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We study a 1D system with a power-law quasiparticle dispersion ∝ |k|α sign k in the presence of
a short-range-correlated random potential and demonstrate that for α < 1/2 it exhibits a disorder-
driven quantum phase transition with the critical properties similar to those of the localisation
transition near the edge of the band of a semiconductor in high dimensions, studied in Refs. [1] and
[2]. Despite the absence of localisation in the considered 1D system, the disorder-driven transition
manifests itself, for example, in a critical form of the disorder-averaged density of states. We
confirm the existence of the transition by numerical simulations and find the critical exponents and
the critical disorder strength as a function of α. The proposed system thus presents a convenient
platform for numerical studies of the recently predicted unconventional high-dimensional localisation
effects and has potential for experimental realisations in chains of ultracold atoms in optical traps.
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It is generally believed that increasing disorder
strength in a conducting material in dimensions d > 2
leads to the Anderson localisation transition[3] with uni-
versal properties that depend only on the space dimen-
sionality d.

However, as we have demonstrated recently[1, 2], in
high dimensions d > dc (with dc = 4 for conventional
weakly doped semiconductors and dc = 2 for Dirac
semimetals) the phenomenology is significantly richer.
Namely, a material with a power-law quasiparticle spec-
trum ξk ∝ kα in the presence of short-range random
potential in high dimensions d > 2α exhibits an un-
conventional disorder-driven quantum phase transition in
the bottom of the band, that lies in a universality class
distinct from the Anderson transition[1, 2]. Almost 30
years ago[4–6] the existence of such transition was sug-
gested for the specific case α = 1, d = 3 for 3D Dirac
materials, that have been later extensively studied in
the literature[1, 2, 7–11] establishing a consensus for the
existence of this novel transition in 3D Dirac semimet-
als. Recently[1, 2] we have shown the existence of such
an unconventional disorder-driven transition and studied
its properties for arbitrary α and d, such that d > 2α,
demonstrating that it is a generic property of high di-
mensions and is not specific just to Dirac semimetals.

For materials in d > 2 dimensions in the symmetry
classes that allow for localisation, this transition coin-
cides with the localisation transition for the states in
the bottom of the band[2]. However, it exists even if
all states are always localised (e.g., in d < 2 dimen-
sions) or if localisation is disallowed by symmetry [e.g.,
in 3D Weyl semimetals (WSMs) with sufficiently smooth
disorder[12, 13]] and manifests itself, for example, in the
critical behaviour of the density of states and conductiv-
ity.

So far such unconventional disorder-driven transition
has not been observed experimentally. Perhaps the main

obstacle in 3D Dirac materials is the long-range Coulomb
nature of quenched disorder distinct from short-range
random potential required to observe the critical be-
haviour of the conductivity[1] (although the transition
in the density of states is still observable in the pres-
ence of Coulomb impurities). Another possible plat-
form for studying high-dimensional localisation phenom-
ena is periodically-kicked quantum-rotor systems, that
can be mapped[14, 15] onto high-dimensional semicon-
ductors with quadratic spectra. Such systems have been
used to simulate 1D[16], 2D[17], and 3D[18, 19] Ander-
son localisation, but the case of higher dimensions still
remains to be realised.

Numerical simulations in high dimensions may be ex-
tremely demanding in terms of computing power. For
instance, quadratic spectrum of long-wave excitations,
generic for lattice models with short-range hopping and
inversion symmetry, corresponds to dc = 4 and thus re-
quires simulations in d ≥ 5 dimensions, with the number
of sites growing rapidly ∝ Ld as a function of the linear
size L of the system.

In this paper we suggest and study a new playground
for unconventional disorder-driven transitions, which is
rather convenient for numerical simulations and is also
currently accessible for experiments: 1D systems with
long-range hopping.

Because the concept of high dimensions d is defined[1,
2] relative to the quasiparticle spectrum, the physics of
high-dimensional disorder-driven transitions can be ob-
served in any dimension d by appropriately designing
the inter-site hopping; e.g., realising the quasiparticle
spectra ∝ |k|α with α < d/2. For instance, the spec-
trum ∝ |k|α with α < 1 in d = 1 requires the inter-site
hopping ∝ r−1−α which has already been realised in 1D
chains[20, 21] and 2D arrays[22] of ultracold trapped ions.

Utilising fractional α < 1/2 in 1D systems also al-
lows one to compare the properties of the unconventional
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disorder-driven transition for |α − 1/2| � 1 with theo-
retical predictions[1, 2] based on the RG approaches con-
trolled by the small parameter ε = d− 2α.
Model. In this paper we focus on a chiral (lacking

reflection symmetry) 1D system described by the Hamil-
tonian

Ĥ = |k|α sign k + U(x), (1)

where k and x are momentum and coordinate and U(x)
is a short-range-correlated random potential.

