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Two-dimensional magnetostatic cloaks, even when perfectly designed to mitigate the magnetic
field disturbance of a scatterer, may be still detectable with Aharonov-Bohm (A-B) measurements,
and therefore may affect quantum interactions and experiments with elongated objects. We explore
a multilayered cylindrical cloak whose permeability profile is tailored to nullify the magnetic flux per-
turbation of the system, neutralizing its effect on A-B measurements, and simultaneously optimally
suppress the overall scattering. In this way, our improved magneto-static cloak combines substantial
mitigation of the magnetostatic scattering response with zero detectability by A-B experiments.

PACS numbers: 41.20.Gz (Magnetostat-
ics; magnetic shielding, magnetic induction,
boundary-value problems), 03.65.Ta (Founda-
tions of quantum mechanics; measurement the-
ory), 94.05.Pt (Wave/wave, wave/particle inter-
actions), 85.25.Dq (Superconducting quantum in-
terference devices).

I. INTRODUCTION

Making an electromagnetic object of arbitrary shape
and texture invisible to certain portions of the frequency
spectrum is one of the most intriguing possibilities offered
by metamaterials. Several attempts have been made to
achieve substantial mitigation of scattering by passive ob-
jects, from the modification of optical ray paths using in-
homogeneous and anisotropic cloaks1, to scattering can-
cellation by destructive interference using anti-scattering
covers2,3. For passive cloaking systems, the electrical
size of the cloaked object is the fundamental bottleneck
to suppress scattering over a broad spectral range4, as
it may be expected from simple causality arguments.
Quite interestingly, it was recently shown that the over-
all scattering cross-section of an arbitrary passive object,
when integrated over all frequencies becomes larger when
cloaked than in the uncloaked scenario4. This conclusion
stems from the general relation between the static scat-
tering signature of an object and its integrated scattering
cross-section5,6. An intriguing exception to this general
limitation of passive cloaks was found in the case of cer-
tain classes of magneto-static superconducting cloaks7,
which may be able not only to suppress the static dis-
tortion to the applied field, but also reduce the overall
scattering cross section integrated over all frequencies.
This brings attention to magnetostatic superconducting

cloaks, which become a particularly important class for
the entire field of cloaking and scattering manipulation
with metamaterials.

In one of the first attempts8 to design a magnetic cloak
at zero frequency where variable, anisotropic magnetic
permeability with both paramagnetic and diamagnetic
components were considered. A metamaterial geome-
try that can be used to tailor the required magnetic
response has been presented9, while another implemen-
tation of transformation optics in magnetostatics was
pushed forward10. The first experimental verification of
a magnetostatic cloak11 has been based on the scatter-
ing cancellation approach, for which no anisotropic or
inhomogeneous media are necessary. An alternative ex-
perimental demonstration12 was reported in the quasi-
static regime, and a magnetostatic carpet cloak13 to hide
objects over a superconducting plane is based again on
transformation optics.

Interestingly, a vanishing scattering magnetostatic
field does not necessarily imply that the cloaked ob-
ject is undetectable for an observer placed around the
object. As observed several decades ago by Aharonov
and Bohm14, a nonzero magnetic flux through a closed
loop (C) can be detectable even in regions around the
loop for which the magnetostatic field is zero. In
the original work15 of Aharonov and Bohm, a com-
pletely shielded structure containing axial magnetic
currents was detected measuring the phase difference(∮

