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Abstract

We develop a Ginzburg-Landau (GL) theory for fcc crystal-melt systems at equilibrium by

employing two sets of order parameters that correspond to amplitudes of density waves of principal

reciprocal lattice vectors and amplitudes of density waves of a second set of reciprocal lattice

vectors. The choice of the second set of reciprocal lattice vectors is constrained by the condition

that this set must form closed triangles with the principal reciprocal lattice vectors in reciprocal

space to make the fcc-liquid transition first order. The capillary anisotropy of fcc-liquid interfaces

is investigated by GL theory with amplitudes of 〈111〉 and 〈200〉 density waves. Furthermore,

we explore the dependence of the anisotropy of the excess free-energy of the solid-liquid interface

on density waves of higher order reciprocal lattice vectors such as 〈311〉 by extending the two-

mode GL theory with an additional mode. The anisotropy calculated using GL theory with input

parameters from molecular dynamics (MD) simulations for fcc Ni is compared to that measured in

MD simulations.

PACS numbers: 68.08.-p, 68.08.De, 61.50.Ah, 81.30.Fb
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I. INTRODUCTION

The critical role of anisotropic interface properties on dendritic growth has been estab-

lished in the past few decades analytically and numerically1–6. In particular, the anisotropy

of the surface energy is one of the crucial physical quantities that controls the size and

growth rates of dendrites under common solidification conditions where the solid-liquid in-

terface can be assumed to be in local thermodynamic equilibrium. Several techniques have

been developed to accurately compute the solid-liquid interfacial energy from molecular dy-

namics (MD) simulations and to successfully resolve its weak anisotropy7–14. In spite of its

importance in metallurgy, it is of interest for scientists to understand the physical origin of

the interfacial anisotropy. Recent studies have demonstrated that the small, yet important,

interfacial anisotropy is related to the broken symmetry of the solid at the interface15–17.

MD calculations for a wide range of systems show consistently that the capillary

anisotropy for body-centered-cubic (bcc) elements is smaller than that for face-centered-

cubic (fcc) ones18,19. Furthermore, the anisotropy parameters characterized by Kubic har-

monics expansions have similar values for materials with the same crystal structures11. The

universal observation that the interfacial anisotropy is closely related to crystal structures

motivates the study of interfacial anisotropies using Ginzburg-Landau (GL) theory for bcc-

liquid interfaces15,20,21. The order parameters of this theory are the amplitudes of density

waves corresponding to the set of principal reciprocal lattice vectors, and the phenomeno-

logical coefficients in the GL theory are derived from density functional theory (DFT) of

freezing22–28. The weak anisotropy of bcc-liquid systems calculated using the GL theory is

in quantitatively good agreement with MD simulations15. Since the interfacial anisotropy

is closely related to the lattice structure, the universality of the interfacial anisotropy for

bcc-liquid systems is also derived in the phase field crystal (PFC) model16,17,21 that is closely

related to GL theory.

The PFC model introduced by Elder et al. has been successfully employed to tackle

problems at the atomistic length scale over the past decade29–46. This model exhibits self-

organized crystal-like structures, hence it is capable of describing crystalline planes, elas-

tic/plastic deformations, and dislocations in crystals realistically. Thus the PFC method is a

powerful tool to model interfaces and microstructural evolution at atomistic scale due to its

crystalline properties and above-mentioned structure-dependent interfacial anisotropy. How-
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ever, in three dimensions, the stable crystal structure in the standard PFC model is the bcc

lattice due to the fact that only wavevectors around the principal reciprocal lattice vectors

in the PFC model are excited. Recent work has extended the PFC method to model other

crystal structures of interest, such as fcc lattices34,42, by incorporating more than one set of

reciprocal lattice vectors. However, the resulting anisotropy of the solid-liquid interface free-

energy and its relationship to the choice reciprocal lattice vectors has not been analyzed in

detail. In this paper, we employ the GL theory to investigate interfacial anisotropies for fcc

crystals. In contrast to GL theory for bcc-liquid systems, the fourth-order GL theory with

amplitudes of principal reciprocal lattice vectors cannot form stable fcc-liquid interfaces47,48.

Thus we consider the simplest fourth-order GL theory of the fcc-liquid interface with two

sets of reciprocal lattice vectors. The formulation of two-mode GL theory is derived from

density functional theory freezing using the set of 〈200〉 density waves as the second mode.

The anisotropic density wave profiles and the anisotropy of interfacial energies are calcu-

lated. Furthermore, we examine the influence of higher order reciprocal lattice vectors such

as 〈311〉 on the anisotropy of the interfacial energy. The comparison of the anisotropy of

the interfacial energy between GL theory and MD simulations is discussed.

II. TWO-MODE GINZBURG-LANDAU THEORY

The Ginzburg-Landau (GL) theory of the bcc-liquid interfaces developed previously by

Wu et al. successfully predicts the amplitude profiles and interfacial anisotropies15. The

order parameters are the amplitudes of density waves corresponding to principal reciprocal

lattice vectors 〈110〉. The symmetries of principal reciprocal lattice vectors of bcc lattices

result in non-vanishing cubic terms of amplitudes in the expansion of free energy in density

functional theory (DFT) of freezing. The cubic terms give rise to a free-energy barrier

between the liquid and solid phases, and make the bcc-liquid freezing transition first order49.