We emphasise that “chiral system” hereinafter means
a system without reflection symmetry of the quasiparticle
dispersion (k → −k) and should not be confused with the
concept of a system in a chiral symmetry class[23, 24].

In some sense, such system is a 1D analogue of a 3D
Weyl semimetal. Indeed, the quasiparticle spectrum con-
sists of two bands; the conduction band (k > 0) and the
valence band (k < 0), touching at the node k = 0. Quasi-
particles in such a system cannot be localised due to the
absence of backscattering; the velocity v(k) = α|k|α−1
never changes sign. In principle, the spectrum of a re-
alistic 1D system on a lattice contains an equal number
of branches with left- and right- movers, due to the con-
tinuity and periodicity of the velocity v(k) (analogously,
Weyl semimetal has an even number of Weyl points[12]).
However, for sufficiently smooth disorder elastic scatter-
ing of long-wavelength quasiparticles to states far from
the node (k = 0) can be neglected and the quasiparticle
dynamics near the node can be described by the model
(1).

Quenched disorder potential U(x) with zero mean and
a symmetric distribution function preservers the E →
−E symmetry of the quasiparticle spectrum and the den-
sity of states ρ(E) (with the energy E measured from the
node), which makes the chiral system particularly con-
venient for numerical studies of the disorder-driven tran-
sition near the node. In contrast, in a system with a
single band (corresponding, e.g., to the spectrum |k|α)
quenched disorder generically leads to the renormalisa-
tion of the band edge and to the formation of Lifshitz
tails below the band[2], making it hard to define and to
identify numerically the renormalised edge of the band.

Disorder-driven transition. For α slightly smaller than
1/2 the effects of disorder can be analysed using a
renormalisation-group (RG) approach, controlled by the
small parameter ε = 2α − 1. This RG, previously ap-
plied to Dirac materials[1, 2, 7, 9, 25–28] and to high-
dimensional semiconductors in the orthogonal symmetry
class[2], repeatedly removes the highest momenta from
the system, renormalising its properties at lower mo-
menta. Depending on whether or not the character-
istic amplitude W of the random potential exceeds a
critical value Wc, the dimensionless strength of disorder
γ ∼ 1/(k`) flows to larger or smaller values under the
RG, where ` is the (flowing) mean free path. Such be-
haviour of the renormalised disorder strength signifies a

phase transition between the weak- and strong-disorder
phases at E = 0. In this paper we verify numerically that
such a transition persists at all α < 1/2.

The behaviour of the low-energy density of states near
a critical point has the generic scaling form (first pro-
posed for 3D Dirac materials in Ref. [10])

ρ(E,W ) = E
d
z−1Φ

[
(W −Wc)/E

1
zν

]
, (2)

with ν and z being the correlation-length and dynamical
critical exponents. In the weak-disorder phase (W < Wc)
the density of states has the same energy dependency as

free quasiparticles ρ(E,W ) ∝ (Wc −W )−ν(
z
α−1)E

1
α−1,

while for strong disorder (W > Wc) the density of states
is smeared and thus energy independent: ρ(E,W ) ∝
(W −Wc)

(1−z)ν . For finite energy E these two regimes
are separated by a critical region near W = Wc with
ρ(E) ∝ E1/z−1.

The RG analysis similar to that of Refs. [1] and [2]
for the model (1) in the one-loop approximation with the
small parameter ε = 2α− 1 yields

ν = (1− 2α)−1, (3)

z = 1/2. (4)

We emphasise that the dynamical exponent z, Eq. (4), is
independent of α only in the first order in ε and only for
the 1D chiral system under consideration. For arbitrary
α, not necessarily close to 1/2, the values of the critical
exponents can be found numerically.
Numerical results. In what follows we present the re-

sults of the numerical simulations that demonstrate the
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FIG. 1: (Colour online) The disorder-averaged density of
states ρ(E) vs. energy E for α = 0.4 and various disorder am-
plitudes W . For subcritical disorder strength, W < Wc ≈ 0.5,
the density of states vanishes at E = 0, whereas for stronger
disorder, W > Wc, the density of states is finite for all ener-
gies. At the critical disorder strength, W = Wc ≈ 0.5, the
density of states is linear in energy, in agreement with the
analytical predictions based on one-loop RG calculations.
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existence of the above described disorder-driven transi-
tion for α < 1/2 and its absence for α > 1/2. We also
analyse the critical behaviour near the transition and ob-
tain numerically the values of the critical exponents.