(C)
Ascat · dl 6= 0

)
between electron beams traveling

around the enclosed region (C), on a path over which no
fields were recorded (B = 0). The so-called Aharonov-
Bohm (A-B) effect, associated with the non-localized
wave nature of electron beams, still remains a source of
surprising and thought-provoking results16, while many
different versions and variations have been formulated17.
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In this study, we explore whether an ideal two-
dimensional (2D) magnetostatic cloak, despite having
identically zero magnetostatic scattering, may be de-
tected using electron beams, based on an analogue of
the A-B experiment. Since the Aharonov-Bohm effect
is at the basis of several sensing schemes18–20, it is rel-
evant to consider whether the cloaked object would ac-
tually perturb a sensing measurement performed in its
vicinity, or whether it may be detected with a quantum-
sensing scheme. After verifying its detectability, we look
for solutions to mitigate it. More specifically, we develop
a multi-layered, perturbed version of the magnetostatic
cloak11 to suppress the magnetic flux through the object
while we simultaneously retain an overall low scattering
response. We observe the magnitude of scattering sup-
pression caused by the cloak in the presence of homoge-
neous background magnetic fields of arbitrary direction,
and the variation of the magnetic flux when the cloaked
superconducting object contains inclusions.
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FIG. 1. Schematic of the two mechanisms to detect the su-
perconducting (µI = 0) 2D cylindrical volume ρ < RI . Due
to the presence of a suitable (µII) cladding (RI < ρ < RII),
the magnetic field lines (red in figure) “avoid” the internal ob-
ject and a perfect restoration of the background field Bback

is achieved from the other side; therefore: Bscat,III = 0 into
region III (ρ > RII). However, the line integral of the mag-
netic vector potential along a closed loop (C) (green line) is

nonzero
(∮

(C)
Ascat · dl 6= 0

)
which makes the rod of region

I (ρ < RI) detectable through A-B measurements.

II. ANALYTICAL FORMULATION

A. Magnetostatic Cloak

The idea of a magnetostatic cloak has been origi-
nally proposed in11 based on the scattering cancellation

approach2. The presented concept refers to an infinite
cylindrical structure with axis parallel to the ẑ axis of the
Cartesian coordinate system (x, y, z) (or alternatively the
corresponding cylindrical coordinate system (ρ, ϕ, z)), as
sketched in Fig. 1. The cloaked region (region I), of
radius RI , is circular and filled with a superconducting
material (µI = 0) that makes it impenetrable to any
background magnetic field Bback, enabling the designer
to hide any object inside it. Around it, the cylindrical
cloak (region II) has relative magnetic permeability µII

and an external radius RII > RI . It is easy to verify that
the design rule

µII =
R2

II +R2
I

R2
II −R2

I

, (1)

makes the 2D magnetostatic scattering from the coated
structure identically zero Bscat,III = 0, i.e., the magne-
tostatic field all around the cloaked object is identical to
the impressed one. The cloak is actually designed to sup-
press the scattering originating from the applied magne-
tostatic field normal to the cylinder axis, since the other
polarization (magnetic field parallel to the z axis) does
not have any effect on the scattering for a 2D cylinder.

Even under the ideal conditions (1), for which the mag-
netostatic field distribution all around the object is iden-
tical to the incident one, the cloak may be detected per-
forming an A-B experiment14, because, while the scat-
tered fields are identically zero around it, the scattered
magnetic vector potential is not. More specifically, the
wave function of an electron (charge q) beam traveling in
a zero-scattering region involves the line integral of the
scattered magnetic vector potential (Ascat) over the tra-
jectory (T ) of the particle14:

∫
(T )

Ascat · dl, which pro-

vides a nonzero contribution to the total accumulated

phase factor exp
(

jq
~
∫
(T )

Ascat · dl
)

, even in the case of

an ideally cloaked object (~ is the reduced Planck con-
stant).

This implies that two identical particles with charge
q traveling in the outer zero-field region III, would be
characterized by different wave functions if the magnetic
vector potential Ascat is different along their trajecto-
ries, even though the local magnetostatic scattered field
is equal to zero. Therefore, the cloaked object, while pro-
ducing no scattered fields in the background (region III)
is, interestingly, detectable by a pair of electron beams,
since their measured phase difference will be different if
the cloaked object is present or is not, provided that the
line integral of Ascat around a closed loop containing the
cloaked cylinder is nonzero:

∮
(C)

Ascat · dl 6= 0. After

solving the scalar boundary-value problem, we obtain:∮
(C)

