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Topological insulators are tunable waveguides for hyperbolic polaritons

Jhih-Sheng Wu (吳致盛), D. N. Basov, and M. M. Fogler
University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA

We present a theoretical analysis showing that layered topological insulators, for example, Bi2Se3
are optically hyperbolic materials in a range of THz frequencies. As such, these topological insulators
possess deeply subdiffractional, highly directional collective modes: hyperbolic phonon-polaritons.
We predict that in thin crystals the dispersion of these modes is split into discrete subbands and is
strongly influenced by electron surface states. If the surface states are doped, then hybrid collective
modes result from coupling of the phonon-polaritons with surface plasmons. The strength of the
hybridization can be controlled by an external gate that varies the chemical potential of the surface
states. We also show that momentum-dependence of the plasmon-phonon coupling leads to a po-
laritonic analog of the Goos-Hänchen effect. Directionality of the polaritonic rays and their tunable
Goos-Hänchen shift are observable via THz nanoimaging.

I. INTRODUCTION

Bismuth-based topological insulators (TIs) have at-
tracted much interest for their unusual electron surface
states (SSs), which behave as massless Dirac fermions.1,2

However, bulk optical response of these compounds3–15 is
also remarkable. The quintuple-layered structure of these
materials causes a strong anisotropy of their phonon
modes. The Eu phonons that involve atomic displace-
ments in the plane parallel to the basal plane (hence-
forth, x–y or ⊥–plane) have lower frequencies than A2u,
the c-axis (henceforth, z-axis) vibrations.5 For Bi2Se3,
the dominant ⊥- and z-axis phonon frequencies,

ω⊥
1,to = 64 cm−1 = 1.9THz ,

ωz
1,to = 135 cm−1 = 4.1THz ,

(1)

differ more than twice. As a result, this and similar
TIs can exhibit a giant anisotropy of the dielectric per-
mittivity. There is a range of ω where the permittiv-
ity tensor is indefinite: the real part of ǫz(ω) is posi-
tive, while that of ǫ⊥(ω) is negative. Media with such
characteristics are referred to as hyperbolic16–18 because
the isofrequency surfaces of their extraordinary rays in
the momentum space k = (kx, ky, kz) are shaped as hy-
perboloids [Fig. 1(a)]. In the THz domain, the widest
band of frequencies where Bi2Se3 behaves as a hyperbolic
medium (HM) is between the aforementioned dominant
frequencies, ω⊥

to,1 < ω < ωz
to,1; however, other hyperbolic

bands also exist in this TI (both at THz frequencies, see
Sec. II, and at visible frequencies, see Ref. 19). It is im-
portant that the approximate equation for the extraordi-
nary isofrequency surfaces,

(kx)2 + (ky)2

ǫz(ω)
+

(kz)2

ǫ⊥(ω)
=

ω2

c2
, (2)

is valid up to |k| of the order of the inverse lattice con-
stant. Accordingly, rays of momenta |k| greatly exceed-
ing the free-space photon momentum ω/c can propa-
gate through hyperbolic materials without evanescent de-
cay. At such k the hyperboloids can be further approx-
imated by cones, which means that the group velocity
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FIG. 1. (Color online) (a) Hyperboloidal isofrequency sur-
faces of HP2s for two frequencies ω1 and ω2 (ω2 > ω1). The
asymptote angle θ with respect to the kx–ky plane is shown;
the group velocity v makes the same angle with respect to
the kz-axis. (b) Model geometry: a TI slab of thickness d
sandwiched between a substrate of permittivity ǫs and a su-
perstrate of permittivity ǫ0. The two thin (orange) layers
represent the top and the bottom surfaces states.

v = ∂ω/∂k of the rays makes a fixed angle θ (or −θ)
with respect to the z-axis, with

tan θ(ω) = i
[ǫ⊥(ω)]1/2

[ǫz(ω)]1/2
, (3)

see Fig. 1(a). We refer to these deeply subdiffractional,
highly directional modes as the hyperbolic phonon po-
laritons (HPP or HP2, for short).
Our interest to HP2 of TIs is stimulated by recent

discovery20,21 and further exploration of similar collec-
tive modes in other systems such as hexagonal boron
nitride22–25 (hBN) and hBN covered by graphene26–28

(hBN/G). There is a close analogy between these sys-
tems. In fact, except for the difference in the number
of Dirac cones (N = 1 vs. N = 4) and the frequency
range where the hyperbolic response occurs (THz vs.
mid-infrared), the electrodynamics of longitudinal collec-
tive modes of Bi2Se3 and hBN/G structures is qualita-
tively the same. (The analogy is the most faithful when
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graphene and hBN are rotationally misaligned; other-
wise, their collective modes are modified by the moiré
superlattice effects.28,29)
The main goal of this paper is to investigate the in-

teraction of HP2 with the Dirac plasmons of the topo-
logical SS. The latter dominate the charge (and cur-
rent) density response of the system at frequencies out-
side the hyperbolic band where HP2 are absent. Dirac
plasmons have been extensively studied in previous lit-
erature8,13,14,30–44 on both TI and graphene. The basic
properties of the Dirac plasmons can be introduced on the
example of a hypothetical TI material with a frequency-
independent permittivity ǫz > 0 and the permittivity
ǫ⊥(ω) dominated by a single phonon mode. Such an ide-
alized material is hyperbolic in a single frequency interval
ωto < ω < ωlo where ǫ⊥(ω) < 0. Its Dirac plasmons ex-
ist at ω < ωto and ω > ωlo where ǫ⊥(ω) > 0. In the
setup shown in Fig. 1(b), where the TI slab borders me-
dia of constant permittivities ǫ0 > 0 and ǫs > 0, there are
two plasmon modes. At large enough in-plane momenta
q ≡ [(kx)2+(ky)2]1/2 these modes are confined to the op-
posite interfaces and electromagnetically decoupled. In
the relevant range of momenta q < q∗, the dispersion of
the plasmon bound to the top interface is given by

q(ω) ≃ 4

N

ǫ0 + ǫ1
e2|µ| (h̄ω)2 , h̄ω ≪ |µ| , (4)

where

ǫ1(ω) = [ǫ⊥(ω)]1/2 [ǫz(ω)]1/2, (5)

is the effective permittivity of the TI and µ is the chem-
ical potential of the SSs measured from the Dirac point.
At frequencies far below ωto or far above ωlo, function
ǫ1(ω) can be approximated by a real constant, which
yields ω ∝ √