However, for the fcc lattices, a single set of reciprocal lattice vectors alone cannot form a free

energy barrier due to the absence of the cubic term. Thus, to formulate a first order solid-

liquid phase transition for fcc lattices, one has to include not only the principal reciprocal

lattice vectors 〈111〉 but also a second set of reciprocal lattice vectors which form closed

triangles with 〈111〉 in the reciprocal space. The candidates of the second mode are sets

of the reciprocal lattice vectors that compose closed triads with 〈111〉 in reciprocal space,
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such as 〈200〉, 〈220〉, etc. The number density of fcc lattices can be approximated by the

following form,

n(~r) = n0



1 +
∑

~Ki

ui(~r)e
i ~Ki·~r +

∑

~Gi

vi(~r)e
i ~Gi·~r



 , (1)

where the order parameters ui are amplitudes of density waves corresponding to principal

reciprocal lattice vectors 〈111〉 and vi are amplitudes of density waves corresponding to

the second set of reciprocal lattice vectors 〈 ~G〉. The free energy functional in GL theory is

derived from density functional theory of freezing, see Refs.15,25,26. The free energy functional

that describes small density fluctuations of an inhomogeneous liquid is

∆F =
kB T

2

∫ ∫

d~r d~r ′δn (~r)

[

δ(~r − ~r ′)

n0
− C (|~r − ~r ′)|)

]

δn (~r ′) , (2)

where δn(~r) ≡ n(~r)− n0, and C (|~r − ~r ′)|) is the two-particle direct correlation function of

the liquid and with Fourier transform

C(q) = n0

∫

d~r C(|~r|) e−i~q·~r (3)

is related to the liquid structure factor S(q) = 1/[1−C(q)]−1. Assuming a planar solid-liquid

interface whose normal is along z-direction and the amplitudes of density waves vary slowly

across the interface, we can expand the density fluctuation δn(~r ′) in a Taylor series about

z,

δn (~r ′) ≈ n0





∑

~Ki

(

ui(z) +
dui(z)

dz
(z′ − z) +

1

2

d2ui(z)

dz2
(z′ − z)

2

)

ei
~Ki·~r

′

+
∑

~Gi

(

vi(z) +
dvi(z)

dz
(z′ − z) +

1

2

d2vi(z)

dz2
(z′ − z)

2

)

ei
~Gi·~r ′



 , (4)

where the higher order terms are truncated under the assumption that the amplitudes ui’s

and vi’s vary slowly across the interface. The excess free energy functional is calculated by

substituting this expression in (2) and carry out the integral over ~r ′.

In the integral over ~r ′, the contribution from terms that are independent of (z − z′) in
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Eq. (4) leads to

n0

∫

d~r ′

[

δ(~r − ~r ′)

n0

− C (|~r − ~r ′)|)

]





∑

~Ki

ui(z)e
i ~Ki·~r ′

+
∑

~Gi

vi(z)e
i ~Gi·~r ′



 ,

=
∑

~Ki

ui(z)e
i ~Ki·~r

(

1− C(| ~Ki|)
)

+
∑

~Gi

vi(z)e
i ~Gi·~r

(

1− C(| ~Gi|)
)

=
∑

~Ki

1

S(| ~Ki|)
ui(z)e

i ~Ki·~r +
∑

~Gi

1

S(| ~Gi|)
vi(z)e

i ~Gi·~r. (5)

The contribution from terms that are linearly proportional to (z − z′) in Eq. (4) is

−n0

∫

d~r ′C (|~r − ~r ′)|)





∑

~Ki

dui

dz
(z′ − z)ei

~Ki·~r ′

+
∑

~Gi

dvi
dz

(z′ − z)ei
~Gi·~r ′



 ,

=
∑

~Ki

dui

dz
ei

~Ki·~r

(

i
∂C(| ~Ki|)

∂Kz

)

+
∑

~Gi

dvi
dz

ei
~Gi·~r

(

i
∂C(| ~Gi|)

∂Kz

)

=
∑

~Ki

dui

dz
ei

~Ki·~r
(

iC ′(| ~Ki|)(K̂i · ẑ)
)

+
∑

~Gi

dvi
dz

ei
~Gi·~r
(

iC ′(| ~Gi|)(Ĝi · ẑ)
)

, (6)

where C ′(q) ≡ dC(q)/dq. It does not contribute to the integral over ~r in Eq. (2) since con-

tribution from density wave of + ~Ki (+ ~Gi) cancel with that of − ~Ki (−~Gi). The contribution

from terms that are proportional to (z − z′)2 in Eq. (4) is

−
n0

2

∫

d~r ′C (|~r − ~r ′)|)





∑

~Ki

d2ui

dz2
(z′ − z)2ei

~Ki·~r
′

+
∑

~Gi

d2vi
dz2

(z′ − z)2ei
~Gi·~r

′



 ,

=
1

2

∑

~Ki

d2ui

dz2
ei

~Ki·~r

(

∂2C(| ~Ki|)

∂K2
z

)

+
1

2

∑

~Gi

dvi
dz

ei
~Gi·~r

(

∂2C(| ~Gi|)

∂K2
z

)

