the case of much larger systems and can calculate
spin wave damping and FMR absorption spectra with-
out additional numerical analysis (see Sec. IV for further
details).

Equations (27) and (37) were derived for a semi-infinite
array of magnetic nanodots, but this specific geometry is
only reflected in the range of summation over the index n’
(n > 0, i.e., half-plane). The same equations with differ-
ent summation ranges describe a number of other geome-
tries, that are characterized by a translational symmetry
along only one direction (I). In particular, equations (27)
and (37) with unrestricted n’ should describe spin waves
in an infinite array (see the next section). These equa-
tions, without any further modifications, can be used to
describe the spin waves in a finite “stripe” (0 < n < N) of
a magnetic dot array, or the waves propagating along the
internal “domain walls” in an infinite array. The latter
example is considered in more details in Sec. VIB. In
all the following sections we shall not indicate explicitly
the range of summation over the transversal indices (n,
n'), assuming that they take physically relevant values in
each particular case.

C. Bulk modes

In the previous section, we developed a model describ-
ing the dynamics of a magnetic dot array under the as-
sumption that the array has a periodic translational sym-
metry along the vector a;, but that the translational

symmetry is broken along the vector as due to the exis-
tence of the array’s boundary. Nevertheless, the model
should be valid for the cells located far from the bound-
ary, where the edge effects are negligible. Here, we show,
that for an infinite array (or for the cells located far from
the boundary) our theory can be reduced to the pre-
viously developed theory of infinite arrays'”. Also we

provide a link between the tensor E,(n) and the funda-
mental tensor I:"k introduced earlier.

To consider the case of an infinite dot array we assume
that the translational symmetry also holds in the direc-
tion parallel to the primitive vector as, meaningAthat all
the cells in the array are equal: f1,, = @, and B, =B
for all n. In this case we can introduce a wave-number
k1 describing the wave profile in the a9 direction. Now,
the solution can be found in the form:

m,, = me'rLam, (38)

Direct substitution of (38) into the dynamic equation
(27) yields a simple equation:

—iwd - = QY -, (39)

which coincides with equation (3.32) from Ref. [17], ob-

tained for bulk spin wave modes in an infinite array of

nanodots. Here k is the total spin wave wave-vector:
Ra1 K] a2

k=—K
2 1+ 2

K. (40)

The interaction matrix € has the following form:

Qi =B + oM, Fy, (41)

where the block-matrix F (fundamental tensor of the
array'”) may be found as:

1 2
S > Nepx, (42

Fu= 3 B =
n KeLl*

where L£* represents the reciprocal lattice of the array.
We can use expression (42) to relate the tensors F'y, and
E(n) as:

1 r = 27mn,
E;(n) = - / Fro,/2n)K +8K, € 2B, (43)

— 00

This equation provides a way of computing the block-

matrix Ej(n) from the array’s fundamental tensor F,
by performing only a single Fourier transform.

Another consequence of (43) is that the solutions of
the eigenvalue problem (27) always include solutions of
(39), i.e., numerically obtained spectrum of (27) will also
contain the bulk spectrum of an infinite array.



To distinguish the localized edge spin wave modes from
the set of all the other solutions of the equation (27), the
spin wave profile (distribution of the spin wave amplitude
|my,|) for each mode should be analyzed. Edge modes
will have a stronger magnetization near the edge, while
the profiles of the bulk modes do not decay into the depth
of the array.

IV. FMR EXCITATION IN CONFINED
ARRAYS

A. Stationary amplitudes of forced edge modes

The excitation and damping of collective spin waves in
arrays of magnetic nanodots may be considered in terms
of a standard perturbation theory. Perturbation theory
was previously used for a finite array in [17], however,
that solution has a significant drawback, namely, it re-
quires the information about the magnetization dynamics
in each particular dot, which makes the computation in
the case of arrays containing a significant number of dots
ineffective and time consuming.

Let us, first, consider a semi-infinite array. As it was
shown in the previous section, a semi-infinite array has
two types of modes: bulk modes and edge modes. The
edge modes are localized in the area near the edge of the
array, while bulk modes exist throughout the array. From
(27), one may easily obtain the following normalization
conditions for the bulk spin wave modes:

Sl In M en = —iAs w0y, (44a)

and, likewise, for the edge modes:

S T Tt = —i Ay G (44b)

Here the indices s denote the bulk mode zones, while the
indices v denote the localized edge modes. The bulk and
edge modes are orthogonal to each other in the sense of
equation (44).

The norm defined by equation (44a) is not practical
for the numerical computations, as it cannot be obtained
directly from numerical solutions of equation (27). If
we neglect the influence of the boundary on the bulk
modes>3 we can eliminate the summation along the row
n using the dependence (38) and come to a more practical
expression:

’ﬁ’l,:/_’k . JO . Th‘s)k = _’L.A&k(s&sl, (443.*)

where J describes the directions of the magnetic mo-
ments in a primitive cell situated far from the edge. The
norm A, g can be directly calculated from the numerical
solution of equation (39).

Both the damping and driving microwave fields may
be included in (5) as small magnetic fields b;(t) acting
on each dot in the array:

dM;

First of all, we are interested in the excitation of spin
wave modes of the array by a spatially uniform external
magnetic field (bg). Thus the perturbative magnetic field
Bi can be written as:

- d -
b; = _O‘TG T+ (boe™ "+ c.c.), (46)

where a is the Gilbert damping constant, wy is the exci-
tation frequency, and c.c. denotes a complex-conjugate.

In the case of a spatially uniform excitation only the
edge modes with k = 0 and the bulk modes with k& = 0
are effectively excited. This allows us to consider the
solutions for (45) only for a single row of cells, as in
Fig. 1. The solution for the perturbed equation (45) may
be written as:

m,(t) = Z cyﬁzyyne*i‘““t + Z comge” ot Lcc.,
14 S

(47)
where ¢, and ¢4 are the stationary amplitudes of edge and
bulk modes, m, ,, are the localized solutions of (27), and
m are the solutions of (39). To find the amplitudes of
the excited modes, one should plug (47) into (45) and use
the normalization conditions (44) to separate the equa-
tion of motion into a set of equations for individual spin
wave amplitudes. In the first approximation we can ne-
glect all the terms that are non-linear in m,,, and for the
non-degenerate modes the stationary amplitude of each
of the edge modes is given by

VB

= — 48
¢ ow, — i, (48)
where dw, = wg — w,,
r,— “j‘;’” Zﬂ:m;n .
(49)

For bulk modes the stationary amplitude is defined by
the expression that is similar to (48), but with

agWs . o -
mg-mg,

I's =

S

1 -
BS - A—sz . bO'

(50)

Here T', /s are the Gilbert damping rates for the corre-
sponding spin wave modes, and (3, /, represents the cou-
pling coefficient between the spin wave mode and the
spatially uniform external driving magnetic field.