Ascat · dl =

∫
(S)

(∇×Ascat) · ds

=

∫
(S)

Bscat · ds = π (ẑ ·Bback)R2
I , (2)

where we choose the surface (S) in a way that it passes
through the cloaked cylinder perpendicular to the ẑ axis.
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This is allowed because B is divergence-free and deform-
ing (S) does not change the flux that passes through
it. Therefore, the integral reduces to an integral over
the cross section of the cloaked cylinder, because of the
fact that Bscat = B −Bback = µ0µrH − µ0Hback (µr is
the local relative magnetic permeability of each region)
is identically zero outside the cloaked cylinder by defini-
tion. Furthermore, the quantity ẑ ·Hback = ẑ ·Bback/µ0

is equal to the ẑ component of H everywhere due to the
continuity of the tangential magnetic components; there-
fore, the integral of the ẑ component of the magnetic field
B is proportional to the contrast of the relative magnetic
permeability across the cross section of the cylindrical
structure

∫
(S)

(µr − 1) ds for an arbitrary inhomogeneous
µr.

The Aharonov-Bohm measurements result in the value
of flux

∫
(S)

B · ds or
∫
(S)

Bback · ds depending on whether

the cloaked object is present or not. The difference be-
tween these two quantities,which is equal to

∫
(S)

Bscat·ds,
calculated by (2), indicates the possibility of A-B detec-
tion of the cloaked object.

The relevant geometry of interest is shown in Fig. 1:
the red arrows show the direction of the magnetic field,
which cannot penetrate the 2D superconducting cylin-
der (ρ < RI , blue region). The properly selected cloak
(RI < ρ < RII , light green region) deforms the path
of the magnetic lines and the background field is re-
stored all around the object. In this way, the scattered
magnetic field in region III (ρ > RII , white region) is
identically zero. However, due to the presence of the
axial (ẑ) component of the background field Bback the
magnetic flux through an open surface (defined by the
closed boundary (C)) crossing the infinite cylinder is

nonzero
(∮

(C)
Ascat · dl 6= 0

)
, and thus the presence of

the cloaked object is detectable in an Aharonov-Bohm
experiment, by comparing two A-B measurements with
and without cloaked object.

B. Immunity to Aharonov-Bohm Effect

Our goal now is to design an improved magnetostatic
cloak that, while retaining a low scattering, does not af-
fect Aharonov-Bohm measurements. In order to purse
such a goal, we need more degrees of freedom than just
the two provided by the cloak permeability and thickness.
To this end, we split region II into U concentric layers,
the u-th of which occupies the shell ru−1 < ρ < ru. The
selection of the thickness of each 2D layer is not a crucial
parameter and thus we make the assumption that each
concentric cross section has the same area (R2

II−R2
I)/U ,

namely:

ru =

√
R2

IIu+R2
I(U − u)

U
, (3)

where u = 1, · · · , U . The magnetic permeabilities µu

are chosen to cancel the perturbation of the flux of B

and restore a zero scattered potential. In order to avoid
multi-parametric nonlinear constraints whose global op-
timum is not easy to be determined, we consider perme-
abilities at each layer close to the optimal for scattering
cancellation11, namely we adopt the following perturba-
tion form:

µu = µII(1 + su) =
R2

II +R2
I

R2
II −R2

I

(1 + su), (4)

where |su| � 1 for u = 1, · · · , U .
For technical reasons21, we fix the permeability of the

first and the last layer equal to the one of the 2D magne-
tostatic cloak (1), namely we take: s1 = sU = 0. Under
the assumption (4), the zero contrast condition that se-
cures immunity to A-B effect, is written as:

U−1∑
u=2

su = − g2U

g2 + 1
, (5)

where g = RI/RII is the radii ratio. The condition (5) is
obtained if we plug the expressions of the permeabilities

from (4) into the equation:
∑U−1

u=2 (µu − 1)(R2
II − R2

I) +
(µI − 1)R2

I = 0. As far as the cloaking condition (zero
scattering) is concerned, we follow the well-reported lin-
earization procedure21 of well-known objective functions
of layered cylinders22, obtaining the following constraint
(valid only if |su| � 1 for u = 2, · · · , (U − 1)):

U−1∑
u=2

Fusu = 0, (6)

where: Fu = (g2−1)2(u−1)u−g2(g2−1)(2u−1)U+2g4U2

[u+g2(U−u)][(u−1)+g2(U−u+1)] .