=
1

2

∑

~Ki

d2ui

dz2
ei

~Ki·~r

[

C ′′(| ~Ki|)(K̂i · ẑ)
2 +

C ′(| ~Ki|)

| ~Ki|

(

1− (K̂i · ẑ)
2
)

]

+
1

2

∑

~Gi

d2vi
dz2

ei
~Gi·~r

[

C ′′(| ~Gi|)(Ĝi · ẑ)
2 +

C ′(| ~Gi|)

| ~Gi|

(

1− (Ĝi · ẑ)
2
)

]

, (7)

where C ′′(q) ≡ d2C(q)/dq2. Finally, the excess free energy functional Eq. (2) is

∆F ≈
n0kBT

2

∫

d~r

[

∑

i,j

1

S(| ~Ki|)
uiuj δ0, ~Ki+ ~Kj

+
∑

i,j

1

S(| ~Gi|)
vivj δ0, ~Gi+ ~Gj

−
∑

i

1

2

[

C ′′(| ~Ki|)(K̂i · ẑ)
2 +

C ′(| ~Ki|)

| ~Ki|

(

1− (K̂i · ẑ)
2
)

]

∣

∣

∣

∣

dui

dz

∣

∣

∣

∣

2

−
∑

i

1

2

[

C ′′(| ~Gi|)(Ĝi · ẑ)
2 +

C ′(| ~Gi|)

| ~Gi|

(

1− (Ĝi · ẑ)
2
)

]

∣

∣

∣

∣

dvi
dz

∣

∣

∣

∣

2
]

. (8)
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Since the magnitude of the principal reciprocal lattice vectors is determined by the location

of the first peak of the liquid structure factor, the first derivative of C(q) vanishes for

q = | ~K|. However, for the second set of reciprocal lattice vectors 〈 ~G〉, the coefficient of the

square gradient terms depends on the details of the shape of C(q) around q = | ~G| and also

depends on the magnitude of the transverse component of the reciprocal lattice vectors. In

order to have stable density wave profiles across solid-liquid interfaces, the coefficient of the

square gradient terms must be positive which requires both C ′(q) ≤ 0 and C ′′(q) ≤ 0 for

all reciprocal lattice vectors considered. To construct a simple two-mode GL theory for fcc-

liquid systems, cubic and quartic terms of u and v are required. The symmetry of reciprocal

lattice vectors determines which combination of polynomials of ui’s and vi’s is allowed in

the GL free energy functional as discussed in the following sections.

III. GL THEORY WITH 〈111〉 AND 〈200〉 MODES

The GL theory of equilibrium solid-liquid systems is derived from DFT of freezing as

shown in previous section, and the free energy is expanded as power series of ui’s and

vi’s around its liquid state. We first illustrate a simple GL theory for fcc-liquid systems

by considering 〈200〉 reciprocal lattice vectors as the second mode. With 〈111〉 principal

reciprocal lattice vectors and 〈200〉 reciprocal lattice vectors, the simplest form of the excess

free energy of fcc-liquid systems can be written as

∆F ≈
n0kBT

2

∫

d~r

(

a2
∑

i,j

cij uiuj δ0, ~Ki+ ~Kj
+ bu

∑

i

ci

∣

∣

∣

∣

dui

dz

∣

∣

∣

∣

2

+ b2
∑

i,j

dij vivj δ0, ~Gi+ ~Gj
+
∑

i

(bLv d
L
i + bTv d

T
i )

∣

∣

∣

∣

dvi
dz

∣

∣

∣

∣

2

− a3
∑

i,j,k

cijk uiujvk δ0, ~Ki+ ~Kj+ ~Gk

+ a4
∑

i,j,k,l

cijkl uiujukul δ0, ~Ki+ ~Kj+ ~Kk+ ~Kl

+ b4
∑

i,j,k,l

dijkl uiujvkvl δ0, ~Ki+ ~Kj+ ~Gk+ ~Gl

)

, (9)
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where

a2 =
8

S(| ~K111|)
, (10)

b2 =
6

S(| ~G200|)
, (11)

cij = 1/8 and dij = 1/6. The interface normal is represented by n̂ and it is set to be along

the z-direction. The coefficients of square gradient terms are

buci = −
1

2
C ′′(| ~K111|)× (K̂i · n̂)

2, (12)

bLv d
L
i = −

1

2
C ′′(| ~G200|)× (Ĝi · n̂)

2, (13)

bTv d
T
i = −

1

2

C ′(| ~G200|)

| ~G200|

(

1− (Ĝi · n̂)
2
)

, (14)

where we divide the coefficient of the square gradient terms for v ~G’s into the longitudinal

part which depends on the value of the longitudinal component of Ĝ, and the transverse

part which depends on the value of the transverse components of Ĝ. Summing both sides

of (12) and using the normalization
∑

i ci = 1 gives

bu = −
4

3
C ′′(| ~K111|), (15)

and

ci =
3

8
(K̂i · n̂)

2. (16)

Similarly, using the normalization
∑

i d
L
i = 1 and

∑

i d
T
i = 1 we obtain

bLv = −C ′′(| ~G200|), (17)

dLi =
1

2
(Ĝi · n̂)

2. (18)

bTv = −2
C ′(| ~G200|)

| ~G200|
, (19)

dTi =
1

4

(

1− (Ĝi · n̂)
2
)