( NZ )

FIG. 2. A sketch of a finite array in the shape of a polygon.
Number of cells along each side of the polygon is N,. Local
sets of primitive vectors for different sides are shown.

B. Power absorption of a finite polygon-shaped
array

Now let us consider a finite array containing N mag-
netic dots in the shape of a polygon. The polygon, shown
in Fig. 2, has Z sides and each side (z) contains N, dots.
The array is sufficiently large, so the edge modes traveling
along the different faces may be treated as independent,
and the bulk modes are unaffected by the edges of the
array.

The total power absorbed by a finite array can be cal-
culated as®”

P
P = MSVOJZ Zlm (b5 -m(ip)) (51)

i p=1

where V is a volume of a single dot.

Since the magnetization amplitude of the bulk modes
is identical in each unit cell of the array, it can be found
as:

(m bo mg
s(&us — L)

ZZ

Thus, the power absorbed (per unit cell) by the bulk
modes is:

(52)

Vw R
Py = — Im(bg - X - bo), (53)
Ho
where
P WM Mg, XM
o S,p S,9q 54
X Zzéws—il“s A, (54)
s Py
and wyr = oM.

The magnetization profiles of the localized edge modes
are not uniform in a direction along which the transla-
tional symmetry is lacking. To calculate the absorption

caused by the edge modes localized at each edge of the
array, we choose one of the local primitive vectors (af)
to be parallel to the chosen edge, as in Fig. 2. In this
case we can calculate the power absorbed by a single row
of primitive cells in the direction of the primitive vector
as:

v
P, = “H— Im (b - X. - bo), (55)
0

where

muz,n ®muz,n
Z&u S ZZ (np) (q)

n,n’ p,q
(56)
and m,,_ (np) are the localized solutions of (27) for the
set of primitive vectors af 5, and for xk = 0.

Finally, the total absorption power of the array having
number of cells N may be calculated as:

P=NP,+ > N.P.. (57)

This equation demonstrates that the influence of the edge
modes fades away with increasing number of dots in the
array as N,/N ~ 1/v/N.

The tensors x and X, defined by equations (54)
and (56), respectively, have the form of effective par-
tial susceptibility tensors for the bulk and edge modes at
each particular edge. By analyzing eigenvectors of these
tensors one may find certain polarizations of external mi-
crowave field that are necessary for a maximum or/and
minimum absorption caused by a certain particular mode
(see examples presented below for more detail). The abil-
ity to analytically calculate the macroscopic polarization
properties of an array is not only useful for the engineer-
ing development of novel magnetic meta-materials, but
also can provide a way to experimentally verify this the-
ory.

A separate note should be made about the “corner
modes” of the array, e.g., the spin wave modes localized
near the vertices of an array of a finite size. Obviously,
the power absorption caused by these modes does not
depend on number of dots in the array, so their influence
is smaller than the influence of the edge modes, and, in
most practical cases, can be neglected.

Finally, if the array has spatial dimensions that are
much larger than the wavelength of the driving mi-
crowave field, the edge effects become less important.
However, if the tensor x is known, one can calculate
not only the absorbed microwave power, but also the re-
flection of electromagnetic waves from an array with an
arbitrarily complex primitive cell using the approximate
electrodynamic boundary conditions derived in [23].



V. PECULIARITIES OF NUMERICAL
SOLUTION

To solve equations (27) and (37) numerically one
should truncate the number of terms in the summation
to some integer 1. Such a reduction of the initial prob-
lem for a semi-infinite array is equivalent to the problem
of collective spin wave propagation in a finite stripe of
magnetic nanodots. If the finite number 91 of rows in a
strip is sufficiently large, the edge spin wave modes lo-
calized at the opposite sides of the finite stripe will not
interact with each other. Also, these edge modes may
be degenerate (i.e. will have the identical values of the
eigen-frequency (w,) for certain value of wave-number
(k). For arrays of dots having a perpendicular magnetic
anisotropy the degeneracy occurs in the symmetry points
of the Brillouin zone?3. In such a situation an eigenvalue
solver returns vectors of the null space, which may be
not localized near the opposite edges of the finite stripe,
but the symmetric/antisymmetric combinations of such
eigenmodes. In this case to analyze the “real” eigenmodes
one should construct a linear combination of those com-
bined modes which are localized at the desired edge.

The numerical solution of the truncated eigenvalue
problem (27) gives a discrete set of eigen-frequencies and
eigen-modes. To determine if a particular mode is local-
ized near an edge, the profile of a given mode should be
investigated. The numerical solution, however, cannot
determine the number of localized modes, as when the
truncation number 91 increases, new localized modes may
appear52:53. However, since the main mechanism of the
localization is the non-uniformity of an internal magnetic
field3! 33 and since the magnetic field decreases as 1/y/n
for the dots at the position n away from the array edge,
these new localized modes merge with the bulk spectrum
and have no influence on magnetization dynamics of the
array.

Equations (27) and (37) were written assuming that
translational symmetry only holds along the direction of
the primitive vector a;, while such a symmetry is lacking
in the direction of as. This absence of the translational
symmetry may manifest itself not only at a physical edge
of an array, but, also, at an internal boundary within the
array, e.g., at a domain wall or at a peculiarity of the
static magnetic field. For example, consider an internal
boundary created by a domain wall with the following
ground state distribution:

o, = {‘:‘1’
M2,

where fi; and fi, are the multi-vectors describing the sta-
ble states in the two domains separated by a domain wall.
Using (58) in (27) and (37) it is possible to find a disper-
sion relation for the collective spin wave modes traveling
along a domain wall in the array. Thus, using the above
presented theory, one can calculate all the edge, domain
wall, and bulk modes in a magnetic nanodot array. The

n >0,

58
n<o, (58)
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analysis of the spatial profile of each of these modes will
allow one to correctly distinguish bulk and domain-wall
spin wave modes.

Truncating the summation range to |n| < 91, one could
calculate the dispersion of spin wave modes in a stripe of
dots containing a domain wall, but, it should be noted,
that using such an approximation one may also intro-
duce some “artifact” modes localized near the edges of
the finite-size “stripe”. Taking the number 91 to be suf-
ficiently large ensures that the “artifact” modes do not
interact with the domain wall modes, and by analyzing
the spatial profiles of the different modes one can filter
out all the “artifact” modes.