To simulate the model (1), we use its lattice version

Ĥ =
∑
x,x′

Jxx′ â†xâx′ +
∑
x

Uxâ
†
xâx, (5)

of finite size N with periodic boundary conditions, where
distances (momenta) are measured in (inverse) lattice
spacings; Jx,x′ = Jx−x′ =

∑
k e

ik(x−x′)|k|α sign k is the
inter-site hopping element (that we find numerically), for

long distances |x − x′| � 1 given by the odd power-law
function[35]

Jx−x′ = i
sign(x− x′)
|x− x′|1+α

Γ(1 + α)

2π
sin

[π
2

(1 + α)
]

; (6)

and Ux is the random disorder potential, uncorrelated
on different sites and described by the Gaussian on-
site distribution with standard deviation W , P (Ux) =
(W
√

2π)−1 exp[−U2
x/(2W

2)]. For the on-site-correlated
disorder under consideration the ultraviolet momentum
cutoff[2] K0 ∼ 1 is determined by the lattice spacing.
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FIG. 2: (Colour online) Energy (E) vs. disorder amplitude (W) diagram for the low-energy density of states in a 1D chiral
system with the quasiparticle spectrum ξk = a|k|α sign k. The colour shows the exponent θ of the density of states ρ(E) ∝ Eθ
[see the colourbar and Eq. 7]. For α < 1/2 the density of states has a critical point (E = 0, W = Wc) that separates the
weak-disorder (θα = α−1 − 1) and strong-disorder (θ = 0) phases at E = 0. The transition disappears for α > 1/2. The grey
vertical line shows the analytical value of the critical disorder amplitude obtained assuming 0 < 1− 2α� 1. The black crosses
show the isoline θ = 1. The black solid lines show the theoretical crossover energies E = (|W −Wc|/Wc)

zν between the critical
region (θ = 1/z − 1) near W ≈ Wc and the weak- (θα = α−1 − 1) and strong- (θ = 0) disorder phases, with the exponents ν
and z given by Eqs. (3) and (4).

For each value of α and disorder strength we use the
exact diagonalisation method to obtain the spectrum of

the system for 100 disorder realisations on a lattice with
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N = 4000 sites and find the parameter

θ(E,W ) =
∂ ln ρ(E,W )

∂ lnE
(7)

as a function of the random potential amplitude W and
energy E, with the results summarised in Fig. 2.

For sufficiently small α we observe a disorder-driven
quantum phase transition; the zero-energy density of
states vanishes[36] for disorder amplitudes smaller than a
critical value, W < Wc, and has a finite value otherwise
[the dependency ρ(E) for α = 0.4 is shown in Fig. 1].

For sufficiently small α the density of states displays
three regions with qualitatively different behaviours, that
touch at a critical point E = 0, W = Wc, Fig. 2; (i) for
low energies and disorder strengths the density of states
has the energy dependency ρ(E) ∝ E1/α−1 of free quasi-
particles with the spectrum ∝ |k|α sign k (θ = 1/α − 1,
red colour in Fig. 2); (ii) for low energies and sufficiently
strong disorder the density of states is constant, θ = 0,
(blue colour in Fig. 2); (iii) near the critical disorder
strength, W = Wc, there is an intermediate critical re-
gion with an almost constant intermediate value of θ.
These results confirm the existence of the disorder-driven
phase transition for sufficiently small α.

In order to accurately verify that the criticality disap-
pears for α > 1/2, we utilise the theoretical predictions
of the one-loop RG analysis for the critical properties of
the transition near α = 1/2. Indeed, such RG analysis is
controlled by the small parameter ε = 2α − 1 and thus
becomes exact when this parameter vanishes.

The one-loop RG analysis predicts the critical expo-
nents (3) and (4) and the density of states ρ(E) ∝
E1/z−1 = E at the critical disorder strength (W = Wc),
corresponding to θ = 1, which can be used to accurately
identify the critical point. In Fig. 2 the points with θ = 1
are shown by black crosses that form a line which con-
tains the critical point and is vertical at low energies.

The respective value of the critical disorder amplitude
Wc matches well the result (shown by the grey vertical
solid line in Fig. 2)

Wc = [π(1− 2α)/2]
1
2 K

α− 1
2

0 (8)

of the one-loop RG calculation that we obtain under the
assumption 0 < 1 − 2α � 1 with the ultraviolett mo-
mentum cutoff K0 = π (for details of the scheme of the
perturbative RG calculation see Ref. [2]), even for α sig-
nificantly below 0.5.