. (20)
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It is clear that the non-vanishing cubic term is a result of closed triangles formed by two 〈111〉

vectors and one 〈200〉 vector in the reciprocal space (e.g., [111̄], [11̄1], and [2̄00] as shown in

Fig. 1). In addition, two 〈111〉 vectors and two 〈200〉 vectors form closed four-side polygons

in reciprocal space which give rise to quartic terms uiujvkvl in the excess free energy. These

quartic terms naturally ensure the stability of the solid state. The coefficients cijk, cijkl, dijkl

are determined by the ansatz that all geometrically distinct polygons in reciprocal space

with the same number of sides have the same weight15,20, and the sums of the c’s and d’s

are normalized to unity, which yields cijk = 1/12, cijkl = 1/12, and dijkl = 1/24. Note that

the equal-weight ansatz is made due to the lack of information of the higher order direct

correlation functions which are difficult to obtain. Generally, the weight of polygons with n

sides is related to the n-particle direct correlation function which not only depends on the

magnitude of reciprocal lattice vectors but also the angles between these vectors50. Different

ansatz for the weight of polygons is discussed in the derivation of amplitude equations of

PFC model21 and also by Tóth and Provatas17. If one assumes higher order correlation

functions are constant, then all closed polygons (all repetitive closed polygons) have the

same weight which yields cijk = 1/24, cijkl = 1/216, and dijkl = 1/96. The multiplicative

factors a3, a4, and b4 are obtained by bulk properties at equilibrium as stated below. In

bulk phases, amplitudes of the same set of reciprocal lattice vectors are equal (i.e., ui = u

and vi = v for all i) which yields the excess free-energy functional of the bulk phases,

∆F ≈
n0kBT

2

∫

d~r
(

a2 u
2 + b2 v

2 − a3u
2v + a4u

4 + b4 u
2v2
)

. (21)

The coefficients a3, a4 and b4 are determined by the constraints that the equilibrium state

of the solid is a minimum of the free energy, ∂∆F/∂u|u=us
= 0 and ∂∆F/∂v|v=vs = 0, where

us and vs are the values of corresponding order parameters in the solid. And solid and liquid

have equal free energy at the melting temperature, ∆F (us, vs) = 0. We obtain

a3 = 2
a2
vs

+ 2
b2vs
u2
s

,

a4 =
b2v

2
s

u4
s

,

b4 =
a2
v2s

. (22)

Fig. 2 shows a schematic plot for the excess free energy of the bulk phase as a function

of the order parameter profiles u and v under the isotropic approximation (i.e., ui = u(z)
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FIG. 1. Example of principal reciprocal lattice vectors of fcc lattices forming a closed triangle in

reciprocal space.

and vi = v(z) for all i). The bulk free energy of the two-mode GL theory features a double

well free energy as that in the GL theory for bcc-liquid systems at equilibrium. It is clear

that the amplitudes of the density waves in the same set of reciprocal lattice vectors in the

solid phase are the same and vanish in the liquid phase. However, the amplitudes of the

density waves decay at various rates into the liquid phase which gives rise to the interfacial

anisotropies. It can be seen explicitly from the prefactors of the square gradient terms in Eq.

(9). The prefactors are proportional to the square of the inner product of K̂i (or Ĝi) and

the interface normal n̂. To evaluate anisotropies of the interfacial free energy, we compute

amplitude profiles and interfacial energies for the three low index crystal faces (100), (110),

and (111), respectively.

For (100) crystal faces, the eight principal reciprocal lattice vectors have the same sym-

metry with respect to the interface normal which yield the same value of (K̂i · n̂)
2 = 1/3,

and the corresponding amplitudes are described by u1. The second set of reciprocal lattice

vectors can be divided into two subsets which have the value of (Ĝi · n̂)
2 = 1 and 0 respec-

tively, and the corresponding amplitudes are described by the order parameter v1 and v2.

With these three order parameters, the excess free energy shown in Eq. (9) for (100) crystal

9



FIG. 2. Schematic plot of the excess free energy of GL theory for fcc lattices as a function of

density waves amplitudes u and v under isotropic approximation.

faces reduces to

∆F 100 =
n0kBT

2

∫

d~r
[

a2u
2
1 −

a3
3

(

u2
1v1 + 2u2

1v2
)

+ a4u
4
1

+
b2
3

(

v21 + 2v22
)

+
b4
6

(

u2
1v

2
1 + 3u2

1v
2
2 + 2u2

1v1v2
)

+bu

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+ bLv

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+ bTv

∣

∣

∣

∣

dv2
dz

∣

∣

∣

∣

2
]

. (23)

Similarly, for (110) crystal faces, the set of principal reciprocal lattice vectors can be divided

into two sets with amplitudes u1 and u2, and each set contains four reciprocal lattice vectors.

