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It is shown that quantum interference can be employed to create an exciton transistor. An
applied potential gates the quasi-particle motion and also discriminates between quasi-particles of
differing binding energy. When implemented within nanoscale assemblies, such control elements
could mediate the flow of energy and information. Quantum interference can also be used to
dissociate excitons as an alternative to using heterojunctions. A finite molecular setting is employed
to exhibit the underlying discrete, two-particle, mesoscopic analog to Fano anti-resonance. Selected
entanglement measures are shown to distinguish regimes of behavior which cannot be resolved from
population dynamics alone.

Within the quantum regime, the transport of charge
can be gated by using an external field to control in-
terferences inherent in its wave-like motion1. Quantum
interference can also be used to create transistors for
quasi-particles such as electron Cooper pairs2, weakly
to strongly interacting paired ultra cold fermions3,4, and
spintronics5. In this Letter, we demonstrate that such
gating can be adapted to excitons. These charge-neutral
quasi-particles are typified by random walks6,7, but can
also move coherently8. This allows the flow of informa-
tion and energy to be considered within a circuit setting
and is the first step towards establishing excitonic quan-
tum control. It also has immediate implications for ma-
nipulating the dynamics of excitonic Bose-Einstein con-
densates as well as in quantum computing9, artificial ma-
terials that incorporate polaritonic microcavities10, and
transparent meta-materials11.

Long-lived exciton motion has been observed in a num-
ber of inorganic, solid state systems such as ZnO, Cu2O,
inorganic quantum well structures12 and transition metal
monolayers13. It is also central to all photosynthetic pro-
cesses, where suggestions of quantum coherence14 led to
the creation of carbon-based materials that support long-
lived coherent superpositions of excitons15,16. Whether
by natural selection or by engineering design, though,
the only way to guide exciton transport is by creating
an energy landscape in which the quasiparticles travel
downhill17. Exciton control via lattice strain gradients18

amounts to a continuum version of this inefficient and
imprecise energy cascade concept. In the related field of
optoelectronic transistors19,20, stationary excitons medi-
ate optical connectivity but the motion of the excitons
themselves is not controlled.

We use a mesoscopic setting, shown in Fig. 1, to ex-
plore the transit of a single electron-hole superposition
through a junction that generates quantum interference.
In this regime, excitons cannot be idealized as being com-
prised of a continuous band of momentum states. Anti-
resonance due to quantum interference is therefore dis-
tinct from that of Fano processes21–25 in which a discrete
state interacts with a continuum, previously advanced as
a means of gating the motion of charge1. The degree of
exciton transit is a strongly non-linear function of the ad-
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FIG. 1: Sketch of Exciton Transport. Top: gating sub-
structure (blue) composed of control (C) with potential en-
ergy adjusted via an external field, base (0) and bridge sites
(±1) linked (red) to semiconducting electrodes (green). Bot-
tom: an idealized implementation in which vinyl-capped p-
phenylene electrodes sandwich a 1,3-benzenedithiol junction
topped with a phenyl control site. Zoomed inset: Each site
supports 4 occupation states in the band structure (white =
no electron, black = electron) with the exciton state high-
lighted.

justable potential energy of the control site which there-
fore acts as a gate.

We use Green function analysis, exact diagonalization,
and scattering simulations to elucidate exciton transit
within two regimes. For sufficiently strong Coulomb in-
teraction, the exciton behaves as a single particle that can
be blocked via anti-resonance using an external potential.
Lower binding energies, though, allow for entirely differ-
ent two-particle dynamics in which charge pairs can be
selectively blocked based on their binding energy. These
quasi-particles are, in addition, particularly susceptible
to multiple forms of quantum control, as we will show.

The Hamiltonian of our quasi-1D system of L sites, as
sketched in Fig. 1, takes the form

Ĥ = Ĥ∆ + Ĥe + Ĥex + ĤU + ĤV , (1)
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Ĥ∆ is the band offset while Ĥe and Ĥex describe electron
and exciton hopping. The former is a single particle op-
erator that does not allow for charge carriers to change
bands. However, Ĥex is a two-particle operator in which
an excited electron is driven to its ground state and a
neighboring ground state electron is raised to an excited
state. This is, therefore, an explicit accounting of exci-
ton motion rather than charge motion. The remaining
two terms, ĤU and ĤV , are on-site and potentially long-
range Coulomb interactions. Roman subscripts m and
n denote lattice sites, Greek superscripts µ and ν indi-
cate electron band, <m,n> means a sum over sites that
are nearest neighbors, ĉνn is the electron annihilation op-
erator for band ν of site n, n̂νn = ĉν†n ĉ