q. This typical two-dimensional (2D) plas-
mon dispersion describes the low-frequency part of the
full curve sketched in Fig. 2(a). The plasmon dispersion
for the bottom interface is obtained by replacing ǫ0 with
ǫs (unless ǫs ≫ ǫ0, in which case the range q > q∗ is rel-
evant where the dispersion is approximately linear, see
Sec. III B).
Equation (4) implies that the nature of the plasmon

modes should change drastically when ω enters the hy-
perbolic frequency band where ǫ1(ω) [Eq. (5)] is imagi-
nary and strongly ω-dependent. This equation predicts
a complex q, which suggests that the Dirac plasmons be-
come leaky modes that rapidly decay into the HP2 bulk
continuum. However, this is not quite correct. We will
show that nonleaky, i.e., propagating modes can survive
in thin enough TI slabs where the HP2 continuum is bro-
ken into discrete subbands of waveguide modes. The lat-
ter hybridize with plasmons to form hyperbolic plasmon
phonon polaritons (HPPP or HP3, for short), the pri-
mary target of our investigation, see Figs. 2(b) and (c).
We explore the following properties and manifestations
of the collective charge modes of the TIs: i) the mode
dispersion in the momentum-frequency space, ii) the de-
pendence of such dispersions on the surface doping and

the thickness of the slab, iii) the unusual real-space dy-
namics of the HP3 rays, including a polaritonic analog of
the Goos-Hänchen (GH) effect.45,46

The remainder of the paper is organized as follows.
In Sec. II we specify the model and the basic equations.
In Sec. III we present our results for the dispersion of
the three different types of collective modes (plasmons,
HP2s, and HP3s). In Sec. IV, which is the centerpiece
of this work, we discuss waveguiding and launching of
the HP2 modes and also their tunable GH shifts. We
explain how these phenomena can be probed experimen-
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FIG. 2. (Color online) Schematic illustrations of the collective
mode spectra in idealized model systems. (a) The plasmon
dispersion of Dirac fermions confined to the interface of two
bulk media of constant positive permittivity ǫ0 and ǫs. The
dispersion crosses over from ω ≃ v

√

qq∗/2 to ω ≃ vq at a
characteristic momentum q∗ [Eq. (26)]. The shaded areas
indicate the electron-hole continua where the plasmons (and
any other charged collective modes) are damped. (b) The
dispersion of hybrid HP3 modes for a slab of a hypothetical
TI material that has a single in-plane phonon mode at ωto and
constant ǫz > 0. Permittivity ǫ⊥ is negative at ωto < ω < ωlo

and positive at other ω. The dotted boundary corresponds to
the dotted line in (a). Outside the band ωto < ω < ωlo, only
plasmonic modes 0 and 1 exist. In the degenerate case ǫ0 =
ǫs they correspond to the symmetric (s) and antisymmetric
(a) combinations of the top and bottom interface plasmons.
Inside that band, multiple branches of HP3 are formed due to
hybridization of the plasmons with the HP2 waveguide modes.
The frequencies of all the branches other than 0 and 1 tend
to ωlo at large momenta. (c) Schematic in-plane electric field
profiles of the first few HP3 modes (thick curves). The number
of nodes in each profile (the points where they cross with the
vertical lines Ex = 0) is equal to the modal index.
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tally using the imaging capabilities of the scattering-type
scanning near-field optical microscopy (s-SNOM).47,48 In
Sec. V we give concluding remarks and an outlook for
the future. Finally, in Appendix we discuss signatures
of the phonon-plasmon coupling measurable by the s-
SNOM operating in the spectroscopic mode.

II. MODEL

Our model for the bulk permittivities of the TI is

ǫα(ω) = ǫα∞ +
∑

j=1,2

ωα 2
p,j

ωα 2
to,j − ω2 − iγα

j ω
, α = ⊥, z . (6)

In the case of Bi2Se3, we choose the parameters based
on available experimental3,4,7 and theoretical5 literature
as follows: ǫ⊥∞ = 29, ǫz∞ = 17.4, ω⊥

to,1 = 64 cm−1, ω⊥
p,1 =

704 cm−1, ω⊥
to,2 = 125 cm−1, ω⊥

p,2 = 55 cm−1, ωz
to,1 =

135 cm−1, ωz
p,1 = 283 cm−1, ωz

to,2 = 154 cm−1, ωz
p,2 =

156 cm−1, and γα
j = 3.5 cm−1. [Note that ω⊥

to,1 and ωz
to,1

were already listed in Eq. (1).] The real parts of functions
ǫ⊥(ω) and ǫz(ω) are plotted in Fig. 3. The regions where
at least one of them is negative are shaded. They include
region A, ω⊥

to,1 < ω < ωz
to,1, where Bi2Se3 is a HM of type

II (ℜe ǫz > 0, ℜe ǫ⊥ < 0); region C, ωz
to,2 < ω < 163 cm−1

where it is a HM of type I (ℜe ǫz < 0, ℜe ǫ⊥ > 0), and
region B, ωz

to,1 < ω < 146 cm−1, where it exhibits the

Reststrahlen behavior (ℜe ǫz < 0, ℜe ǫ⊥ < 0). Since
regions B and C are narrow, in our discussion of HP2 and
HP3 modes we focus on region A. In this discussion we
often refer to hBN as an example of a simpler material.
The type II hyperbolic band of hBN is bounded by the
frequencies20,22

ωto = 1376 cm−1, ωlo = 1614 cm−1. (7)

In this band ǫ⊥(ω) of hBN can be modelled similar to
Eq. (6) but using a single Lorentzian oscillator while ǫz

can be considered ω-independent and positive.
In the case of Bi2Se3, we also have to specify our as-

sumptions about the electronic response. We consider
only frequencies smaller than the bulk gap 0.3 eV of
Bi2Se3 at which the electronic contribution to the per-
mittivities [included in Eq. (6) via ǫα∞] is purely real.
Additionally, we assume that the valence bulk band is
completely filled, the conduction one is empty, with no
free carriers present in the bulk. However, such carri-
ers populate the gapless SS described by the massless 2D
Dirac equation. The chemical potential µ, which is lo-
cated inside the bulk band gap, determines the doping
of these SS. For simplicity, we ignore any virtual or real
electronic transitions between the surface and the bulk
states, which should not change the result qualitatively,
except perhaps for the additional damping from these
transitions.
The fundamental current/density response functions of

the SS are the sheet conductivity σ and polarizability P ,
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FIG. 3. (Color online) The real parts of the tangential and
axial permittivities of Bi2Se3. The sign changes of the per-
mittivities are due to the Eu and A2u phonons. Surface- and
bulk-confined collective modes exist inside the spectral regions
where at least one of the permittivitties is negative. They in-
clude type II hyperbolic region A (ℜe ǫ⊥ < 0, ℜe ǫz > 0),
Reststrahlen region B (ℜe ǫ⊥,ℜe ǫz < 0), and type I hyper-
bolic region C (ℜe ǫ⊥ > 0, ℜe ǫz < 0).

which are related in the standard way:

σ(q, ω) =
iω

q2
e2P (q, ω) . (8)

Within the random-phase approximation for Dirac
fermions, P (q, ω) can be computed49,50 analytically:

P (q, ω) = −NkF
2πh̄v

− iN

16πh̄v

q2√
q2 − k2ω

×
[
G

(
kω + 2kF

q

)
−G

(
kω − 2kF

q

)
− iπ

]
,

G(x) = ix
√
1− x2 − i arccosx .