Also the second set of the reciprocal lattice vectors can be divided into two sets having

amplitudes v1 and v2, respectively. Subsets of density waves for (110) crystal faces are listed

10



in TABLE I. For (110) crystal faces, we have

∆F 110 =
n0kBT

2

∫

d~r
[a2
2

(

u2
1 + u2

2

)

−
a3
6

(

u2
1v2 + u2

2v2 + 4u1u2v1
)

+
a4
4

(

u4
1 + u4

2 + 2u2
1u

2
2

)

+
b2
3

(

2v21 + v22
)

+
b4
12

(

3u2
1v

2
1 + u2

1v
2
2 + 3u2

2v
2
1 + u2

2v
2
2 + 4u1u2v1v2

)

+bu

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+

(

bLv +
bTv
2

) ∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+
bTv
2

∣

∣

∣

∣

dv2
dz

∣

∣

∣

∣

2
]

. (24)

For (111) crystal faces, the set of principal reciprocal lattice vectors can be divided into

two sets while the second set of reciprocal lattice vectors has the same value of (Ĝi · n̂)
2 for

all six vectors. The excess free energy for (111) crystal faces is

∆F 111 =
n0kBT

2

∫

d~r
[a2
4

(

u2
1 + 3u2

2

)

−
a3
2

(

u2
2v1 + u1u2v1

)

+
a4
12

(

u4
1 + 6u4

2 + 3u2
1u

2
2 + 2u1u

3
2

)

+ b2v
2
1 +

b4
8

(

u2
1v

2
1 + 5u2

2v
2
1 + 2u1u2v

2
1

)

+
bu
4

(

3

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

du2

dz

∣

∣

∣

∣

2
)

+
(

bLv + bTv
)

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2
]

. (25)

Subsets of density waves and their corresponding order parameters for each crystal faces are

summarized in TABLE I.

The input parameters for the GL theory include the liquid structure factor and the values

of order parameters in bulk solid. These information are obtained by MD simulations using

the embedded-atom method (EAM) potential of Foiles, Baskes, and Daw (FBD) for Ni51;

we obtain S(| ~K111|) = 2.9898, S(| ~G200|) = 1.0162, C ′′(| ~K111|) = −9.1579 Å2, C ′(| ~G200|) =

−2.0303 Å, and C ′′(| ~G200|) = −0.0998 Å2, see Fig. 3. The first peak of the liquid structure

factor is located at |K111| = 3.0376Å−1. In order to obtain the magnitude of order parameters

TABLE I. List of symbols representing density waves used in GL calculation for the (100), (110)

and (111) crystal faces.

100 110 111

Subset of 〈111〉 〈200〉 〈200〉 〈111〉 〈111〉 〈200〉 〈200〉 〈111〉 〈111〉 〈200〉

(K̂i · n̂)
2 or (Ĝi · n̂)

2 1/3 1 0 2/3 0 1/2 0 1 1/9 1/3

Number of ~Ki’s or ~Gi’s 8 2 4 4 4 4 2 2 6 6

Order parameter u1 v1 v2 u1 u2 v1 v2 u1 u2 v1
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FIG. 3. The liquid structure factor of Ni at the melting temperature from MD simulations using

EAM FBD potential.

in solids, we assume that the density of atoms can be represented by a sum of Gaussian

peaks centered at lattice sites ~Ri which leads to n(~r) =
∑

i

(

1
2σ2π

)3/2
e−(~r−~Ri)

2/2σ2

, where σ2

is the variance of the Gaussian function. Under this assumption, the Fourier amplitudes of

the density are simple functions of the magnitude of the corresponding wave number, n(~r) =

n0

(

1 +
∑

i n ~Ki
ei

~Ki·~r +
∑

i n ~Gi
ei

~Gi·~r + · · ·
)

, where n ~Ki
= e−σ2K2

i /2 and n ~Gi
= e−σ2G2

i /2. The

variance σ2 of the Gaussian function is estimated by the mean square displacements of atoms

in solids measured from MD simulations, σ2 = 1
3
< ∆~r2 > = 0.089Å2. Recognizing that the

order parameters in bulk solids are the Fourier amplitudes of the density, we obtain

u111(solid) = e−σ2K2

111
/2 = 0.6639,

v200(solid) = e−σ2G2

200
/2 = 0.5791. (26)

The values of input parameters from MD simulations are listed in TABLE II. With the

TABLE II. Values of input parameters from MD simulations with interatomic EAM FBD potential

for Ni51 and resulting coefficients used in GL theory with 〈200〉 as the second mode.

a2 b2 bu (Å2) bLv (Å2) bTv (Å2) us vs | ~Ki| (Å
−1) | ~Gi| (Å

−1)

MD [FBD] 2.68 5.90 12.21 0.07 1.16 0.66 0.58 3.0376 3.5075

12
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FIG. 4. (Color online) Equilibrium density wave profiles across the solid-liquid interface obtained

by GL theory with 〈200〉 mode with input parameters from MD simulations using EAM FBD

potential of Ni for three low index crystal orientations: (a) (100), (b) (110), and (c) (111).

above input parameters, the order parameter profiles for solid-liquid interfaces are solved by

requiring that the free-energy functional is minimum with the corresponding order param-

eters profiles. The variational process leads to coupled Euler-Lagrange equations which are

solved numerically subject to the boundary conditions that these order parameters vanish in

bulk liquids and retain fixed values in bulk solids shown in Eq. (26). The order parameters

profiles for crystal faces (100), (110) and (111) are plotted in Figs. 4(a), 4(b) and 4(c)

respectively.
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The interfacial free energies are then computed with the equilibrium order parameter

profiles solved above. In order to map out the anisotropy of the solid-liquid interfacial

free energy, we employ the Kubic harmonics expansion for γ. The interfacial free energy