It should be stressed that a solution {s2, · · · , sU−1}
which satisfies (5) has zero contrast, and thus the cor-
responding structure certainly exhibits full immunity to
the Aharonov-Bohm effect. On the contrary, if a com-
bination of perturbation parameters satisfies (6), it does
not necessarily mean that their cylinders do not scat-
ter the applied magnetostatic field, since the solution is
a linear approximation of the far more complicated ex-
act condition. However, we are considering a solution
that is sufficiently close to the originally proposed (1)
for cloaking. To be sure that we choose the solution
{s2, · · · , sU−1} as close as possible to the magnetostatic
cloak: µ2 = · · · = µU−1 = µII , and at the same time
satisfy exactly (5) and (6), we require the minimization
of the norm of the vector of the solution:

Minimize

U−2∑
u=2

s2u. (7)

Conditions (5), (6), (7) formulate an analytically solvable
optimization problem which yields

su =
g2U

g2 + 1

Σ2 − (U − 2Σ1Fu)

(U − 2) (Σ2
1 − Σ2)

, (8)
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FIG. 2. The ratio of the squared field produced by the cloaked
object over the corresponding quantity in the uncloaked case
wscat/w

′
scat as function of the radii ratio g = RI/RII for sev-

eral numbers of layers U . In the inset we show the description
of the adopted design approach. We start from an ideal mag-
netostatic cloak with substantial contrast (purple point) and,
by linearizing and solving the obtained optimization problem
we move along the green arrow to the green point indicat-
ing ideal fulfillment of the design conditions (one of which is
approximate). The same situation is represented by the red
point, when the exact scattering is considered instead. We
manage to make the structure with zero permeability con-
trast and relatively low scattering response.

where Σ1 =
∑U−2

u=2 Fu and Σ2 =
∑U−2

u=2 F
2
u .

The procedure is described in the inset of Fig. 2. We
consider a map onto which we represent the device per-
formance in terms of cloaking efficiency (how small the
scattered magnetic field is) and in terms of immunity
to the A-B effect (how small the permeability contrast
compared to vacuum is). Our goal is to get as close as
possible to the origin of the plane. The proposed magne-
tostatic cloak corresponds to the purple point (ideal cloak
but substantial permeability contrast). The linearization
and optimization solution send us (via the green arrow)
to the origin of the second map, whose horizontal axis is
the linearized version of the scattered field (green point).
In fact, the proposed object has nonzero scattering re-
sponse, represented (via the red arrow) by the red point
in the first map. In this way, we have converted a per-
fect cloak detectable by Aharonov-Bohm measurements
to a structure totally immune to this effect, which still
has a significantly reduced scattering response. Alterna-
tively to the aforementioned procedure, one may employ
other numerical optimization routines, implementing for
instance genetic algorithms or a scanning along the do-
main of initial guesses. A fully optimized design goes be-
yond the scope of the present paper since our intention
is to provide an analytical solution based on a physics
inspired strategy with respect to the linearized objective

function.
Recent papers have looked at solutions to neutralize

the magnetic flux through certain regions of space in
order to realize two-dimensional quantum cloaks, which
may improve quantum experimental setups or bias mea-
surements related to the paths of matter waves23. Sim-
ilarly, transformation optics has been applied24 on the
quantum mechanics platform to design a cloak for quan-
tum particles under A-B effect. These studies ignore the
classical electromagnetic aspects, and are not suitable for
cloaking objects from magnetostatic or electromagnetic
waves, while our proposed cloaks achieve magnetostatic
cloaks that are also not detectable by quantum measure-
ments.