(9)

Here the branch cut for the square root and logarithm
functions is the negative real semi-axis, kω is defined by
kω = (ω + iγe)/v, phenomenological parameter γe > 0 is
the electron scattering rate, v is the Fermi velocity, and
kF = |µ|/(h̄v) is the Fermi momentum. Equation (9) is a
good approximation at small µ. At large doping, trigonal
warping51 and other details of realistic band-structure43

should be included. Since the above formula is a bit cum-
bersome, it may be helpful to mention some properties
of σ(q, ω). For example, if γe = +0, the real part of
σ(q, ω) is nonvanishing only inside the two shaded areas
in Fig. 2(a), which together form the so-called electron-
hole continuum.30,39 (This real part is a measure of dis-
sipation, i.e., Landau damping.) For doped system at
small momenta and frequencies, q, kω ≪ kF , the expres-
sion for the conductivity can be reduced to

σ(q, ω) ≃ Ne2

2πh̄

kF√
q2 − k2ω

ikω

ikω −
√
q2 − k2ω

. (10)
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At q ≪ ω/v, it further simplifies to the Drude formula

σ ≃ Ne2

4πh̄2

|µ|
γe − iω

, µ 6= 0 . (11)

For an undoped system, one finds instead

σ(q, ω) =
N

16

e2

h̄

ikω√
q2 − k2ω

(12)

≃ N

16

e2

h̄
, q ≪ ω

v
. (13)

In order to find the dispersion of the collective modes
of the TI slab we use two computational methods. One
method, which is advantageous for deriving analytical
results, is to look for the poles of the response function
rP (q, ω). This function is the total P - (also known as
the TM-) polarization reflectivity of the system measured
when an external field is incident from the medium la-
beled “ǫ0” in Fig. 1(b). It must be immediately clarified
that rP (q, ω) has no poles at simultaneously real q and
ω if the dissipation parameters γ and γe are nonzero. At
least one of these arguments must be complex. When-
ever one refers to the dispersion relation of a mode, one
means the relation between the real parts of q and ω. The
other method, which is especially convenient for numeri-
cal simulations, is to identify the sought dispersion curves
with the maxima of ℑm rP (q, ω) at real arguments. As
long as the imaginary parts of q and ω (which give in-
formation about the propagation length and lifetime of
the mode) are small, both methods give the same disper-
sions. An extra benefit of working with real q and ω is
that the corresponding rP (q, ω) is the input for further
calculations we discuss in Appendix A where we model
s-SNOM experiments for the system in hand.
Our procedure for calculating function rP (q, ω) can be

explained as follows. Taking a more general view for a
moment, we regard the entire system including the sub-
strate and superstrate as a stack of layers j = 0, 1, . . . ,M
of thickness dj , tangential permittivity ǫ⊥j , and axial per-
mittivity ǫzj . (In the present case, M = 2, the TI slab is
layer j = 1 and d1 = d.) Additionally, we assume that
the interface of the layers j and j +1 possesses the sheet
conductivity σj,j+1. We observe that the P -polarization
reflectivity rj,j+1 of j, j + 1 interface in isolation is given
by the formula (see, e.g., Ref. 27)

rj,j+1 =
Qj+1 −Qj +

4π

ω
σj,j+1

Qj+1 +Qj +
4π

ω
σj,j+1

, (14)

Qj =
ǫ⊥j
kzj

, kzj =
√
ǫ⊥j

√
ω2

c2
− q2

ǫzj
, (15)

where kzj and q are, respectively, the axial and the tan-
gential momenta inside layer j. Let rj be the reflectivity
of a subsystem composed of layers j, . . . ,M . By this def-
inition, rM−1 = rM−1,M . The crucial point is that the

desired rP ≡ r0 can be found by the backward recursion

rj = rj,j+1 −
(1− rj,j+1)(1 − rj+1,j)rj+1

rj+1,jrj+1 − exp(−2ikj+1dj+1)
, (16)

where rj+1,j is the right-hand hand of Eq. (14) with Qj

and Qj+1 interchanged. For M = 2, one recursion step
suffices, which gives us, after some algebra,27

rP =
r12(r01 + r10 − 1)− r01 exp(−2ik1d1)

r10r12 − exp(−2ik1d1)
. (17)

Hence, function rP (q, ω) has poles whenever

r10(q, ω)r12(q, ω) = exp (−2ikz1d) . (18)

For large in-plane momenta q ≫ (ω/c)max |ǫzj |1/2, we
can use the approximations kz1 ≃ q tan θ and

r10 ≃
ǫ0 − ǫ1 − 2q

qtop

ǫ0 + ǫ1 − 2q
qtop

, qtop ≡ iω

2πσtop
, (19)

where σtop = σtop(q, ω) is the sheet conductivity of the
SS at the top interface. Let us also define the “phase
shifts” φtop and φbot for inner reflections from the top
and bottom interfaces, respectively: r10 = − exp(2iφtop),
r12 = − exp(2iφbot). Note that in general φtop and φbot

are complex numbers. Specifically, we take

φtop = arctan

[
i
ǫ0
ǫ1

(
1− 2

ǫ0

q

qtop

)]
, (20)

φbot = arctan

[
i
ǫs
ǫ1

(
1− 2

ǫs

q

qbot

)]
. (21)

where the standard definition of arctan z is assumed,
with the branch cuts (−i∞,−i), (i, i∞) in the complex-
z plane; qbot is defined analogously to qtop but with the
sheet conductivity σbot of the bottom SS instead of σtop.
Equation (18) can now be transformed to

qn = −2

δ
(nπ + φtop + φbot) , δ ≡ 2d tan θ , (22)

where the integer subscript n labels possible multi-
ple solutions. Admissible n must satisfy the condition
ℑm rP (qn, ω) > 0. Our numerical results for rP com-
puted from Eq. (17) and analytic approximations for the
solutions of Eq. (22) are presented in Sec. III.