γ(n̂) can be parameterized by an expansion in terms of Kubic harmonics52,53. In terms of

the Cartesian components of n̂ = (nx, ny, nz), the Kubic harmonic expansion for a weakly

anisotropic crystal is53

γ(n̂) = γ0

[

1 + ǫ1

(

∑

i

n4
i −

3

5

)

+ ǫ2

(

3
∑

i

n4
i + 66n2

xn
2
yn

2
z −

17

7

)]

, (27)

where γ0 is the average interfacial free energy, and (ǫ1, ǫ2) characterize the capillary

anisotropy. Note that for a more anisotropic crystal, higher order Kubic harmonics are

necessary to characterize the interfacial anisotropy54. With solid-liquid interfacial free en-

ergies γ100, γ110, and γ111 obtained above, we find γ0 = 106.22 erg/cm2, ǫ1 = 0.1084, and

ǫ2 = 0.0157, see TABLE III. The average interfacial free energy estimated by GL theory

is lower than that measured in MD simulation, γMD = 284.7 erg/cm2, since the two-mode

GL theory truncates contributions of higher order density waves and it assumes a weak first

order phase transition. Nevertheless, the two-mode GL theory sheds light on the relation

between interfacial anisotropy and crystal structure. The simple GL theory of fcc-liquid in-

terface considering reciprocal lattice vectors 〈111〉 and 〈200〉 predicts reasonable magnitudes

of ǫ1 and ǫ2 as compared to MD simulations11. However, the value of ǫ2 obtained in GL

theory has an opposite sign from that in MD simulations. It also gives different ordering of γ

observed in MD simulations (γ100 > γ110 > γ111) and in GL theory (γ100 > γ111 > γ110). Sim-

ilar results are obtained for the GL theory using different equal-weight polygon ansatz17,21,

ǫ1 = 0.1221, and ǫ2 = 0.0191, see TABLE III. The discrepancy between MD simulations

and GL theory for fcc materials is likely due to the choice of the second mode. Even though

〈200〉 density waves form closed triangles with 〈111〉 density waves in reciprocal space, the

amplitudes of 〈200〉 density waves in liquids at the melting temperature are not pronounced,

see Fig. 3. Possible candidates of the second mode for GL theory are the density waves

whose magnitude of the corresponding reciprocal lattice vectors is close to the position of

the second peak of the liquid structure factor. The density waves that form closed triangles

with 〈111〉 density waves and with the magnitude of reciprocal lattice vectors comparable

to the position of the second peak of the liquid structure factor are 〈220〉 and 〈222〉 density

waves. However, GL theory with the lowest order expansion of gradient terms requires both

14



C ′(q) and C ′′(q) to be less than or equal to zero for all density waves considered in order

to have stable density wave profiles. Thus 〈220〉 and 〈222〉 density waves are excluded since

C ′(| ~G220|) > 0 and C ′′(| ~G222|) > 0, see Fig. 3.

IV. GL THEORY WITH 〈111〉, 〈200〉 AND 〈311〉 MODES

The density waves with the magnitude of the corresponding reciprocal lattice vectors

close to the location of the second peak of the liquid structure factor are 〈310〉 and 〈311〉

density waves. Furthermore, since the 〈311〉 density waves form closed triangles with 〈111〉

and 〈200〉 density waves, we extend previous two-mode GL theory with an additional 〈311〉

mode to carry out the interfacial anisotropy calculations. The excess free energy functional

of GL theory that employs an additional 〈311〉mode differs from that of GL theory discussed

in previous section in the following additional terms,

∆F = ∆F200 +
n0kBT

2

∫

d~r

(

d2
∑

i,j

eij wiwj δ0, ~G′

i
+ ~G′

j
+
∑

i

(bLwe
L
i + bTwe

T
i )

∣

∣

∣

∣

dwi

dz

∣

∣

∣

∣

2

− d3
∑

i,j,k

eijk uivjwk δ0, ~Ki+ ~Gj+ ~G′

k

)

, (28)

where ∆F200 is the excess free energy functional of GL theory employing merely 〈111〉 and

〈200〉 modes shown in Eq. (9); the set of reciprocal lattice vectors 〈311〉 is represented by

TABLE III. Anisotropy parameters for the fcc-liquid interfacial free energy predicted by the present

GL theory with 〈200〉 mode that assumes equal weights of geometrically distinct polygons, the GL

theory with 〈200〉 mode that assumes equal weights of all polygons17,21, the present GL theory

with 〈200〉 and 〈311〉 modes that assumes equal weights of geometrically distinct polygons, and

MD simulations11.