ν
n is the electron

number operator, and [ĉµm, ĉ
ν†
n ]+ = δmnδµν . Phonon and

photon coupling are disregarded.
Strong on-site Coulomb interactions result in Frenkel

excitons26 comprised of superpositions in which the elec-
tron and hole are on the same site, while weaker charge
interactions result in Wannier-Mott excitons27, superpo-
sitions in which the electron and hole may be substan-
tially separated. Processes dominated by Ĥe will be re-
ferred to as First-Order, Two-Particle (2P) since exciton
motion requires that the operator act separately on an
electron and hole. This is typical of exciton dynamics in
highly ordered, closely packed systems such as solid-state
crystals. Second-Order, One-Particle (1P) processes are

due to single quasi-particle hops of Ĥex associated with
Förster resonant energy transfer, when Coulombic inter-
actions dominate, and Dexter transfers, when exchange
processes are most relevant. In general, both Frenkel and
Wannier-Mott excitons can have 1P or 2P character or a
combination of both.

The nature of excitonic anti-resonance is distinctly dif-
ferent between the extreme cases of purely 1P and 2P
processes, and analyzing them separately allows two an-
tiresonant regimes to be identified. 1P transits corre-
spond to standard anti-resonance and can be considered
in isolation by restricting the Hamiltonian to

Ĥ1P =Ĥ∆ + Ĥex . (3)

We choose the free energy constant of Ĥ1P such that all
site energies ∆ν

n can be neglected except at the control
site, where we take ∆ν

C = ∆.
In the absence of connecting electrodes in this 1P set-

ting, the zero temperature retarded Green function re-
sponse has a pole at ω = ∆. To be useful as a control
element, though, the molecule needs to be encapsulated

within left and right electrodes (Fig. 1). If they are of
infinite length, then the dynamics is that of a discrete
structure interacting with a continuum–i.e. single par-
ticle Fano Anti-resonance. A straightforward Dyson se-
ries analysis28 can then be used to generate the retarded
Green function between sites -1 and 0 as the links be-
tween the electrodes and molecule are activated. The
results show that the presence and location of the an-
tiresonant point is unaffected.

Finite length electrodes allow the mesoscopic 1P anti-
resonance to be elucidated, and results obtained via ex-
act diagonalization are shown in Fig. 2. Note the large
number of singularities and roots as are observed for the
Green function of a ring of identical sites29. These are
eventually obscured, making a band for any finite broad-
ening, a standard result in condensed matter physics.
The primary feature is an anti-resonance for excitons of
an energy equal to that of the control site. The width
of this region of transmission quenching is determined by
the hopping parameter, τ , which is why it is chosen as
the characteristic energy in the plots; as τ decreases, the
width of the anti-resonance region decreases.

For relatively short electrodes, anti-resonance is ob-
scured making it useful to supplement the Green function
analysis with scattering simulations. This is taken up
after a consideration of the other antiresonant extreme–
that in which the electron and hole can move separately.
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FIG. 2: 1P Green Function for Electrodes of Finite Length.
Control site energy ∆ = 0.15/τ and τνE = τνlink = τ . The red
curve is an analytic Green function solution, G-1,0, for the
molecule placed between two semi-infinite electrodes.

Thus we turn to the 2P case, for which Coulomb inter-
actions correlate the dynamics of upper and lower elec-
trons but with richer physics than in the 1P setting. Such
2P processes are governed by the following reduced ver-
sion of the Hamiltonian:

Ĥ2P =Ĥ∆ + Ĥe + ĤU + ĤV . (4)

The on-site Coulomb repulsion parameter, Un, is nonzero
for Frenkel excitons and is taken to be the same for each
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site. The non-local Coulomb repulsion parameter, V µνmn,
describes Wannier-Mott excitons and is given a simple
inverse distance dependence: V µνmn = βη/(|m − n| + η).
The total Coulomb energy is taken to be the binding en-
ergy of the exciton. In the absence of electrodes, a zero
temperature retarded Green function response can be de-
rived. Even with a neutral control site potential, this
function exhibits anti-resonance at the binding energy of
the exciton, surprising because it is elicited by a property
of the electron-hole pair rather than that of the control
site. We refer to this as Two-Particle Anti-resonance. Its
Fano counterpart, the limiting case of infinite electrodes,
has yet to be derived to the best of our knowledge. Unlike
the 1P case, where the Hilbert space is of dimension L,
the 2P case requires L2, putting stricter numerical limits
on exact diagonalization, and therefore severely restrict-
ing the electrode lengths that can be calculated. This
motivates a re-analysis with exciton transit treated dy-
namically as a scattering event.