Of all the procedures required to obtain the numerical
solution from the above presented theory,Acalculation of

the numerical values of the block-tensor E, (n) requires
the most processing power, since the dipolar sum in (34)
converges slowly. However, the convergence rate is dif-
ferent for different values of n. Starting from a certain
value ng only the elements of the sum with { = 0 will be
really significant. The exact value of ny depends on the
dot shape and the interdot distance.

To compute the integral in (34), one may also use a fast
Fourier transform (FFT) procedure or direct numerical
integration, especially if only a few members of the sum
are needed. Combining these techniques one can tune
one’s computation procedure and optimize the time of
computation.

The numerical values of the elements of the block-
matrix E,(n) depend only on the geometrical character-
istics of the array (dot shape and lattice symmetry), and
does not depend on the orientation of the static magneti-
zation or on the direction of the external magnetic field.

Thus, once computed, the value of E,, (n) may be saved,
and, then, reused to calculate the array’s characteristics
for different stable states and crystalline anisotropy val-
ues, drastically reducing computation time.

VI. EXAMPLES

Below we consider several examples demonstrating ap-
plications of the above presented theory for different
physical systems. We show that the developed theory
can be used for the calculation of the collective spin wave
spectra in rather complicated systems, which may be in-
teresting for practical applications.

In all the following examples, we will consider arrays
of dots that are have a shape of round cylinders with the
radius R and height h. The static magnetic moments
of all the dots are oriented perpendicular to the array
plane. If the static magnetic moments of all the dots
are oriented in the same direction (either +e, or —e,),
the static state will be called ferromagnetic (FM). If the
magnetic moments of the nearest dots point in the op-
posite directions, the static magnetization state will be
called antiferromagntic (AFM).
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FIG. 3. Sketch of the array of magnetic nanodots in the form
of a right triangle. The primitive vectors of the array’s lattice
used to calculate spin waves localized near hypotenuse (legs)
are shown to the right (left).

A computer program implementing the proposed the-
oretical formalism is available on the Internet®®.

A. Edge modes

1. FMR ezxcitation of a finite triangular array of magnetic
nanodots in the FM static state

In this example we consider an FMR excitation of a
finite array of magnetic nanodots. The dots are period-
ically arranged in the form of a right triangle, and have
a square lattice with the lattice constant a, as shown in
Fig. 3. The array hs the following parameters: a = 2.2R,
h = 0.25R, K% = 0.5u0M2, ag = 0.01, the number of
dots along a leg of the triangle is N7 = 40, for a total
of N = 820 dots in the array. These particular parame-
ters were chosen to guarantee the perpendicular stability
of the FM state (B®) and to ensure a significant dipolar
interaction between the dots (a — 2R < h).

The array considered in this example has the shape
of a right triangle with three edges, two of which (the
legs of the triangle) are equivalent and one is different
(the hypotenuse). To employ the technique presented in
Sec. IV we need to calculate collective spin wave spectra
for two sets of the primitive lattice vectors:

ar’® = (a,0), ay®=(0,a), (59a)
for the modes localized near the legs and
ay’? = (a,a), ay’® = (0,a), (59b)

for the modes localized near the hypotenuse.

The dispersion relations for the legs of the triangle
are shown in Fig. 4(a), while the dispersion for the hy-
potenuse is shown in Fig. 4(b). These relations were cal-
culated numerically using equation (27) for equivalent
stripes oriented along the primitive vectors defined by
(59a) and (59b) with 91 = 31. The properties of the spin
wave modes in an FM stripe of magnetic elements was
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FIG. 4. Results of FMR calculation in a triangular array
of magnetic dots; (a-b) Dispersion of the spin wave modes
traveling along (a) legs and (b) hypotenuse of the triangle.
Solid lines correspond to the edge modes, yellow area denotes
the bulk mode zone; (c) Distribution of the magnetization
amplitude for two edge modes localized near the legs of the
triangle; (d) Absorption power spectrum of the array for a
microwave signal with right circular polarization. The inset
shows absorption caused by the edge modes in more details.
The black line represents the calculation results based on the
theory presented in this paper, while the red dots correspond
to the direct numerical simulations. The absorption peaks
associated with different modes are marked as follows: o —
bulk modes; A1 and A2 — edge modes localized near the legs;
¢ — edge mode localized near the hypotenuse of the triangle,
n — “corner mode” localized near vertexes of the triangle. Pa-
rameters of the array: a = 2.2R, h = 0.25R, B® = 2.0uoMs;,
ag = 0.01, the total number of dots in the array is N = 820.
The frequency values are normalized by the characteristic fre-
quency wy = YpoMs.



10~2 107! 1
Amplitude |m| (a.u.)

FIG. 5. Distribution of the high-frequency component of the
magnetization in the triangular array of magnetic nanodots
(see Fig. 3) excited by a variable external magnetic field,
obtained by a numerical solution of the linearized Landau-
Lifshitz equations. The frequency of the excitation is chosen
to be at the central frequency of the absorption peaks marked
in Fig. 4(d): (a) a-line (bulk mode), (b) ¢-line (one of the edge
modes), and (c) 7-line (corner mode).
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previously investigated in detail in33. For each stripe, it
is important to note, that the FMR excitations can be lo-
calized along the stripe edges, and that these edge modes
form pairs, localized on the opposite sides of the stripe.
The edge modes in each pair are slightly split in frequency
(see the inset in Fig. 4(a)), due to the symmetry breaking
part of the dipole-dipole interaction®?, but the frequency
splitting vanishes at the symmetry points of the Brillouin
zone. Thus, to calculate the partial permeability tensors
(56) one should take a linear combination of the eigen-
vectors of (27) in such a way that the high frequency
components of the magnetization appear to be non-zero
for dots located near one side of the stripe. For this
particular configuration two well-separated edge modes
are formed for the both sets of primitive vectors. The
distribution of the high frequency components is plotted
in Fig. 4(c) for the primitive vectors in (59a) for two edge
modes with K = 0.

The FMR absorption spectrum of the array is plot-
ted in Fig. 4(d) with a solid black line that corresponds
to the results of the numerical solution of equation (57).
As expected, the absorption spectrum consists of a main
peak (marked with the symbol «) corresponding to bulk
spin wave modes in the array, and several side-peaks as-
sociated with localized edge spin wave modes from the
legs of the triangle (marked with A; and A2) and from
the hypotenuse (marked with n). The higher edge modes
are less localized (see Fig. 4(c)), therefore these modes
are less pronounced in the absorption spectrum, and the
peak associated with the second mode localized on the
hypotenuse is completely suppressed by the neighboring
peaks.