ǫ1 ǫ2 (γ100 − γ110)/2γ0 (γ100 − γ111)/2γ0

GL theory with 〈200〉 mode 0.1084 0.0157 0.0389 0.0329

GL theory with 〈200〉 mode (Ref.17,21) 0.1221 0.0191 0.0448 0.0368

GL theory with 〈200〉 and 〈311〉 modes 0.1038 0.0149 0.0371 0.0315

MD Ni (FBD) (Ref.11) 0.088(7) -0.011(1) 0.014(2) 0.032(2)
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〈G′〉. Comparing it with Eq. (8), we obtain

d2 =
24

S(| ~G311|)
, (29)

eij =
1

24
, (30)

bLw = −4C ′′(| ~G311|), (31)

eLi =
1

8
(Ĝi · n̂)

2, (32)

bTw = −8
C ′(| ~G311|)

| ~G311|
, (33)

eTi =
1

16

(

1− (Ĝi · n̂)
2
)

. (34)

The multiplicative factors a3, d3, a4, and b4 are obtained using equilibrium conditions as

discussed before. The free energy of the bulk phase is

∆F ≈
n0kBT

2

∫

d~r
(

a2 u
2 + b2 v

2 − a3u
2v + a4u

4 + b4 u
2v2 − d3uvw + d2w

2
)

. (35)

By requiring ∂∆F/∂u|u=us
= 0, ∂∆F/∂v|v=vs = 0, ∂∆F/∂w|w=ws

= 0, and that solid and

liquid have equal free energy at the melting temperature, ∆F (us, vs, ws) = 0, we obtain

a3 = 2
a2
vs

+ 2
b2vs
u2
s

,

a4 =
b2v

2
s

u4
s

,

b4 =
a2
v2s

+
d2w

2
s

u2
sv

2
s

,

d3 = 2
d2ws

usvs
. (36)

The normalization constant for the coupling term uvw is determined using the equal-weight

ansatz for geometrically distinct polygons in reciprocal space that yields eijk = 1/24. For

different crystal faces, we divide 〈311〉 density waves into several subsets according to values

of direction cosines as listed in TABLE IV. Then the free energy functionals for three crystal

faces (100), (110), and (111) are,
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∆F 100 =
n0kBT

2

∫

d~r
[

a2u
2
1 −

a3
3

(

u2
1v1 + 2u2

1v2
)

+ a4u
4
1

+
b2
3

(

v21 + 2v22
)

+
b4
6

(

u2
1v

2
1 + 3u2

1v
2
2 + 2u2

1v1v2
)

+
d2
3
(w2

1 + 2w2
2)−

d3
3
(u1v1w1 + 2u1v2w2)

+bu

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+ bLv

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+ bTv

∣

∣

∣

∣

dv2
dz

∣

∣

∣

∣

2

+
bLw
11

(

9

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2
)

+
bTw
11

(

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 10

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2
)]

. (37)

∆F 110 =
n0kBT

2

∫

d~r
[a2
2

(

u2
1 + u2

2

)

−
a3
6

(

u2
1v2 + u2

2v2 + 4u1u2v1
)

+
a4
4

(

u4
1 + u4

2 + 2u2
1u

2
2

)

+
b2
3

(

2v21 + v22
)

+
b4
12

(

3u2
1v

2
1 + u2

1v
2
2 + 3u2

2v
2
1 + u2

2v
2
2 + 4u1u2v1v2

)

+
d2
6
(2w2

1 + 2w2
2 + w2

3 + w2
4)−

d3
6
(2u1v1w1 + u1v2w3 + 2u2v1w2 + u2v2w4)

+bu

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+ bLv

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+
bTv
2

(

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dv2
dz

∣

∣

∣

∣

2
)

+
bLw
11

(

8

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dw3

dz

∣

∣

∣

∣

2
)

+
bTw
44

(

6

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 18

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2

+ 9

∣

∣

∣

∣

dw3

dz

∣

∣

∣

∣

2

+ 11

∣

∣

∣

∣

dw4

dz

∣

∣

∣

∣

2
)]

.

(38)

∆F 111 =
n0kBT

2

∫

d~r
[a2
4

(

u2
1 + 3u2

2

)

−
a3
2

(

u2
2v1 + u1u2v1

)

+
a4
12

(

u4
1 + 6u4

2 + 3u2
1u

2
2 + 2u1u

3
2

)

+ b2v
2
1 +

b4
8

(

u2
1v

2
1 + 5u2

2v
2
1 + 2u1u2v

2
1

)

+
d2
4
(w2

1 + 2w2
2 + w2

3)−
d3
4
(u1v1w1 + 2u2v1w2 + u2v1w3)

+
bu
4

(

3

∣

∣

∣

∣

du1

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

du2

dz

∣

∣

∣

∣

2
)

+
(

bLv + bTv
)

∣

∣

∣

∣

dv1
dz

∣

∣

∣

∣

2

+
bLw
44

(

25

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 18

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2

+

∣

∣

∣

∣

dw3

dz

∣

∣

∣

∣

2
)

+
bTw
44

(

4

∣

∣

∣

∣

dw1

dz

∣

∣

∣

∣

2

+ 24

∣

∣

∣

∣

dw2

dz

∣

∣

∣

∣

2

+ 16

∣

∣

∣

∣

dw3

dz

∣

∣

∣

∣

2
)]

.

(39)
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The solid amplitude for 〈311〉 density waves is estimated to be 0.22 using the approx-

imation of Gaussian density peaks. The values of input parameters from MD simulations

are listed in TABLE V. The interfacial energies calculated for these three crystal faces

yield γ0 = 109.37 erg/cm2, ǫ1 = 0.1038, and ǫ2 = 0.0149, see TABLE III. The additional

〈311〉 leads to a slightly larger magnitude of γ and predicts similar anisotropy parameters

predicted by the two-mode GL theory.