For both 1P and 2P extremes, a Gaussian wave packet
is therefore sent through the gating assembly. The initial
state can be a superposition of Frenkel excitons,

|ψ(0)〉 =
1

π
1
4σ

1
2

∑
m

eık0me
−(m−m0)2

2σ2 ĉ2†m ĉ
1
m |vac〉 , (5)

or of Wannier-Mott excitons,

|ψ(0)〉 =
1

π
1
2σ

∑
m,n

eık0(m+n)− (m−m0)2−(n−n0)2

2σ2 ĉ2†m ĉ
1
n |vac〉 .

(6)
Both types of initial conditions are created from a super-
position of excitonic eigenstates of the relevant Hamilto-
nian. Here σ is the exciton wave packet width, m0 and
n0 denote wave packet centers, and wave number k0 pro-
vides a right-directed kick. Note that the vacuum state,
|vac〉, is taken to be that for which all electrons reside in
the valence band.

A foundation for physically realizing such states ex-
ists within the quantum control community where laser
pulse shaping has been explored as a means of exciting
excitons on specific sites30,31. The associated optimiza-
tion procedure can be extended to construct states with
a prescribed envelope velocity as well. Laser pulses can
therefore, in principle, be used to generate superposi-
tions of excitonic eigenstates in a way that allows packet
width and momentum to be tailored. Such quasiparti-
cles are physically meaningful so long as phase coherence
is maintained. These packets will spread as they move,
so they need to be created relatively close to the control
structure. This allows their scattering character to be
quantified as is subsequently shown.

A range of kinetic energies can be chosen to construct
transmission functions for each band based on the square
of the respective projection amplitudes. For instance,
the top panel of Fig. 3 shows the transmission charac-
ter that results when the 1P Hamiltonian of Eq. (3) is
applied to scatter a Gaussian superposition of Frenkel
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FIG. 3: Anti-resonances of Frenkel Excitons. (a) 1P tuning.
(b) Kinetic energy required for 2P Anti-resonance increases
with exciton binding energy, U. L = 48 (dashed) and L =
99 (solid). (c) Anti-resonance data of (b) can be aligned by
plotting transmission versus a normalized version of the kick
parameter, k0. Data is inherently discrete and curves are a
guide to the eye.

excitons (Eq. (5)) off a biased control site. The trans-
mission coefficient is taken to be the square of the ratio
of the packet amplitude just before and after interaction
with the gating assembly. Consistent with the Green
function analysis, anti-resonance occurs when the kinetic
energy of the exciton is equal to the biasing energy of
the control site. This is clear in panel (a) and has been
tested for a range of control site energies as well. While
the associated wave packets are dispersive, the change in
amplitude due to natural spreading is sufficiently slight
that no correction was made to the transmission data.

The dynamics are richer when the 2P Hamiltonian of
Eq. (4) is used to scatter a superposition of Frenkel exci-
tons (Eq. (5)) with 2P Anti-resonance. As shown in Fig.
3(b), the kinetic energy at which anti-resonance occurs
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depends on the binding energy of the exciton. The initial
state has a total Coulomb energy of zero because Frenkel
excitons generate no on-site repulsion. The subsequent
motion of each electron/hole pair, though, amounts to
the right transit of a conduction band electron combined
with the left transit of a valence band electron—a non-
radiative Dexter process32. Intermediate states are there-
fore generated for which two sites are each partially oc-
cupied with two electrons, appearing and disappearing
over one-half of a Rabi cycle. In order to move, then, the
electron/hole pair must borrow kinetic energy so that it
can temporarily delocalize. This is the case at each site
and so is relevant at the control molecule as well. Anti-
resonance occurs at a higher kinetic energy because some
of it must be used to delocalize electron/hole pairs in or-
der to carry out scattering. Fig. 3(c) reveals, though,
that the wave number for anti-resonance is the same for
all six cases, k0a = 2π/3. This site-to-site phase shift,
with a the lattice spacing, is consistent with the two-
step nature of exciton motion and is analogous to single-
band dynamics with a two-site control chain extending
up from the primary transmission channel. In general,
single-band anti-resonance will occur for k0a = π/(M+1)
with an M-site control chain. Setting M = 2 and noting
that the phase shift must be doubled to account for the
two-step exciton hops gives k0a = 2π/3.