When the number of the dot in the array is not large,
it is possible to solve the Landau-Lifshitz equation (45)
directly. Since we are interested only in the linear dy-
namics, we can linearize (45) using the same procedure
as described in Sec. II:

Z [zw(:fz — Ozj)(sij + Q;j:| -my = ’)/_Apl' - bg. (60)
J
The static properties can be found from (9), where the
external field B*" is absent in our case.

In Fig. 4(d) we also show (see red dotted line) the
absorption spectrum found by the direct numerical solu-
tion of the linear inhomogeneous system of 1640 equa-
tions (60) for N = 820 dots. It is evident, that the di-
rect numerical simulation agrees reasonably well with our
theory, as the frequencies and heights of the absorption
peaks are in good quantitative agreement. The most no-
table difference between the theoretical and numerical
simulations is the broadening of the bulk peak obtained
in the direct numerical simulations. The direct numerical
simulations also show an additional peak (marked by 7)
which does not correspond to any of the peaks obtained
in the quasi-analytical theory.

To further analyze the FMR absorption spectra and
explain the differences between the theoretical and nu-
merical values of the power absorption, we present in



Fig. 5 the distribution of the microwave magnetization in
the array for several values of the excitation frequency,
calculated from (60). In Fig. 5(a) we plot the distribu-
tion of the magnetization at the central frequency of the
bulk peak (marked with the an « in Fig. 4 ). The distri-
bution is not uniform across the array, especially at the
vertexes. This non-uniform distribution is caused by a
non-homogeneous internal magnetic field within the ele-
ments, and, in its turn, is causing inhomogeneous broad-
ening of the main absorption peak!'” seen in Fig. 4(d).

The magnetization distribution for the hypotenuse
mode (marked in Fig. 4 with a () is plotted in Fig. 5(b)
for the central frequency of the absorption peak. As one
can see, most of the dots having the maximum values
of the precession amplitude are localized near the hy-
potenuse, as theoretically predicted. The peak marked
with the symbol 7 in Fig. 4 is not present in the theoreti-
cal calculations. The distribution of magnetization at the
central frequency of this peak is plotted in Fig. 5(c). For
this case one can see, that the dots with the maximum
amplitudes are situated at the vertexes of the triangle.
These “corner modes” were neglected in (57), and they
do not appear in the results obtained using the devel-
oped theory. The direct numerical simulation shows that
although the influence of these “corner modes” is rather
small, one should not completely neglect them for an ar-
ray of this rather small size.

Overall, our theory gives results which correspond
closely with direct numerical simulations, and provide
a convenient way to analyze the features of the absorp-
tion spectra analytically. We would like to emphasize
the computational advantage of our theoretical method.
Each red dot in 4(d) required an independent solution
of the inhomogeneous linear system of equations (60),
having the arithmetic complexity of O(N?3), making the
direct numerical simulations impractical for large arrays
of magnetic dots. Even for a system with only 820 dots,
the time required to calculate the numerical absorption
spectra was considerable. On the other hand, the the-
oretical line in the same figure, along with the disper-
sion relation in figure 4(a), can be almost instantaneously
computed for an array of any size, independently of the
number of dots. In other words, the arithmetic com-
plexity of the quasi-analytical problem for the same ar-
ray is of O(1). Surely, this simple analytical technique
cannot compete in numerical accuracy with the available
micromagnetic packages®®, however, it can be useful for
the approximate“engineering” of the desired absorption
spectra with a subsequent quantitative verification using
a computationally-intensive micromagnetic simulation.

2. Nonreciprocal spin wave edge mode

This example is illustrating the non-reciprocal proper-
ties of the spin wave spectra in arrays of magnetic nan-
odots with complex unit cell. The non-reciprocity of a
spin wave propagation is a desirable feature for the de-
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FIG. 6. Sketch of a semi-infinite array of magnetic nanodots
with a complex unit cell having dots with different anisotropy
within a primitive cell. White and green dots have the differ-
ent value of the anisotropy field B“. The black arrow points
towards the “forward” direction of the spin wave propagation.

0.40

0.39

0.38

0.37

0.36

Frequency (w/war)

0.0 0.2 0.4 0.6 0.8 1.0

Wavenumber (|kal/)

FIG. 7. Dispersion of collective spin wave modes in a
semi-infinite array of magnetic dots with different crystalline
anisotropy, shown in Fig. 6. Dispersion curves for the edge
modes traveling in the forward (backward) direction are plot-
ted with solid (dashed) lines. The bulk spectrum is shown
by a yellow region. Parameters of the array: a1 = 3.3R,
a2 = 10R, 6 = 5R, h = 5.0R, Bf = 0.2u0M,, B3 = 0.
The frequency values are normalized by the characteristic fre-
quency wy = ypoMs.

velopment of miniaturized and bias-free microwave iso-
lators and circulators. Recently, non-reciprocal bulk col-
lective spin wave modes have been investigated in detail
for infinite arrays of magnetic nanopillars in'®. In par-
ticular, it was shown that for arrays of identical dots,
non-reciprocal spin wave bulk modes only exist when the
constituent elements have an out-of-plane magnetization.
It was also shown that non-reciprocal spin waves bulk



modes exist in infinite dot arrays with complex unit cells,
e.g. containing two different types of dots . For exam-
ple, the dots may have different values of the anisotropy
field or different dot shapes, thus forming two different
sub-lattices in the array.

In terms of the non-reciprocity the edge modes are not
as restrictive as the bulk mores, and for the edge modes
the necessary conditions for the non-reciprocal behav-
ior could be lifted. For example, even a simple system
of identical dots may have non-reciprocal edge modes33.
The general properties of the bulk spin wave spectra may
be obtained by analyAzing the symmetry properties of the

fundamental tensor Fy,. For edge modes, however, an an-
alytical solution is not possible, as the eigenvalue problem
(27) is not symmetric. Nevertheless, much information
can be gained by performing a numerical analysis based
on (27) and (37).

Here, we consider a semi-infinite array of magnetic
nanodots having a rectangular lattice and a unit cell con-
taining two different dot types, each having a different
crystalline anisotropy within the same physical geometry
(Fig. 6). Thus, each cell of the array consists of a hetero-
geneous pair of dots separated by the vector §. To handle
this problem in the framework of our theory the diago-
nal components of the demagnetization block-matrix (22)
should rewritten in the following way :

]if(r) = <Njg(i)5) NJ(&(:’_)&> o) <I§1 132)( , )
61

where 0 is a zero 3x3 matrix.
For this example, when performing the actual numeri-

cal calculations of the block-matrix E . (n) using (29), it is

convenient to separate the part of N (r) that corresponds
to the crystalline anisotropy. Since the anisotropy ten-

sors K; enters directly only into the multi-tensor E,(0),
it is not necessary to recalculate the numerical values of

E,.(n) for a different values of the anisotropy.