III. COLLECTIVE MODE DISPERSIONS

The false color maps of function ℑm rP (q, ω) provide
a convenient visualization of the collective mode spectra.
Examples of such maps computed for Bi2Se3 slabs are
presented in the bottom row of Fig. 4. Their counterparts
for graphene-hBN-graphene (G/hBN/G) structures are
shown in the top row to facilitate the interpretation. The
bright lines in Fig. 4 are the dispersion curves of the
collective modes. The apparent widths of those lines give
an idea how damped the modes are. Below we discuss
these results in more detail.
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FIG. 4. (Color online) Collective mode dispersions of graphene-hBN-graphene (G/hBN/G) and Bi2Se3 slabs rendered using
the false color maps of ℑm rP . The parameters of the calculation for G/hBN/G are: (a) d = 60nm, µ = 0, (b) d = 60nm,
µ = 0.29 eV, (c) d = 30nm, µ = 0.29 eV. The other parameters are v = 1.00 × 108 cm/s, γe = 1.00THz, ǫ0 = 1, and ǫs = 1.5.
The parameters of the calculation for Bi2Se3 are: (d) d = 120 nm, µ = 0, (e) d = 120 nm, µ = 0.29 eV, (f) d = 60nm,
µ = 0.29 eV. In these three plots v = 0.623 × 108 cm/s, γe = 1THz, ǫ0 = 1, and ǫs = 10. Equal doping of the top and bottom
SS is assumed. The vertical dashed lines indicate a characteristic momentum probed by the s-SNOM experiments simulated
in Fig. 7 below.

A. Hyperbolic waveguide modes

Figures 4(a) and 4(d) depict the ℑm rP maps for, re-
spectively, G/hBN/G and Bi2Se3 slabs, when they are
undoped, µ = 0. No Dirac plasmons exist in such sys-
tems, so that the collective modes are limited to HP2s.
In Fig. 4(a) we see a single family of such modes whereas
in 4(d) one can actually distinguish three of them. Let
us start with the former, simpler case. The key to un-
derstanding the nature of these modes is that inside the
hyperbolic band ωto < ω < ωlo the z-axis momentum
kz1 ≃ q tan θ of the modes is nearly real. Hence, the HP2s
form standing waves inside the slab. The integer n in
Eq. (22) corresponds to the number of nodes of these
waves, see Fig. 2(c). For G/hBN/G the requisite condi-
tion ℑm rP > 0 is satisfied by all nonegative integers n
due to the fact that ℑm tan θ > 0. This inequality also
ensures that ℑm q > 0. An analytical approximation for
the dispersion curves of an undoped slab is obtained by
neglecting the fractions q/qtop, q/qbot in Eqs. (20), (21),
in which case Eq. (22) yields q(ω) directly. Within this
approximation, momenta qn at given ω are equidistant:

qn+1 − qn ≃ −2π

δ
= −π

d

1

tan θ(ω)
. (23)

The dispersion of the HP2 waveguide modes is dominated
by the factor 1/ tan θ(ω) in Eqs. (22), (23), which, if all
damping is neglected, changes from zero to infinity as ω
increases from ωto to ωlo. This is precisely what we see in
Fig. 4(a): all the dispersion curves start at ωto at q = 0
and increase toward ωlo at large q.

Equation (23) is general and it applies to Bi2Se3 as
well. The three families of collective modes seen in
Fig. 4(d), belong to the spectral regions A, B, and C of
Fig. 3. In region A, which is the widest of the three, we
see a set of HP2 modes very similar to those in Fig. 4(a).
They start at ωto,1 = 64 cm−1 at q = 0 and monotonically
increase toward ωto,2 = 135 cm−1 at large q. In region
C, 154 < ω (cm−1) < 163, we again find a family of HP2

modes but this time with a negative dispersion. This be-
havior is typical of type I HM (ℜe ǫ⊥ > 0, ℜe ǫz < 0).
The shape of the dispersion can be understood noticing
that the real part of 1/ tan θ(ω) is positive, varying from
∞ to 0 (if the phonon damping γα

j is neglected) while ad-
missible n are now n ≤ 0. [In hBN, this type I behavior
is also realized22,24,27 but the corresponding frequency
range is below the axis cutoff in Fig. 4(a).] Lastly, in
region B, 135 < ω (cm−1) < 146, function tan θ(ω) is al-
most purely imaginary, which implies that the collective
modes do not form standing waves but are exponentially
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confined to the interfaces. Also, there are only two such
modes, n = 0 and n = 1. In this respect these surface-
bound HP2 modes are similar to the Dirac plasmons, see
Sec. I above and Sec. III B below. However, their disper-
sion is completely different from those of the plasmons,
e.g., the dispersion of the upper (n = 1) mode has a neg-
ative slope, see Fig. 4(d). Similar collective excitations
have been studied in literature devoted to other systems,
e.g., anisotropic superconductors,52 which can be con-
sulted for details and references. Due to narrowness of
regions B and C, some of the described features may be
difficult to see in Fig. 4(a) and probably challenging to
observe in experiments. For this reasons, we will mostly
refrain from discussing regions B and C further.

One implication of Eq. (23) is that the HP2 dispersion
is widely tunable: the scaling law qn ∝ d−1 provides
a practical way to engineer a desired wavelength of the
waveguide modes simply by tailoring the slab thickness d,
as has been previously demonstrated using hBN slabs.20

B. Surface plasmons

Examples of the collective mode spectra at finite dop-
ing are shown in Fig. 4(b, c) for G/hBN/G and 4(e, f)
for Bi2Se3. The spectra are dramatically different inside
and outside the hyperbolic frequency bands. A key to un-
derstanding this difference is again the value of the mo-
mentum kz1 ≃ q tan θ(ω). Outside the hyperbolic bands,
it is almost purely imaginary, and so the collective exci-
tations are exponentially confined to the surfaces of the
slab. These surface modes are the Dirac plasmons intro-
duced in Sec. I. Having in mind applications to near-field
experiments, we are particularly interested in momenta
q of the order of a few times 105 cm−1, i.e., the region
nearby the dashed lines q = 0.0025 nm−1 in Fig. 4. If ǫ1
is real, there are at most two solutions of Eq. (22), one
for n = 0 and the other for n = 1. However, the distinct
n = 1 dispersion curves are visible only in Fig. 4(b, c)
for G/hBN/G and none of them is close enough to the
range of q we are interested in. Therefore, we focus on
the n = 0 branch.
The shape of the plasmon dispersion curves in TI slabs

and double-layer graphene systems was a subject of many
previous theoretical studies31,37,40,43,44 whose basic con-
clusions are reproduced by the following analysis. To
the right of the dashed lines in Fig. 4(b, e) and for
d ∼ 100 nm, the dimensionless product 2kz1d = qδ is typ-
ically large by absolute value and almost purely imagi-
nary. This implies that the plasmons of the two interfaces
are decoupled. Taking into account that ǫ0 < ǫs and
qtop = qbot in Fig. 4, one can show that the dispersion of
the n = 0 mode is controlled by the properties of the top
interface. In the first approximation this dispersion can
be obtained setting φtop → −i∞, which yields

q0 ≈ ǫ0 + ǫ1
2

qtop , q0 ≫ |δ|−1. (24)