Although the present work focuses on anti-resonance,
it is worth noting that the transmission coefficient is not
necessarily equal to unity for frequencies far from anti-
resonance. For instance, the 2P system of Fig. 3(b), the
transmission coefficient approaches 1.0 as k0a → π, but
plateaus at approximately 0.5 for values of k0a below the
anti-resonant point. These values include a correction
made to remove the effect of natural packet spreading,
so that is not the cause of an asymptote less than unity.
Even for the 1P system of Fig. 3(a), the transmission
coefficient does not exceed 0.83. It may be possible to
mitigate such undesirable partial reflection of the wave
packet with more sophisticated control structures.

Control of the internal structure of excitons is also pos-
sible by constructing the gating assembly so that anti-
resonance occurs at different energies for the two bands.
In moderation, this will cause the exciton transmission
with a partially dissociated electron-hole character. For
sufficiently large energy mismatches, though, the exci-
ton can be completely dissociated as shown in the 2P,
Wannier-Mott scattering simulation of Fig. 4. Using
the same methodology as for the transmission data of
Fig. 3(b, c), a correction was made to remove the effect
of packet spreading during transit through the control
structure.

Entanglement measures provide additional insight into
how the wave packet components interact during transit,
and the entropy of entanglement33 is particularly use-
ful in elucidating the nature of mixing of three reduced
states with the rest of the system. The state operator is
ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| and five partial traces were consid-
ered: electron states, hole states, states other than those
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associated with specified site or specified momentum and
states associated with sites to the right of a specified site–
i.e. for the bond entropy. The entropies are then given
by

Sn = −Tr(ρ̂nlogjρ̂n) (7)

for the five partial traces (n = e, h, s, k, B) with log bases
chosen to be j = L, L, 4, 4 and (B + 1)2, respectively, so
that maximal entropy is always unity, for convenience of
comparison of relative values in Fig. 5.

Anti-resonance in the transit of a Frenkel exciton (Fig.
5a) is quantified as a dip in the electron and hole en-
tropies and a peak in the site entropy of control site,
C (see Fig. 1). On a time scale shorter than depicted
here, this site entropy exhibits a fine scale oscillation
corresponding to the partial dissociation of the exciton
required in order for it to move from site to site. The
transit of a Wannier-Mott exciton (Fig. 5b) is distinctly
different in that the electron and hole entropies are not
affected by antiresonant scattering. Exciton dissociation
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(Fig. 5c) can be identified with a local maximum (min-
imum) in the site (bond) entropy. Both hole and elec-
tron entropies accumulate in response to delocalization.
Wannier-Mott excitons also exhibit nontrivial momen-
tum entropies (Fig. 5d), where it is found that the en-
tropy levels correlate with how close their momenta are
to the mean value of the initial wave packet. These mea-
sures of entanglement offer precise metrics to characterize
anti-resonance dynamics and a means of distinguishing
Wannier-Mott from Frenkel excitons and 1P from 2P dy-
namics.
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FIG. 5: Entropies of Entanglement for 2P Dynamics. Elec-
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In conclusion, we have shown how to create an exci-
ton transistor based on quantum interference. This could
be used in excitonic logic circuits or to harvest hot exci-
tons. First- and second-order processes generate distinct
anti-resonances that can be delineated using entangle-
ment measures. Both 1P and 2P dynamics can be found
in natural and artificial systems. Such exciton gating
exists even for finite molecular chains—a discrete, quasi-
particle, mesoscopic analog to Fano anti-resonance. In
addition to controlling exciton motion, it is also possi-
ble to dissociate them by exploiting quantum interfer-
ence. This could be used to produce electrical current
without the energy loss that is inherent in heterojunc-
tion dissociation of excitons. Beyond the consideration
of individual excitons, such control elements are expected
to be relevant in developing techniques for mediating the
transport of excitonic Bose-Einstein condensates, where
exciton-exciton interactions and Bose coherence may lead
to significant new quantum many-body features.
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