For the easy comparison with the previous results,
we use the same geometrical parameters of the array as
in Ref. [19]: a1 = 3.3R, az = 10R, § = 5R, h = 5.0R.
The unit cell consists of two dots, one magnetically
isotropic and another having an out of plane easy axis
crystalline anisotropy of the value of B§ = 0.2uoM;. It
has been shown previously, that if § = as/2, the bulk
spectrum is reciprocal. However, the edge modes in this
case are not reciprocal. This is shown by the results of
a numerical simulation plotted in Fig. 7. The numerical
simulations of edge spin waves in the array were per-
formed for the stripe of width 91 = 31 cells.

In Fig. 7 we present the dispersion of the edge modes
traveling along one side of the stripe. The spectrum con-
sists of two zones of bulk waves and several well-separated
edge modes for each zone. The mechanism of the edge
mode formation is the same as in the case considered
in Sec. VIA 1, namely, a non-uniform static magnetic
field near the edge of the array. Corresponding to the
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FIG. 8. A sketch of an array of magnetic nanodots with a do-
main wall in ferromagnetic static magnetization state. Open
(orange) dots correspond to dots having the static magneti-
zation directed up (down).

previous results, the bulk mode spectrum is reciprocal,
while the spectrum of the edge modes is non-reciprocal,
because the waves traveling in the opposite directions
have different eigenfrequencies. The effect of the non-
reciprocity is more pronounced for the modes that are
separated from the bulk spectrum. However, the differ-
ence between the frequencies for the opposite values of x
is relatively small in this case.

The edge spin wave spectrum is reciprocal if the bound-
ary in the array is made along the a, direction. The
derivation of the exact analytical conditions of non-
reciprocity for the spectrum of edge spin wave modes
is beyond the scope of our current work and would be
published elsewhere as a separate study.

B. Domain walls

1. Non-reciprocal spin waves traveling along domain walls
in arrays in FM stable state

In the previous example the edge mode was well-
separated in frequency from the bulk spectrum, and it
exhibited a non-reciprocal behavior. While the non-
reciprocity was present, the effect was relatively small.
As it will be shown below, the non-reciprocal property of
the spin wave modes propagating along the domain walls
is substantially more pronounced than for the modes
propagating along the array’s edges. The reason is that
the non-reciprocal frequency splitting depends on the
difference in ellipticity between the adjacent dots, and
should be the most pronounced for the dots with the
opposite directions of the static magnetic moments, and
therefore, the opposite senses of the magnetization pre-
cession'?. Such a case is realized for an array in the FM
stable state having a domain wall, which separates dots
with anti-parallel directions of the magnetic moment, as
is shown in Fig. 8.

Consider an infinite array, where the static magnetiza-
tion(see (25)) has the following dependence of coordinate



0.36 T T T T

0.34

0.32

0.30

Frequency (w/wpr)

0.28

0.26

0.2 0.4 0.6

Wavenumber (|xal/7)

0.22 T T T
0.21

0.20

1
-

0.19
0.18

0.17

0.16 000

0.15 I I I I
—10

Static magnetic field (B/uoMs)

Dot number

15

1.0 F T & & T
pEER ©
| |
. 08} 4 . A
3 oy
< 06} [ -
o) ; \
= ! h|
£ 04} 2| : .
Z A A
5 0.2 ! 5 I \
' A *AA® A
0.0 g**ﬁké—*-** , rw *-é‘kﬁ—ﬂ,
—-10 -5 0 5 10
Dot number
00 I I I I I
—~ —02} g
ks
o]
g —04} .
[o
=
S 06} ]
8
%
S —08} —_— V>0 v
- = V<0 \
—1.0 l l T T l l
0.315 0.320 0.325 0.330 0.335 0.340 0.345

Frequency (w/war)

FIG. 9. (a) Dispersion of collective spin wave excitations localized on a domain wall in an array of magnetic nanodots existing in
the FM static state; (b) Static magnetic field profile near a domain wall; (c) Profiles of time-averaged high-frequency component
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modes are marked by similar symbols as in the panel a); (d) Insertion losses for the collective spin waves traveling along the
domain wall in two directions. Parameters of the array: a = 2.2R, h = 0.25R, B® = 2.0u0Ms;, ag = 0.01. The frequency values
in (a) and (d) are normalized by the characteristic frequency war = yuo Ms.

in the ay direction,:

{0

where e, is a unit vector perpendicular to the array plane.

The dispersion relation for this array is shown
in Fig. 9(a). The numerical simulations were performed
for a stripe having 9t = 82 rows. This number of rows was
chosen to guarantee the absence of interaction between
the domain-wall modes and the “artifact” edge modes
(the “artifact” edge modes have been removed from the
plot). The spectrum consists of the bulk modes, similar
to the modes considered in Sec. VIA 1, and the domain
wall modes that are separated in frequency from the bulk
modes. The mechanism responsible for the formation of
the domain wall modes is a “potential well” formed by the
non-uniform static magnetic field profile near the domain
wall, as shown in Fig. 9(b). The domain-wall modes can
be divided into two types: the modes localized directly on
the domain wall and the modes localized near the domain
wall, as shown in Fig. 9(c). The modes localized near the
domain wall (green triangles in Fig. 9(c)) are similar to

n > 0,
n <0,

€ (62)

€z,

the modes formed near the edge of an array in FM stable
state®?. The modes formed directly on the domain wall
(magenta stars in Fig. 9(c)) exhibit a different behavior,
as these modes are more localized and are highly non-
reciprocal. In fact, these non-reciprocal modes still exist
in a stripe of dots consisting of only two rows of dots with
opposite directions of the static magnetization.

Non-reciprocal signal processing devices, such as iso-
lators and circulators, allow propagation of waves in one
direction and ado not allow such propagation in the op-
posite direction. This property is, typically, achieved due
to the different insertion losses for waves traveling in the
opposite directions.

Below, we demonstrate that such a nonreciprocal isola-
tion effect can be achieved for the spin waves propagating
along a domain wall in an array of magnetic nanodots.

The propagation losses of any of the spin wave modes
caused by the magnetic damping can be calculated as:

L'y

a
d, = —-20 1og10(e)W [dB/dot],

(63)

where a is the distance between the nearest dots and V¢ is
the group velocity of the spin wave mode. The direction
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FIG. 10. A sketch of a domain wall in an array in chessboard
antiferromagnetic ground state. The boundary between two
states in shown by a dashed grey line. Green rectangles show
the elementary cells for two different states. Open and orange
dots has the same meaning as in Fig. 8.

of the wave mode propagation (“forward” or “backward”)
is determined by the sign of the group velocity.