Prior to concluding this section, we point out that the
analysis presented here relies on the fact that the object
under analysis is 2D and infinite. Interestingly, it is easy
to realize that a 3D object of any size and shape, but
of finite extent, would not be A-B detectable if ideally
cloaked. This is because the total flux of B through any
closed surface is always zero (∇ · B = 0). This implies
that the flux of Bscat through any surface intersecting a
3D fully cloaked object has to be identically zero, because
closing the surface around the object without further in-
tersections would add zero to the flux of Bscat. In the
2D scenario, on the contrary, one cannot close the in-
tersecting surface without crossing again the object. In
a realistic scenario, A-B detectability refers to elongated
objects (such as long cylinders), that are cloaked far from
their edges, but that are not cloaked at the edge trun-
cations. Far from the edges, and sufficiently close to the
object, the scattered fields are consistent with the anal-
ysis presented here.

III. NUMERICAL RESULTS

A. Performance Indicators

Without loss of generality (due to the cylindrical sym-
metry), we can assume that the background field does
not possess an x̂ component. In the cylindrical coordi-
nate system, the applied field is expressed as follows:

Bback = ρ̂By sinϕ+ ϕ̂By cosϕ+ ẑBz. (9)

Due to the homogeneous nature of the excitation and
the finite cross section of the scatterer, the form of the
scattering component in region III is written in the form:

Bscat,III =
M

ρ2
(−ρ̂ sinϕ+ ϕ̂ cosϕ) , (10)

where M is a constant depending on the strength of the
background field and the structure of the cylinder (mea-
sured in Tesla · meter2). Since our design procedure
achieves ideal undetectability by Aharonov-Bohm mea-
surements, based on (6), we should measure the perfor-
mance of the proposed device as a cloak. Two indicators
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are used: the first one gives us a metric of how much scat-
tering is reduced by the presence of the cloak, defined as
the ratio of the scattered energy density in presence and
in absence of the cloak at any observation radius ρ (the
result is independent from ρ):

wscat

w′scat
=
|Bscat,III |2

|B′scat,III |2
=
M2

M ′2
. (11)

The primed quantities correspond to (10) when only
the superconducting core scatters the incoming illumina-
tion (µII = 1). The second metric for our cloak is re-
lated to how much the spatial distribution of the overall
field changes due to the (cloaked) scattering component.
Therefore, we evaluate the ratio of scattered energy den-
sity of the cloaked object (along the worst-case surface
ρ = RII) over the energy density in the background field,
namely:

wscat

wback
=
|Bscat,III |2

|Bback|2
=

M2R2
II

B2
y +B2

z

. (12)

When we introduce an object with relative permeability
µr inside region I, the complete immunity to the A-B
effect breaks down, since we modify the flux of B in the
core, and thus a performance indicator comparing our de-
sign with the one of11 should be defined. Since the phase
shift experienced by the electrons in the Aharanov-Bohm
effect depends on the magnetic flux concatenated with
the path (C), we choose the ratio of the magnetic flux

Φscat over the magnetic flux Φ̃scat of the perfect cloak11

as a measure of the detectability of the cloaked object us-
ing Aharanov-Bohm effect. In particular, if we consider a
two-dimensional cylindrical inclusion with cross-sectional
area (S) and permeability µr inside the superconducting
cylinder, this ratio is written as:

Φscat

Φ̃scat

=
Sµr

SI + Sµr
, (13)

where SI = πR2
I is the area of region I (superconducting

material) and S < SI . Obviously, the closer to the super-
conducting regime the inclusion material is (µr → 0) or
the smaller is the size of that inclusion compared to the
cloaked region (SI � S), the scattering effect becomes
weaker and weaker.