For µ = 0, momentum qtop = qtop(q0, ω) is imaginary,
cf. Eqs. (13) and (19). Hence, for real ǫ1, Eq. (24) has no
real solutions: as already mentioned, undoped SSs do not
support plasmons. Indeed, Figs. 4(a) and (d) contain no
bright lines outside the hyperbolic bands. On the other
hand, if µ 6= 0, we can use Eq. (11) to transform Eq. (24)
to Eq. (4), which predicts a parabolic dispersion curve
ω ∝ √

q if ǫ1 is constant. Such parabolas are seen in
the upper halves of Figs. 4(b, c) and (e, f) although they
appear rectilinear because of the restricted range of q.
As smaller momenta Eq. (24) no longer holds. The

correct approximation for the n = 0 mode is obtained by
setting the left-hand side of Eq. (22) to zero. This yields
φtop = −φbot and

q0 ≃ ǫ0 + ǫs
2

1

q−1
top + q−1

bot

≃ 2

N

ǫ0 + ǫs
e2|µ| (h̄ω)2 . (25)

Thus, both the low-q and high-q parts of the n = 0 dis-
persion curve are parabolic but with different curvatures.
The crossover between these two parabolas occurs via a
rapid increase of ǫ⊥(ω), and so, ǫ1(ω) at frequencies im-
mediately above the hyperbolic bands. It takes place at
ω > 1614 cm−1 for G/hBN/G and ω > 163 cm−1 for
Bi2Se3, which generates the inflection points seen on the
curves in, respectively, Fig. 4(b, c) and (e, f).
As indicated schematically in Fig. 2(a), at very large

q the plasmon dispersion should have another inflec-
tion point. Using the more accurate Eq. (10) instead
of Eq. (11), we find the following analytical result for the
frequency of the n = 0 mode as a function of q:

ω(q) ≃ v
q + q∗√

1 + (2q∗/q)
, q∗ =

2e2

h̄v

NkF
ǫ0 + ǫ1

. (26)

This equation predicts a crossover from the parabolic to
the linear dispersion ω ≃ vq above q = q∗. However, this
occurs far outside the plot range of Fig. 4.
Returning to Eq. (25), we notice that it does not con-

tain the bulk permittivities. Hence, it should continue
to hold for a range of ω inside the hyperbolic bands. A
physical picture of this mode [“0(s)” in Fig. 2(c)] is in-
phase oscillations of the charges of both Dirac fermion
layers, i.e., the system behaving as a single 2D layer with
the combined oscillator strength. As ω decreases further
into the hyperbolic bands, the length scale |δ| increases.
The strength of the inequality q0|δ| ≪ 1 and so the ac-
curacy of Eq. (25) becomes progressively lower [in fact,
Eq. (27) below gives a better approximation]. At ω = ωto

for G/hBN/G and similarly, at ω = ω⊥
to,1 for Bi2Se3, this

inequality is violated completely, which is consistent with
the termination of these branches at q = 0 in Figs. 4(b)
and (e). Similar analysis can be applied to Figs. 4(c)
and (f) where d is twice smaller than in, respectively,
Figs. 4(b) and (e). Because of that, the plasmon disper-
sion in the region q|δ| < 1 is shifted to smaller q. The
dispersions in the large-q regions are virtually unaffected
since the stronger surface confinement of the plasmons
makes them insensitive to d.
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One qualitative difference between G/hBN/G and
Bi2Se3 is the richer phonon spectrum of the latter. This
leads to the avoided crossings of the plasmon branch with
the dispersion lines of the HP2 modes in regions B and
C of Bi2Se3, cf. Fig. 4(b, c) and 4(e, f). The small shifts
caused by those crossings are somewhat masked by the
considerable linewidth of the n = 0 line due to rela-
tively stronger phonon damping. In turn, higher elec-
tronic damping rate γe ∼ ω⊥

to,1 due to disorder scattering
in Bi2Se3 effectively eliminates the plasmon excitations
in the lower spectral region ω < ω⊥

to,1, see Fig. 4(e, f).
Therefore, we do not discuss it here.

C. Hybrid modes

From now on we turn to the subject of our primary in-
terest, the hyperbolic collective modes of a doped TI.
In this short section we address their dispersion law.
Comparing Fig. 4(d) for µ = 0 with Fig. 4(e, f) for
µ > 0, we observe significant shifts in the dispersion of
the n = 0 mode in the upper half of the hyperbolic band
ω⊥
to,1 < ω < ωz

to,1 of Bi2Se3. Similar shifts are seen in
hBN near ωlo, cf. Fig. 4(a) with Fig. 4(b, c). These
shifts result from hybridization of HP2 and Dirac plas-
mons into combined HP3 waveguide modes. In general,
calculation of these shifts requires solving Eq. (22) nu-
merically. However, near the bottom of the hyperbolic
band where these shifts become small, they can be also
found analytically. Thus, Eq. (25) gets replaced by

q0 ≃ ǫ0 + ǫs

ǫ⊥d+ 2q−1
top + 2q−1

bot

, |ǫ1| ≫ ǫ0, ǫs , (27)

which shows explicitly that q0 goes to zero as ω ap-
proaches ω⊥

to,1 where ǫ⊥ sharply increases.

Unlike in Fig. 4(a, d), in 4(b, c, e, f) the higher-order
n > 1 modes are more difficult to see because of their
lower relative intensity compared to those of the plasmon
n = 0 (and n = 1) modes. Nevertheless, these modes
remain well defined (underdamped). Near the bottoms
of the respective hyperbolic bands their momenta qn still
form an equidistant sequence except with a spacing

qn+1 − qn ≃ 2π

l − δ
, (28)

which is modified compared to Eq. (23). This result can
be obtained from Eq. (22) by approximating the finite
differences such as φtop(qn+1)−φtop(qn) by means of the
derivative. Parameter l is defined by

l = −2
∂φtop

∂q
− 2

∂φbot

∂q
. (29)

The physical meaning of this quantity is clarified in the
next Section.