It is clear from Fig. 9(a), that there is a small region
near k = 0, where the spin wave mode marked by a
magenta star in Fig. 9(a) has a negative group velocity
VY = dw,/dr < 0, and, therefore, can be considered as
a“‘backward-propagating” wave in this region.

The results of calculation of the propagation losses
for spin wave modes forward- and backward-propagating
along the domain wall using (63) are presented in
Fig. 9(d). In contrast with the previous example, in this
case the difference in losses between the forward- and
backward-propagating wave modes is rather big (up to
0.2dB/ dot), and is comparable to the direct insertion
losses for the faster (V; < 0 in our case) spin wave mode.
This makes the non-reciprocal spin waves propagating
allong the domain walls in the FM -state magnetic dot
arrays rather interesting for practical realization of nano-
sized microwave isolators.

2. Spin wave domain wall modes in chessboard AFM stable
state

A magnetic dot array with a square lattice existing in
the AFM static magnetization state, where the neigh-
boring nanodots have opposite magnetization directions,
has the lowest potential energy, and, therefore, forms a
true ground state of the array. Such a state of the static
magnetization, shown in Fig. 10 and having a zero net
magnetic moment, is, usually, naturally formed during
the demagnetization and is called the chessboard AFM
(CAFM) state!®'7. In reality, however, demagnetization
does not lead to an ideal CAFM state!®, but, instead, it
leads to the formation of clusters with local periodicity
due to the spontaneous symmetry breaking between the
two equivalent ground states of the array. A boundary
between the two equivalent states CAFM states forms a
“domain wall,” as shown in Fig. 10.

This example will explore the FMR (wave number
equal to zero) absorption spectrum of the domain-wall
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modes in an array exising in a CAFM. To calculate the
spin wave modes localized on the domain walls in the ar-
ray we consider a single infinitely long domain wall within
an infinite array, as shown in Fig. 10. The spectrum
of the collective spin wave modes localized on the do-
main wall in the CAFM state is presented in Fig. 11(a).
The spectrum consists of two bulk zones'” and a well-
separated domain-wall mode. As in the previous exam-
ple, we have removed the “artifact” modes caused by the
specifics of the numerical solution (see Sec. V). The main
reason for the modes localization on a domain wall is the
variation of the internal magnetic field near the domain
wall (see Fig. 11(b)). However, this variation is much
smaller than in the example described in the previous
section: only the dots that are the closest to the domain-
wall have a distinct difference in their internal magnetic
field, and this field variation is rather small, making the
corresponding potential well rather shallow. Therefore,
only a single localized mode appears in the spectrum of
the array for the considered geometrical parameters, and
the localization of this mode ir rather weak as shown in
Fig. 11(b).

An array in the CAFM ground state does not have a
net magnetic moment. Thus, its FMR absorption spec-
trum does not depend on the polarization of the external
signal. In contrast, the contribution made by the external
microwave field to the domain wall mode has a polariza-
tion dependence. If one takes the axis Oz to be parallel
to the domain wall, the partial susceptibility tensor (56)
associated with the domain-wall modes has the following
structure:

8
O O O
o O O

de = (64)

O Oas

making the mode insensitive to the component of the ex-
ternal magnetic field that is perpendicular to the domain
wall.

The difference in response of the bulk and edge modes
is caused by the symmetry of the problem. In a domain
existing in a uniform CAFM ground state, the magne-
tization in a particular dot will precess clockwise and
counter-clockwise depending on the orientation of the
magnetic moment of this dot'”, making x;, a diagonal
real tensor with x¥* = x{”.

However, in the case of domain-wall modes the bound-
ary between the two CAFM ground states “synchronizes”
the precession in the adjacent domains. The mirror sym-
metry of the problem requires that:

m%n-i—l,l) = m(z—n,l) = m%n—i—l,?) = m%—n,2) (65a)
and
Mi10) =~ 1) = ~Mi19) = M), (65D)

Using the above properties on can easily to show that:

m:(ynvl) (m,(y”l/,l)) = _m:(y’n,,Q) (m,(yn’,2)) . (66)
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FIG. 11. (a) Dispersion of the collective spin wave modes localized on a domain wall in an array of magnetic nanodots existing
in the chessboard AFM static magnetization state; (b) Blue circles show the profile of the static internal magnetic field near the
domain-wall (left axis); Red stars show the profile of the localized spin wave mode for k = 0 (right axis);(c) Absorption power
spectrum of the array in a multi-domain chessboard AFM state for the microwave signal with linear polarization oriented in
the [11] direction for two values of the characteristic domain size calculated using the above developed quasi-analytical theory.
The absorption peaks associated with the bulk and domain-wall modes are marked with the symbols o and 7, respectively;
(d) Absorption power spectrum calculated using the direct micro-magnetic simulation procedure described in Ref. 18 (black line,
bottom axis); Solid and dashed vertical lines indicate theoretically calculated resonance frequencies for bulk and domain-wall
modes, respectively (upper axis); Physical dimensions of the array for (a-c) are the same as for Fig. 9. The frequency values in
(a), (c), and (d) are normalized by the characteristic frequency war = yuo Ms.

Using Eq.(65) in (56) it is easy to get that x4 = 0.
Analogously, one can show that x3% = 0, and, therefore,
Xgw is the only non-zero component of the susceptibility
tensor of the domain-wall spin wave mode.

A convenient characteristic of the final state of a de-
magnetized array'® is the typical value of the number of
dots forming a one CAFM cluster A (cluster size). Thus,
the total length (in dots) of a domain wall encircling all
the clusters can be approximated as:

LoVl (67)
A
The full absorption power can be found from the expres-
sion that is analogous to (57):

2 A p )

VA VN )’
where P, is the total absorption caused by the bulk
modes, Pgy is the total absorption caused by the do-

PaN (Pb +——Paw + (68)

main wall modes, and P, is the total absorption caused
by the edge modes.

For sufficiently large arrays the role of the edge modes
vanishes, although the absorption caused by the domain
wall modes is inversely proportional to the size of a clus-
ter in the array, and does not vanish in the limit N — oo.
The absorption spectra calculated for two different values
of the cluster size are shown in Fig. 11(c). The peaks as-
sociated with the bulk modes and domain-wall modes are
marked with the symbols o and 7, respectively. For the
clusters containing A = 64 dots these domain-wall modes
may be clearly pronounced, producing an absorption that
has a magnitude larger than 10% of the magnitude of the
bulk mode peak. Thus, the absorption caused by the do-
main wall mode can be easily observed experimentally.
Obviously, the static magnetization states with smaller
clusters produce a larger absorption, however, when the
linear dimensions of the domains get closer to the spin
wave localization length (see Fig. 11(b)) the approxima-



tion of an infinitely long domain wall is no longer valid.