B. Results and Discussion

In Fig. 2, we represent the ratio wscat/w
′
scat defined

in (11), as function of the radii ratio g = RI/RII vary-
ing the number of layers U . Surprisingly, our linearized
solution yields better performance for thinner cloaks. In
particular, for g > 0.8 the result is the same regardless
of the number of segments U . The scattered power is re-
duced by over 85% in such thin cloaks, which constitutes
a quite efficient design. For thick cloaks the performance
deteriorates in the case of more layers U , despite the fact
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FIG. 3. The ratio of the squared fields produced by the
cloaked object over the squared magnitude of the (homoge-
neous) background field wscat/wback in contour plot with re-
spect to the radii ratio g = RI/RII and the polarization angle
θ. The definitions of g and θ are shown in the embedded fig-
ure.

that more free parameters are simultaneously varying.
Such an unexpected result is attributed to the fact that
the linearization of the cloaking condition is less success-
ful for larger U ; accordingly, the difference between the
actual scattering response and its linearized version gets
more significant.

In Fig. 3, we show the ratio wscat/wback defined in
(12), in contour plot with respect to the radii ratio g =
RI/RII and the polarization angle θ of the homogeneous
background magnetic field Bback = B0 (ŷ cos θ + ẑ sin θ).
Obviously, the scattering decreases for larger polarization
angles θ since the axial magnetostatic field does not re-
spond to a permeability contrast. On the other hand, for
thinner cloaks the perturbation of the background field
is larger, although it always remains limited below 10%.
Accordingly, the cloaked object does not substantially
modify the background field distribution.

In Figs. 4, we show the distributions of the magnetic
permeability for 0 < ρ < RII for various numbers of seg-
ments U of the clad and several radii ratios g = RI/RII .
We notice that the required permeabilities are larger for
thinner cloaks, as expected. Furthermore, the optimal
permeabilities differ less from the value µII , when more
layers U are considered, a conclusion which could be an-
ticipated since more degrees of freedom are available and
thus a solution with smaller perturbations from the stan-
dard permeability is achievable. It should be noted that
the layers are magnetically denser in the inside layers
than the outside, regardless of the choice of the other pa-
rameters. The considered permeability values in the ex-
amples presented here are quite reasonable, and close to
values available in natural materials. The optimization
may be adjusted by adding constraints on the perme-
ability of available materials, at the cost of adding more
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FIG. 4. Optimal permeability profiles µr(ρ) with respect to
the normalized radius ρ/RI for several discretization numbers
U with: (a) g = RI/RII = 0.6, (b) g = RI/RII = 0.7, (c)
g = RI/RII = 0.8 and (d) g = RI/RII = 0.9.

IV. CONCLUSIONS

Magnetostatic cloaks constitute an interesting class
of cloaking devices, with relevant technological applica-
tions, and with implications that govern also the cloak
response at higher frequencies. However, even if one can
achieve perfect magnetostatic cloaking, we have shown
here that a 2D object may still be noninvasively de-
tected from the outside by measuring the modification
of magnetic flux, regardless of its physical size, exploit-
ing Aharonov-Bohm measurements. Here we have de-
vised new designs that allow an optimal multi-layered
cladding, with which the scattered magnetic flux van-
ishes, and simultaneously the scattering response of the
entire system gets substantially suppressed. Such an ap-
proach can pave the way to design of equipment providing
extremely low detectability from both to magnetostatic
and quantum measurements. We stress again, as done
in the main body, that A-B detectability does not hold
for a fully cloaked 3D object, but it applies to elongated
objects that are not ideally cloaked at their edges, a case
of relevance in conventional A-B setups.
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4 F. Monticone and A. Alù, “Do cloaked objects really scat-
ter less?”, Physical Review X, vol. 3, no. 041005, 2013.

5 E. M. Purcell, “On the absorption and emission of light
by interstellar grains”, Astrophysical Journal, vol. 158,
pp. 433-440, 1969.

6 M. Gustafsson, C. Sohl, and G. Kristensson, “Physical lim-
itations on antennas of arbitrary shape”, The Royal Society
Proceedings A, vol. 463, 2007.
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