These results demonstrate the existence of the criti-
cality of the density of states for α < 0.5 and its disap-
pearance for α > 0.5. For all values of α in the interval
0.2 . . . 0.5 the critical properties of the transition are well
described by the results of the one-loop perturbative RG
analysis.

Conclusion and outlook. In summary, we have demon-
strated that a chiral 1D system with the quasiparticle

spectrum |k|α sign k with α < 1/2 displays the phe-
nomenology of high-dimensional disorder-driven phase
transition. Although all the states in the proposed sys-
tem are delocalised, it exhibits a disorder-driven tran-
sition that manifests itself in the density of states and
is analogous to the localisation transition near the edge
of the band of a high-dimensional semiconductor. In
terms of its symmetries and the critical behaviour of
observables, the system under consideration presents a
1D analogue of a 3D Weyl semimetal. The numerical
values of the critical exponents and the critical disor-
der strength are well described by the results of a one-
loop perturbative RG calculation. Such system presents
a convenient platform for studying high-dimensional lo-
calisation physics and can be used to further investi-
gate strong-disorder conduction in semimetals with delo-
calised states, the interplay of disorder with interactions,
effects of various disorder symmetries on the transition,
etc.

We emphasise, that the unconventional disorder-driven
transition we studied is not specific to chiral 1D systems
and can be observed (with different critical exponents)
in any 1D chain with sufficiently long-range hopping of
the excitations, e.g., corresponding to the even disper-
sion ξk ∝ |k|α with α < 1/2. However, for systems with
non-odd dispersions ξk the transition may be harder to
observe numerically and experimentally due to the renor-
malisation of band edges or nodal points by disorder.

Implementing the specific 1D chiral model in experi-
ments still remains a future research direction. Natural
candidates are chains of trapped ions, since in those sys-
tems a power-law excitation spectrum ∝ |k|α with tun-
able 0 < α < 1.5 has already been demonstrated[20, 21].
However, ways to generate chiral excitations in these
chains still have to be investigated. In principle, non-
chiral power-law spectrum ∝ |k|α is also suitable for the
observations of the high-dimensional localisation physics,
but is less convenient for numerical simulations and is
more sensitive to finite-size effects, that we expect to ob-
scure the disorder-driven transition for non-chiral spec-
tra for small numbers of ions (< 20) used in the current
experiments. Another candidate for the observation of
high-dimensional localisation physics is 2D arrays of ions
in Penning-trap experiments[22], where a tunable power-
law spectrum has been demonstrated for about 500 ions
arranged in a triangular lattice. We leave the analysis of
finite-size effects and possible realisations of chiral exci-
tations in such systems for future studies.
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giser, and J. C. Garreau, Phys. Rev. Lett. 101, 255702
(2008).
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B. Grémaud, and D. Delande, Phys. Rev. A 80, 043626
(2009).

[20] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith,
M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and
C. Monroe, Nature Lett. 511, 198 (2014).

[21] R. Islam, C. Senko, W. C. Campbell, S. Korenblit,
J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K.
Freericks, and C. Monroe, Science 340, 583 (2013).

[22] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang,
J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger,
Nature Lett. 484, 489 (2012).

[23] M. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
[24] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
[25] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and

G. Grinstein, Phys. Rev. B 50, 7526 (1994).
[26] A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Phys.

Rev. Lett. 72, 2628 (1994).
[27] I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97,

236801 (2006).
[28] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys.

Rev. B 74, 235443 (2006).
[29] F. Evers and A. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).
[30] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Phys.

Rev. B 89, 245110 (2014).
[31] I. M. Lifshitz, Sov. Phys. JETP 17, 1159 (1963).
[32] J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).
[33] B. I. Halperin and M. Lax, Phys. Rev. Lett. 148, 722

(1966).
[34] I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Intro-

duction to the Theory of Disordered Systems (Wiley, New
York, 1988).

[35] We emphasise, that the model (5) with power-law hop-

ping Jxx′ ∝ |x − x′|−(1+α) sign(x − x′), that we con-
sider, should not be confused with the power-law ran-
dom banded matrix model[29], characterised by random
Gaussian hopping with the power-law dependence on dis-
tance.

[36] We emphasise, that exponentially rare strong fluctua-
tions of the disorder potential may lead to a finite den-
sity of states[30],[2] even for W < Wc, similarly to the
formation of Lifshitz tails in semiconductors[31–34]. We
believe, the accuracy of our numerical simulations is in-
sufficient to observe such rare-regions contributions, if
they exist for the system under consideration.


	References