A previous work!'® calculated the FMR absorption
spectrum for a CAFM array containing stable clusters
using a micro-magnetic simulation. When the data
from the micro-magnetic simulation is compared with
our quasi-analytical theory, the results apper to be quite
similar. These results are shown in Fig. 11(d), where
the data taken from Ref. 18 is shown by a continuous
thin black line, while the vertical lines show the spec-
tral positions of the absorption peaks calculated from
our quasi-analytical. It is evident that the bulk peak
obtained in the framework of our theory and shown by
a solid vertical line, matches nicely with the absorption
peak obtained from the micromagnetic simulations. Like-
wise, the dashed vertical line, which marks the absorp-
tion peak corresponding to the cluster of domain walls,
matches well with the position of the plateau obtained in
the micromagnetic simulations. Unfortunately, the data
from Ref. 18 was obtained for the cluster sizes of A = 23,
for which the localized domain wall modes were not com-
pletely formed. That makes a more detailed quantitative
comparison between the theory presented here and the
micromagnetic simulations impossible. This is confirmed
by the lack of a strong absorption peak corresponding
to the domain wall modes in the micromagnetic simula-
tions. The difference in the mode frequencies between
the micromagnetic results and the analytical theory is
caused, most likely, by the inhomogeneity of the internal
magnetic field, the effect similar to the one described in
Sec. VIA1.

Thus, the developed theory provides a reasonably good
tool to estimate the cluster size from the FMR response
measured or calculated for the arrays with sufficiently
large clusters. However, for arrays with smallar clusters,
the development of a technique capable of estimating the
cluster size from the FMR response require a more rig-
orous estimation of the domains boundary length, than
the one given by equation (67). A more rigorous esti-
mation must take into account the “corner modes” that
form at the domain wall intersections and the interac-
tions between the domain-wall modes exsisting within
one domain.

VII. CONCLUSIONS

A general theoretical formalism, developed in this pa-
per, allows one to calculate the following characteris-
tics of the finite magnetic dot arrays having a complex
primitive cell and a translational symmetry along one of
the lattice vectors: (i) distribution of the internal mag-
netic field inside the array; (ii) equilibrium directions of
the static part of the dot magnetization inside the ar-
ray; (iil) spectra of the collective spin wave edge excita-
tions in the array. We have shown that by introducing
a “multi-vector” notation it is possible to reduce the so-
lution of the Landau-Lifshitz equation for a dot array
to a generalized eigenvalue problem. The components
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of the block-matrices involved in the eigenvalue prob-
lem for edge spin-wave excitations are obtained using a
one-dimensional Fourier transform of analytically defined
functions, which requires substantially less computation
time than the typical micromagnetic simulations for the
same system. Although only a macrospin approximation
of the magnetization dynamics in a single dot is consid-
ered in this work, the developed formalism could be ex-
tended to describe the magnetization dynamics in the dot
array with non-trivial distribution of the dynamic mag-
netization inside the dots (for one of possible extensions
see Appendix A).

The above developed quasi-analytical approach made
possible to develop a theory of the FMR excitation of
finite dot arrays, taking into account the edge effects. It
was also shown that, using the developed theory, it is
possible to calculate the absorption spectra of finite dot
arrays using much less computation effort than required
for the direct micromagnetic simulations of a similar sys-
tem. Moreover, the quasi-analytical representation of the
partial magnetic susceptibility tensors provides a way to
understand how each spin wave mode of the array inter-
acts with the applied electromagnetic driving field.

We have also developed a computer program imple-
menting our method® and illustrated the application
of the developed theory on the examples that fall into
two categories: edge effects and domain-wall effects. In
particular, it has been demonstrated that the FMR ab-
sorption spectrum calculated using our quasi-analytical
theory for a finite array of magnetic nanodots having a
shape of right triangle agrees very well with the results
obtained by direct micromagnetic simulations. An ex-
ample of an array with a complex elementary cell con-
taining two different magnetic dots was also considered.
It was demonstrated that such arrays, while having re-
ciprocal spectrum of bulk spin wave modes, may have a
non-reciprocal spectrum of the edge spin wave modes.

The spectra of spin wave excitations localized at the
domain walls in arrays of magnetic nanodots were cal-
culated for two cases: a domain wall between the two
ferromagnetic static magnetization states and a domain
wall between the two chessboard antiferromagnetic static
magnetization states. In the first case, it was demon-
strated that the modes localized on the domain-wall have
a very high degree of non-reciprocity. The propagation
losses for these modes appear to be significantly differ-
ent for the opposite propagation directions, which can be
used for the development of nano-sized microwave isola-
tors and circulators. For the case of an array existing in a
chessboard antiferromagnetic static magnetization state
with domain walls (which is a natural state for a de-
magnetized array) it has been shown that the spin wave
modes localized on the domain walls may produce a sig-
nificant contribution to the FMR absorption spectra. In
contrast to the spin wave modes localized at the array’s
edges, that have been considered in previous examples,
the contribution to the FMR response by the modes local-
ized on the domain wall in the chessboard antiferromag-



netic ground state depends on the size of the domains,
providing a tool to estimate the size of the domains, and,
therefore, the “quality” of the static magnetization state
of the dot array.
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Appendix A: An extension of the theory beyond the
macrospin approximation

In the theory devolved above we used the same demag-
netization tensor N (r) for static (9) and dynamic (10)
equations. This approximation is correct, when the dots
are assumed to be magnetized uniformly among their
volume (“macrospin approximation”) and the crystalline
anisotropy is uniaxial. Here we show, that the developed
theory can be extended to cover more general situations.

We demonstrate below that the theory can be substan-
tially generalized if we use different static and dynamic
demagnetization tensors in (9) and (11):

= Bngt - /’LOMS ZNf; : H_jv (9/)

J

Bip;

and

Q, ij =B 51JI+’yu0M Ndyn, (119
where N f; and N ?jyn are the static and dynamic demag-
netization tensors found in each particular case. In all
the equations of the above developed theoretical formal-
ism the static and dynamic demagnetization enter inde-
pendently, so it is easy to trace all the changes caused
by using different demagnetization tensors for static and
dynamic magnetization.

1. High-order crystalline anisotropy

A high-order crystalline anisotropy is usually rather
weak, compared to the the uniaxial anisotropy of the
magnetic material and the shape anisotropy of the mag-
netic sample. However, in some particular cases the
high-order anisotropy can be qualitative important. For
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example, this happens when the shape and crystalline
anisotropies are not present ( e.g. when magnetic el-
ements are spherical and made of an isotropic mate-
1ial®$57) or when the shape and crystalline anisotropies
cancel each other.