V. DISCUSSION AND CONCLUSION

The simple two-mode GL theory shown above is capable of describing the interfacial

anisotropies of fcc-liquid systems. However, the magnitude of the interfacial energy is about

2 ∼ 3 times smaller than predicted by MD simulations, and other physical quantities such

as latent heat of fusion are also underestimated. Shih et al. relates the latent heat of fusion

(per atom) to the temperature variation of the inverse of the peak of the liquid structure

factor20,

L =
Tm

N

∂∆F

∂T

∣

∣

∣

∣

T=Tm

=
kBT

2
m

2
u2
s

da2
dT

∣

∣

∣

∣

T=Tm

, (40)

where N is the number of atoms in the system. With parameters listed in TABLE II, Eq.

(40) yields a latent heat value L = 0.103 eV/atom about 40% lower than the MD value

(LMD = 0.179 eV/atom). The underestimation of the latent heat of fusion can be attributed

to the truncation of the contribution of higher order reciprocal lattice vectors in GL theory.

In order to construct a GL theory with a limited number of modes that describes correct

anisotropy of the interfacial energy and the latent heat of fusion, we can use Eq. (40) and

the latent heat of fusion measured from MD simulations to set the magnitude of us, which

TABLE IV. List of symbols representing 〈311〉 density waves used in GL calculation for (100),

(110), and (111) crystal faces.

100 110 111

subset of 〈311〉 〈311〉 〈311〉 〈311〉 〈311〉 〈311〉 〈311〉 〈311〉 〈311〉

(Ĝ′

i · n̂)
2 9/11 1/11 8/11 2/11 2/11 0 25/33 9/33 1/33

Number of ~G′

i’s 8 16 8 8 4 4 6 12 6

Order parameter w1 w2 w1 w2 w3 w4 w1 w2 w3
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TABLE V. Values of input parameters from MD simulations with interatomic EAM FBD potential

for Ni51 and resulting coefficients used in GL theory with 〈311〉 as the second mode.

d2 bLw (Å2) bTw (Å2) ws | ~Gi| (Å
−1)

MD [FBD] 19.46 5.00 0.16 0.22 5.8166

yields us = 0.87. With this new input of solid amplitudes, the anisotropy of the interfacial

energy remains the same while the magnitude of the interfacial energy increases linearly

with the solid amplitude square as discussed below. For simplicity, assuming that density

waves of the same set of reciprocal lattice vectors remain equal across the interface (i.e.,

isotropic approximation) and substituting Eq. (22) into Eq. (9), we obtain

∆F =
n0kBT

2
u2
s

∫

d~r

[

a2U
2 (−1 + V )2 + b2

(

U2 − V
)2

α2 + bu

∣

∣

∣

∣

dU

dz

∣

∣

∣

∣

2

+ (bLv + bTv )α
2

∣

∣

∣

∣

dV

dz

∣

∣

∣

∣

2
]

(41)

where we define U ≡ (u/us), V ≡ (v/vs), and α = (vs/us). The value of α is set by

the Gaussian approximation of density peaks in solids. It is clear that the magnitude of

the interfacial free energy is proportional to the square of the solid amplitude u2
s. Similar

arguments can be applied to anisotropic calculations, the square of the solid amplitude only

affects the magnitude of γ. With us estimated by the latent heat of fusion, us = 0.87, we

obtain γ100 = 194.22 erg/cm2, γ110 = 179.87 erg/cm2, and γ111 = 182.08 erg/cm2.

We have formulated the simplest fourth-order GL theory of the fcc-liquid systems using

two sets of amplitudes corresponding to principal reciprocal lattice vectors 〈111〉 and a sec-

ond set of reciprocal lattice vectors. The requirement for the second set of reciprocal lattice

vectors is that it can form closed triangles with the principal reciprocal lattice vectors in

reciprocal space which ensures non-vanishing cubic terms in the GL free energy functional

which makes the fcc-liquid transition first order. The phenomenological GL theory is de-

rived from density functional theory of freezing which ensures correct spatial decay rates

of density waves that are related to the liquid structure factor. The crystalline anisotropy

of interfacial energies is investigated with 〈111〉 and 〈200〉 density waves. The two-mode

GL theory is shown to form stable fcc-liquid interfaces and it predicts a weak anisotropy

with 〈200〉 mode. However, the cubic anisotropy parameter ǫ2 calculated using 〈200〉 mode

has an opposite sign compared to that in MD simulations. Similar results are obtained

by GL theory with different nonlinear coefficients (different ansatz of counting polygons)

which suggests differences in nonlinear coefficients only have a small effect on the interfacial

19



anisotropy. We extended the two-mode GL theory with an additional 〈311〉 mode to ex-

plore the dependence of the interfacial anisotropy on higher order reciprocal lattice vectors.

GL theory with an additional 〈311〉 mode predicts similar anisotropy parameters as shown

in two-mode GL theory. This suggests the third mode has a small effect on the interfacial

anisotropy. These results are relevant to atomistic modeling of microstructural evolution34,42

where the anisotropy of interfacial free-energies can be tuned by the second set of reciprocal

lattice vectors and the shape of the liquid structure factor accordingly. An interesting fu-

ture prospect is to extend the two-mode GL theory to investigate the anisotropy of kinetic

coefficients based on recent progress for bcc ordering Ginzburg-Landau theory55.
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