IV. GOOS-HÄNCHEN EFFECT

In this Section we consider the problem of the plasmon-
polariton mixing from the point of view of real-space tra-
jectories of the HP2 excitations. The question we con-
sider is how polariton wavepackets propagate inside the
slab and, in particular, how they reflect off its interfaces.
As mentioned in Sec. I, for a given ω, the angle θ be-
tween the z-axis and the group velocity v vector of HP2s
is nearly independent of q. Therefore, monochromatic
HP2 wavepackets propagate as highly directional rays.
Naively, one would then expect that the polariton rays
should zigzag inside the slab returning to each interface
periodically with the repeat distance of 2d |tan θ| = |δ|.
Although such geometrical optics picture is adequate for
insulating hyperbolic materials,53 it is not quite correct
for TI with gapless doped SS. The geometrical optics
neglects a lateral shift or displacement of the rays af-
ter each reflection [compare Figs. 5(a) and (b)], which is
analogous to the GH effect of light. The GH effect was
first discussed in the context of the total internal reflec-
tion of light. As explained below, it can be understood
from two complementary points of view. In the wave
picture, it originates from the momentum dependence of
the reflection phase shift. In the particle picture, the GH
effect is due to the quasi-classical tunneling (excitation
of evanescent waves) along the interface. To define such
a displacement one usually considers a wavepacket with

θ

polariton polariton

plasmon

l

(a) (b)

(c)

split gate

undoped

doped

FIG. 5. (Color online) Polaritonic GH effect in TI slabs. (a)
Schematics of the HP2 ray reflection in the absence of the SS.
(b) The same with the SS. The wavy lines symbolize virtual
Dirac plasmons. The GH shift l is indicated. (c) The electric
field distribution inside and/or at the upper surfaces of two
slabs with equal δ = −2.2d but different doping. The lower
(“doped”) and the upper (“undoped”) parts of the image are
computed for λp = a and 0, respectively. The split gate —
a pair of metallic half-planes separated by a distance 2a —
launches highly directional HP2 rays that bounce inside the
slabs creating periodic “hot stripes” at their upper surfaces.
The period is larger in the “doped” slab. The two small cir-
cles, one in the undoped and one in doped part, are the rep-
resentative locations of the HP2 reflections. Their enlarged
views are shown in, respectively, (a) and (b).
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a smooth envelope (for example, a Gaussian), in which
case the displacement is the shift in the position of its
maximum.
While the GH effect45 was discovered measuring the

reflection of light off an air-metal interface, the dis-
placement l of the reflected ray is a general wave phe-
nomenon46 that arises due to the dependence of the re-
flection phase shift φ on the lateral momentum q =
(kx, ky). For example, the GH effect should also occur for
surface plasmons.54 The expression for l has the form55

l = −ℜe ∂φ
∂q

. (30)

It seems to be another general rule that the momentum
dependence of φ is significant only if the interface sup-
ports electromagnetic modes with either a large propa-
gation length or a long decay length if such modes are
evanescent. In the original photonic GH effect this is the
case under the conditions of the total internal reflection.
The magnitude |l| of the GH displacement can be inter-
preted as the decay length of the evanescent transmitted
wave. Alternatively, a large GH shift can occur if the
interface supports surface plasmons or polaritons.56–58

Experimental demonstration of the GH effect enhanced
by surface plasmons of the air-metal interface has been
reported.59

Comparing Eqs. (29) and (30), we recognize the length
scale l in the former as the sum of the GH shifts due to
the top and the bottom interfaces. Therefore, we con-
clude that the Dirac plasmons must act as the transient
interface modes for the HP2 rays bouncing inside the TI
slab. Using Eqs. (20), (30), and taking into account that
ℜe ǫ1 ≪ ℑm ǫ1, we find the GH shift at the top interface
to be

ltop =
4

qtop

ℑm ǫ1(
ǫ0 − 2q

qtop

)2
+ |ǫ1|2

. (31)

A few comments on this result can be made. First, the
GH shift is positive in our case, which means the dis-
placement is in the same direction as the in-plane group
velocity of the ray. Second, ltop depends on the permit-
tivity of the environment. For example, at fixed q, it
vanishes if ǫ0 is very large. Conversely, for fixed ǫ0, the
GH shift reaches its maximum

lmax =
2

π

λpǫ0ℑm ǫ1

(ℜe ǫ1)2 + (ℑm ǫ1)
2 , λp ≡ 2π

ǫ0qtop
, (32)

at q = π/λp. Finally, lmax depends linearly on the char-
acteristic size λp of the Dirac plasmon wavelength and
inversely on the absolute value |ǫ1| ≈ ℑm ǫ1 of the effec-
tive permittivity of the hyperbolic medium.
In Fig. 6, we show lmax for Bi2Se3 and G/hBN/G sys-

tems as a function of ω spanning their respective hyper-
bolic bands. The relative shift, lmax/λp, is greater in
G/hBN/G because |ǫ1| is smaller. Yet the absolute lmax

at the same µ = 0.3 eV is greater in Bi2Se3 (where it is
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FIG. 6. (Color online) Maximum GH shift lmax (in absolute
units and as a fraction of λp) for (a) TI slab and (b) G/hBN/G
structure with the same chemical potential µ = 0.3 eV.

∼ 200 nm) because it is hyperbolic at lower frequencies
and λp is larger at smaller ω.