As an example of the high-order anisotropy here we
consider the first-order cubic anisotropy. Let us assume
that the energy of the cubic anisotropy is K. and the
crystalline axes are: e, es and e3. The energy added by
the first-order cubic anisotropy to the energy of a single
magnetic dot can be written® as (here and below we
drop the dot’s index):

K.
We =" TupysMaMpM,Ms, (A1)
S aBys
where
Taprs = €1 @ €1 Qe ® et
e1ReRe3RVest+er ey ez @es. (A2)

Thus, the effective field caused by the anisotropy can be
found as:

aVVcl 4Kcl Sym
Bo=——ar = = TR Mo MsM,,,  (A3)
M aBy
where
T;}g,rylé = 24 ( afyd + Tﬁa'yé + Tﬁ'yaé +. ) (A4)

To linearize (A3) we use expansion (6). In contrast with
the uniaxial case, the static and dynamic magnetic fields
are different. The static field can be found as:

4K

B = — Vi Z T%ijlaﬂaﬂﬁﬂw (A5)
5 apy
while the dynamic field is found as:
4K ¢
BY" =~ Nalk)m(80)
with
Nei =) To50s(taps + Hatiy + pppis) =
afy
Z msﬂaﬂﬁ- (A7)

Thus, the correction to the demagnetization tensor
caused by the cubic anisotropy can be written as:

. . 4K S
st cl
Nij =Ny +5ijWNcl(N)v (A8)
< dvn A 4K+
Ni]y = Nij + 6“#0—]\452]\761 (N) (AQ)



Note, that the effective demagnetization tensor now ex-
plicitly depends on the magnetic ground state of a dot.
The dynamical equations do not get any additional com-
plexity, however the static problem (9") becomes consid-
erably more complicated. Although, in a particular case,
when the static component is aligned along one of the
axes of the cubic anisotropy e3 = p the correction to the
demagnetization tensor has a simple form®%:

Nao=(e1®e1+ex® 62)/2. (AlO)

2. Dots with non-uniform dynamic magnetization

For the sake of simplicity we derived the above pre-
sented theory implying that the magnetic dots have a
uniform magnetization profile. Nevertheless, the theory
can be extended for the cases, when the spatial profile
of the spin wave mode is not uniform. The straightfor-
ward extension is possible when: (i) the ground state of
static magnetization of the dot is uniform; (ii) the inter-
actions between the dots do not alter the ground state of
a single dot, e.g. when the inter-dot interaction is weaker
than the exchange and dipolar self-interactions in a sin-
gle dot; and (iii) the eigenmodes of a dot are substan-
tially separated in frequency. Under these assumptions,
our approach remains sufficiently simple to allow the an-
alytical analysis, and can describe dynamics of realistic
experimental systems!!13.

Let us assume that we know from either a micro-
magnetic simulation®®4%%0 or from an analytical solu-
tion31:43:64 the linear magnetization dynamics of a single
isolated magnetic dot in a form:

£
M(t,7)/My = p+ Y ma(r)e ™ +cc., (All)
A=1

where p is the static magnetization component, m, () is
the vector mode profile of the A-th spin wave mode and £
is the number of these spin wave modes. For simplicity we
assume that the modes do not interact. It is convenient
to switch to a temporary coordinate system (denoted by
the symbol /), in which p = 2/, and write the distribution
of the dynamic part of the magnetization in this system
as%?:
R 1
exmi(r) = A\(r)- [ |,
0

(A12)

where A/ (r) is a real dimensionless matrix-density:
Re(mgy(r) —Im(mg(r)) 0

Al = ¢\ | Tm(my(r) Re(my(r)) 0
0 0

(A13)
The normalization coefficient ¢y is found from the condi-
tion:

L[ aedoaeer =1,
14
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where V' is the volume of the dot and the operator J is
defined in the same way as in (13).

Following the same procedure as in [52], we obtain the
Fourier representation of the effective demagnetization
tensor:

1 y A *
N)\ K — WA)\"K . (K®K> . bW ¢) (A15)

where K in the three-dimensional reciprocal vector and
A)\)K is:

AA,K = /A,\(r)e*iK"“d?’r. (A16)
1%

After that, the effective dynamic demagnetization ten-
sor IN iy; and its in-plane Fourier image N iy,? can be
found straightforwardly!”:

7dyn 1 \
N>\7k = % N)\,k-i—zﬁzd'k‘./z' (Al?)

Now one substitutes this tensor into (11’) and finds
eigen-frequencies w, and spin-wave mode profiles m,, ,, of
the collective spin-wave excitations in an array of inter-
acting nanodots using (27). After that, the distribution

of magnetization within a single dot for the v-th array
mode can be found for each dot in the array:

mVy)\-,n(r) = AA(T) My p. (A18)

A case of multiple interacting modes within a dot can
be considered introducing a new “layer” of multi-vectors,
representing amplitudes of different modes, similarly to
the approach used for a complex unit cell in this paper.
The operators J will, however, have to be renormalized,
as the different modes may carry a different magnetic
moment.

Appendix B: Multi-vector algebra

“Multi-vectors” are introduced as the first rank objects
in a multi-vector space. Instead of scalars for “ordinary”
Euclidean vectors, each multi-vector (a) is an ordered
collection of three-dimensional vectors a;. A multi-vector
of the size P contains P three-dimensional vectors:

ai
az

Q
Il

(B1)

ap

Below we define the algebra in the multi-vector space.
First of all we define a bilinear operation (scalar product)
of two multi-vectors of the size P:

a bl
- asz by P
a-b= => ai-b;. (B2)
: i=1
ap bp



The second rank objects in the multi-vector space are the
block-matrices P by P, each element of which is a 3 by
3 matrix of scalars. A product of a multi-vector and a
block-matrix is defined as follows:

R Mu MIP ax
M-a=| @ -~ |- [:]=
M p, Mpp ap
i M- a;
: =b, (B3)
ZilMPi'ai

and returns another multi-vector. Although it is never
used in the paper, one can also define scaling a multi-
vector as a multiplication of a multi-vector by a scalar
and other higher rank operations.

The multi-vectors are convent for analytical and nu-
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merical calculations. In computer algebra systems the
operations (B2) and (B3) can be defined as custom user
operations and one can analyze the object in the multi-
vector space analytically.

For numerical simulations one can formally use multi-
vectors as ordinary vectors of scalars of the size 3P:

One can easily check, that the operations (B2) and (B3)
remain valid in this case.

It is important to stress, that our notation for “multi-
vectors” is not related to the “Multivector Calculus” de-
scribed in%.
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