One possible setup for experimental detection of the
GH effect in TI is shown in Fig. 5(c). It differs from
Fig. 1(b) in the addition of a split gate between the TI
slab and the substrate. If this gate is made of a good
conductor with large permittivity, it would suppress the
GH shift at the bottom surface. However, it would serve
another useful purpose. Previously, it has been demon-
strated23 that in the presence of an external oscillating
field, thin metallic disks or stripes can launch HP2 in
hBN. The split gate is to perform the same function here.
The HP2s are preferentially emitted from the regions of
highly concentrated field near the sharp metallic edges.
We expect the rays to zigzag away from their launching
points returning to the top surface with the period l− δ,
which is the sum of −δ ≈ |δ| due to the roundtrip in-
side the slab and l = ltop due to the GH shift at the
top surface. Since l depends qtop, which is controlled by
doping, the GH effect can be detected by measuring the
positions of the electric field maxima [“hot stripes” in
Fig. 5(c)] as a function of µ in the experiment. Although
l is quite small, the shifts accumulate after multiple re-
flections, which can facilitate their detection, as in the
original work of Goos and Hänchen.45

To model the response of the system shown in Fig. 5(c)
quantitatively we proceed as follows. We approximate
the half-planes of the split gate by perfect conductors in
the z = 0 plane with the edges at x = ±a. Let V (x, 0) be
the scalar potential at z = 0 due to the external uniform
field and all the charges induced on the gate. (Here and

below the common factor e−iωt is omitted.) Let Ṽ (kx)
be the Fourier transform of V (x, 0). Using the notations
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for the reflection coefficients introduced in Sec. II, we
express the potential V (x, z) inside the slab 0 ≤ z ≤ d
by the integral

V (x, z) =

∫
dkx

2π
Ṽ (kx)t(kx, z)eik

xx, (33)

t(kx, z) =
ei|k

x|z tan θ − r10(k
x)ei|k

x| tan θ(2d−z)

1− r10(kx)r12(kx)ei|k
x|δ

. (34)

For a consistency check we can consider the large-x be-
havior of this inverse Fourier transform, which should be
dictated by the poles of the integrand. These poles can
be recognized as the HP3 momenta qn [Eq. (22)]. Since
qn form the equidistant sequence [Eq. (28)], their super-
position should indeed create beats of period l − δ, in
agreement with our ray trajectories picture, Fig. 5(b).
Explicit calculation of V (x, 0) requires a self-consistent

solution of the Maxwell equations for our complicated
multilayer system, which is computationally intensive.
Fortunately, very similar results for V (x, z) are obtained
with little effort by approximating the true V (x, 0) with
the “bare” potential that would exist in the TI is re-
moved, that is, if d = λp = 0. At distances less than
c/ω from the gap in the gate, this bare potential has the
simple analytical form,

V (x, 0) =
V0

2
×





+1 , x ≤ −a ,

− 2

π
arcsin(x/a), |x| < a ,

−1 , x ≥ a ,

(35)

familiar from classical electrostatics. Its Fourier trans-
form is given by

Ṽ (kx) =
iV0

kx
J0(k

xa) , (36)

where J0(x) is the Bessel function of the first kind and
V0 is potential difference between the two parts of the
gate. The tangential electric field corresponding to this
potential,

Ex =
V0

π
√
a2 − x2

, (37)

exhibits an inverse square-root divergence at the edges,
which enables the localized HP2 emission.
Carrying out the quadrature in Eq. (33) numerically,

we have calculated the components and also the ampli-
tude of the electric field E =

√
E2

x + E2
z over an interval

of x a few |δ| in length and z varying from 0 to d. Our
results for E = E(x, z) for two doping levels, correspond-
ing to λp = 0 (undoped SS) and λp = a (doped SS) are
illustrated by the false color plots in Fig. 5(c). These
plots are superimposed on perspective projections of the
two slabs (doped and undoped), which are placed next
to each other for easy comparison. The remaining pa-
rameters of the calculations are δ = −2.2d and a = 0.1d.
We see that a finite shift of the “hot stripes” at the top

surface z = d exists in the doped case. This seems to
vindicate our intuition but actually the situation is a bit
more subtle. The problem is that the momentum distri-
bution of our source [Eq. (36)] is very different from what
we assumed it to be in the beginning of our discussion
of the GH effect. This distribution is not narrow and
not centered at some finite kx. Instead, it has positive
and negative kx harmonics of equal strength and a long
power-law tail at |kx| ≫ 1/a. The reason why the GH
shift persists in our case is the spatial separation of the
kx harmonics: due to the directionality of the HP2 prop-
agation, the stripes to the left (right) of the launching
points are created predominantly by negative (positive)
kx. Since l has the same direction as q = (kx, 0), the
stripes shift away from the origin on both sides of the
y-axis. A formal derivation of this result can be done by
splitting the integral in Eq. (33) into the kx > 0 and the
kx < 0 parts and identifying the relevant poles kx = qn
using contour integration methods.

From numerical experiments with different a, we found
that the largest shift of the stripes is obtained for a ∼ λp.
This can be explained by arguing that the shift is maxi-
mized when the characteristic kx ∼ π/a contributing to
the integral in Eq. (33) is close to the momentum π/λp

at which l = lmax in Eq. (31).

Experimental detection of the “hot stripes” and their
doping-dependent GH shift is possible via the s-SNOM
imaging. This technique involves measuring the light
scattered by the tip of an atomic force microscope
brought to the sample and scanned along its surface.47,48

Using clever signal processing methods, it is possible to
isolate the genuine near-field component of this scattered
light, which originates from conversion of evanescent elec-
tromagnetic waves emanating from the sample into free-
space photons. In the proposed experiment, the evanes-
cent waves are due to the HP2 modes launched by the
split gate. The spatial resolution of the s-SNOM imaging
is set by the tip curvature radius R. For typical R = 20–
40 nm, it is barely sufficient to observe the predicted GH
shifts in hBN/G, Fig. 6(b). Nevertheless, detecting the
cumulative shift after several stripe periods should be fea-
sible. The prior success of s-SNOM imaging experiments
of surface plasmons and polaritons in graphene and hBN
structures20,23–25,27,28,33,35 gives us a firm confidence in
this approach. Note that if a doped graphene layer only
partially covers the top surface of hBN, one literally gets
the situation depicted in Fig. 5(c), where the doped and
undoped regions are positioned side by side.

In the case of Bi2Se3 where the GH shift ∼ 200 nm
[Fig. 6(a)] is much larger, the spatial resolution of the s-
SNOM is even less of an issue. The main obstacle is the
scant availability of suitable THz sources. We are opti-
mistic that in a near future this problem can be overcome
as well.
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V. SUMMARY AND OUTLOOK

Recent experiments8,14 have shown that coupling be-
tween Dirac plasmons and bulk phonons of bismuth-
based TIs should be strong. In this paper we have stud-
ied this interaction taking into account the anisotropic
phonon spectrum of such TIs. We have predicted that a
TI slab can act as a tunable waveguide for phonon po-
laritons, with the doping of the surface states being the
tuning parameter. In additional to the change in disper-
sion, the phonon-plasmon coupling can cause measurable
real-space shifts of the polariton rays. Similar phenom-
ena have been recently studied in artificial structures
made by stacking graphene layers on top of hBN. The
present work indicates that the TIs are a promising alter-
native platform for realizing highly tunable, strongly con-
fined, low-loss electromagnetic modes in a natural mate-
rial. Additionally, while hBN/G waveguides operate in
mid-infrared frequencies, Bi2Se3 and similar compounds
extend the same functionality to the technologically im-
portant THz domain.
We envision several directions for further work in this

field. One is to attempt a multi-source coherent con-
trol of polariton emission and propagation using ultrafast
laser pulses. A variety of such techniques has been devel-
oped60 in the context of THz polaritonics of LiNbO3 and
LiTiO3. (Incidentally, a theoretical proposal61 of inte-
grating graphene into such materials would lead to polari-
ton waveguides similar in functionality and perhaps also
tunability to those studied in the present work.) Another
intriguing direction is to explore oscillating spin currents
which were predicted to accompany charge density cur-
rents produced by Dirac plasmons.32 It may be also in-
teresting to study the effect of optical hyperbolicity19 on
the high-energy bulk plasmons of the TIs.62,63 Finally, it
may be worthwhile to investigate new applications that
can be enabled by tunable hyperbolic polaritons. Har-
nessing such types of modes for hyperlensing64–66 or fo-
cusing23,24 has been widely discussed. The present work
shows that the GH effect and its dependence on doping
and dielectric environment of the TI can be another av-
enue for applications, for example, THz chemical sensing
or characterization of spatially inhomogeneous TI sam-
ples. We hope our work can stimulate these and other
future studies.
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Appendix A: Near-field spectra

A fully realistic modeling of the s-SNOM imaging ex-
periments proposed in Sec. IV is an unwieldy task re-
quiring a repeated solution of the Maxwell equations for

a system with complicated material properties, a hierar-
chy of widely different length scales, and no special sym-
metries. In this Appendix we present some results of less
ambitious calculations that simulate a simpler structure
depicted in Fig. 1(b). Although no split gate is present
in this structure, the measured signal is still expected to
reveal characteristics of the collective modes. In this case
these modes are excited by the sharp tip itself. Hence,
the tip plays the role of both the launcher and the detec-
tor of the HP3 modes. Unfortunately, this implies that
only the local response can be measured, which is a su-
perposition of responses due to a distribution of momenta
up to qt ∼ 1/R rather than one specific q.

We assume that the TI slab and the substrate are in-
finite and uniform in x and y coordinates, so that the
imaging capability of the s-SNOM is irrelevant. Instead,
the quantity of interest is the frequency dependence of
the measured near-field signal s(ω). A few more ex-
planations about our calculational scheme are in order.
We model the tip as a metallic spheroid with the curva-
ture radius R = 40 nm and total length 720 nm. We use
the quasistatic approximation but include the radiative
corrections included perturbatively. This model67,68 has
been successful for simulating many recent s-SNOM ex-
periments, and should be especially suitable in the THz
domain where no antenna resonances or other strong re-
tardation effects69 should appear. Our calculations in-
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FIG. 7. (Color online) Simulation of the s-SNOM signal s3
for Bi2Se3 slabs on a substrate with ǫs = 10. (a) Fixed µ =
0.29 eV and different d. (b) Fixed d = 120 nm and different
µ.



11

corporate the so-called far-field factors,67–69 which are
expressed in terms of rP (q, ω) at q ∼ ω/c. This factors
account for the fact that the incident wave is originally
created by a far-field source and the scattered wave is ul-
timately measured by a far-field detector. Finally, what
we compute is not the full scattering amplitude s but its
third harmonic s3, which is what experimentalists typi-
cally report. The idea is that in the experiment the tip
is made to oscillate at some low frequency Ω, so that s is
periodic with this fundamental tapping frequency. The
third Fourier harmonic of s, which is s3, gives a good
representation of the genuine near-field signal.
Naively, one can think of s3(ω) as a weighted average

of the surface reflectivity rP (q, ω) over q. The weighting
function has a broad maximum near q = qt, which in
this case is equal to qt = 0.025 nm−1 [the dashed lines in
Fig. 4]. The presence of strong maxima of ℑm rP due to
collective modes with momenta q <∼ qt tends to enhance
s3(ω). In a more rigorous picture,68 the maxima of s3(ω)
correspond not to the resonances of the sample alone but
to those of the coupled tip-sample system. The coupling
can decrease the resonance frequencies by as much as67–69

10–20 cm−1 compared to those seen in ℑm rP maps.
Our results for Bi2Se3 slabs of various thickness d and

chemical potential µ are shown in Fig. 7. Pairs of distinct
peaks as well as smaller additional features are readily
seen. In each trace, the stronger and sharper peak is lo-
cated close to ω⊥

to,1 = 64 cm−1. The height of this peak
decreases as d decreases [Fig. 7(a)]. However, its position
is independent of d [Fig. 7(a)] or µ [Fig. 7(b)], which sug-
gests that it is not related to the dispersive HP3 modes.
Indeed, we have verified that this prominent peak is al-
most entirely due to the far-field factor |1 + rP |2, which
has a narrow maximum at ω⊥

to,1 where rP ≈ 1.

Each of the doped samples also produces smaller peaks
in s3(ω), of which the most prominent ones are those
located near ω = 146 cm−1 and ω = 163 cm−1, the upper
boundaries of regions B and C of Fig. 3. The position and
especially the strength of the peaks is µ-dependent. As µ
increases, the peaks grow in height and gradually shift to
higher frequencies, see Fig. 7(b). These peaks are due to
the surface modes: the n = 1 mode of region B and the
n = 0 mode just above region C, see Fig. 4(d, e). The
increase of the peak heights with µ can be qualitatively
explained by the increase of the absolute value of rP .
The shift in position is unfortunately more difficult to
interpret without a better understanding of the effective
weighting function that relates ℑm rP (q, ω) to s3(ω).

While µ > 0 traces are due to combined action of plas-
mons and phonon-polaritons, the µ = 0 one is expected
to reveal the phonon-polariton response. Interestingly,
that trace exhibits a sharp dip at ω = 163 cm−1, see
Fig. 7(b). We have checked that this dip is not caused
by the far-field factor. However, its relation to the HP2

modes of Fig. 4(d) is not obvious to us.

The thickness dependence of s3 is illustrated in
Fig. 7(a). As one can see, the near-field peak at ω =
163 cm−1 has a broad high-frequency side, which system-
atically expands as d decreases. This trend reflects the
blue shift of the n = 0 mode dispersion in thinner slabs,
compare Fig. 4(e) and (f).

Overall, our simulations predict that the near-field re-
sponse of Bi2Se3 slabs should exhibit systematic spectral
changes with doping and thickness that are measurable
by the s-SNOM. Such experiments may provide insights
into properties of tunable HP3 modes of these novel sys-
tems.
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