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We performed quantum manipulations of the multi-level spin system S=5/2 of a Mn2+ ion, by
means of a two-tone pulse drive. The detuning between the excitation and readout radio frequency
pulses allows one to select the number of photons involved in a Rabi oscillation as well as increase the
frequency of this nutation. Thus detuning can lead to a resonant multi-photon process. Our analyt-
ical model for a two-photon process as well as a numerical generalization fit well the experimental
findings, with implications in the use of multi-level spin systems as tunable solid state qubits.

PACS numbers: 03.67.-a 71.70.Ch 75.10.Dg 76.30Da

I. INTRODUCTION

Quantum properties of electronic spins can be con-
trolled due to their relatively long coherence times. This
is mostly achieved by spin dilution in a non-magnetic
matrix1–6, leading to coherent Rabi oscillations up to
room temperature1,7. Fundamental and technological
advances can be achieved by strongly coupling spins with
photons in a cavity8–10, leading to a new type of hybrid
quantum memory11. Recently, we proposed a tunable
multi-level system as a potential candidate for multi-
qubit implementation6,12 which could be used to imple-
ment Grover’s algorithm13–15 for instance. We describe
in this work a two-tone experiment using the S = 5/2
spin of Mn2+ ions diluted in MgO. This technique allows
us to study multi-photon dynamics in and out of reso-
nance by detuning the two radio-frequencies of the ex-
citation and readout pulses. Interestingly, the detuning
can actually be used to bring into resonance levels sepa-
rated by exactly two or more photons. The implication
is that the multi-level electron spin dynamics can now be
controlled using any number of photons, anywhere within
the dressed state energy diagram. In addition, detuning
Rabi frequencies increases the nutation frequency, which
gives access to fast Rabi nutation speeds16,17.

II. DETUNING REGIME MODEL

The S = 5/2 system of Mn2+ ions diluted in MgO has
been extensively studied by EPR since it was first consid-
ered as model for crystal field theory18. The Mn2+ ions
are substituted for Mg2+ and have a cubic symmetry
Fm3̄m (lattice constant 4.216 Å) ensuring that the spins
see an almost isotropic crystalline environment. All the
parameters of the crystal field and hyperfine interactions
are known by independent studies. The spin Hamiltonian
resolved by an electron paramagnetic resonance experi-
ment (EPR) is given by18,19:
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FIG. 1. (Color online). Representation of a two-photon pump
and probe process. (a) Energy levels of Mn2+ (see Eq. 3) for
the subgroup |±1/2〉 and |3/2〉. The arrows indicate the pho-
ton absorptions. The dashed line is a virtual level equidistant
between |−1/2〉 and |3/2〉. (b) Pulse sequence: at t = 0 the
microwave of frequency f1 irradiates the spins and induces a
Rabi nutation lasting up to t= τR. To probe the population
at the end of the first pulse, a second pulse at frequency f2

in resonance with the transition between |−1/2〉 and |1/2〉 in-
duces a π/2 rotation and thus an FID signal in spectrometer.

H = a/6
[

S4
x + S4

y + S4
z − S(S + 1)(3S2 − 1)/5

]

(1)

+γ ~H0 · ~S − A~S · ~I + γ~hmw · ~S cos(2πft)

where γ = gµB/h is the gyromagnetic ratio (g = 2.0014
the g-factor, µB Bohr’s magneton and h Planck’s con-

stant), Sx,y,z are the spin projection operators, ~S is
the total spin, a = 55.7 MHz is the anisotropy con-
stant, A = 244 MHz is the hyperfine constant of 55Mn
(I = 5/2), hmw and f represent the MW amplitude

and frequency respectively, and ~H0 is the static field
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( ~H0 ⊥ ~hmw). The applied static field ensures a Zeeman
splitting of γH0 ≈ f ∼ 9 GHz, much stronger than all

other interactions of Eq.(1). This implies that (i) ~H0’s
direction can be approximated as the quantization axis
and (ii) coherent microwave driving is confined between
levels of same nuclear spin projection mI (see also refs.
6, 20, and 21). Consequently, the hyperfine interaction
generates a constant field shift for all levels and it will be
dropped from further analytical considerations (although
it is part of the full numerical simulations).

Let us consider a quantum system with six states |Sz〉,
Sz={−5/2, −3/2, −1/2, 1/2, 3/2, 5/2}, irradiated by an
electromagnetic field. The spin Hamiltonian of the sys-
tem is:

H = Ê + V̂ (t) =

5/2
∑

Sz=−5/2

ESz
|Sz〉〈Sz| + V̂ (t), (2)

with ESz the static energy levels, V̂ (t) = γ
2
hmw(Ŝ+ +

Ŝ−) cos (2πft), S+/S− the raising/lowering operators.
Note that, contrary to our previous studies12,22 where
f was fixed to be in resonance with 1/2 and -1/2 levels,
here f is a free parameter. In a cubic symmetry and in
he first order perturbation theory (a ≪ H0), the static
energy levels are given by:

E±5/2 = (±5/2)γH0 + (1/2)pa + O(a2)

E±3/2 = (±3/2)γH0 − (3/2)pa + O(a2) (3)

E±1/2 = (±1/2)γH0 + pa + O(a2)

where18 p = 1 − 5 sin2 θ + 15
4

sin4 θ with θ the angle be-

tween ~H0 and the c axis [001]. Since H0 ≫ hmw, we
can use the rotating wave approximation (RWA) to make
Eq. (2) time independent. We apply the unitary trans-

formation U(t) = exp(−i2πfŜzt) and the Hamiltonian
(2) becomes14,20:

HRW A = UHU † + ih̄
∂U

∂t
U † = (4)

=
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(5)

where V = γhmw/2 and ∆ is the detuning parameter de-
fined by ∆ = f −(E1/2 −E−1/2). By diagonalization, the
eigenenergies En/pa of the dressed states are calculated
as a function of V and ∆. The Rabi frequency is the en-
ergy difference between two consecutive dressed states.
Depending on the value of ∆, one can probe the “in reso-
nance one photon process” (∆ = 0), the “detuning regime
one photon process” (∆ 6= 0) and the “multiphoton pro-
cess”. The case ∆ = 0 has been reported in a previous
study12. An example for the latter case, for which we dis-
cuss experimental evidence below, is ∆ = ±5pa/4 when
two two-photon resonances occur.

In a typical pulsed EPR experiment there is only one
frequency at a time available and the pulse sequence is
composed of two parts: the spin manipulation and the
probe sequence. Since the later has to be at a frequency
f in resonance with a one photon transition, the experi-
ment is restricted to be at ∆ = 0. In the current work,
we use two microwave sources which allows us to ma-
nipulate any dressed state by using the first source f1

and then probe the induced variation of populations us-
ing the second source f2. A representation of the pulse
sequence used for coherent manipulation in the case of a
two-photon process is described in Fig. 1. To simplify the

explanation only 3 out of 6 levels are shown. At t = 0,
an oscillating field of frequency f1 irradiates the system
for a time τR. When the detuning ∆ is such that the
levels |−1/2〉 and |3/2〉 are separated by exactly 2hf1,
a two-photon coherent transition is induced. To probe
the populations of levels, a second pulse at frequency f2

resonant with the transition between |−1/2〉 and |1/2〉
is sent at a time t = τp >> T2 but smaller than T1,
where T1,2 are the spin relaxation and decoherence times
respectively. This second pulse induces a free induced
decay (FID) with an intensity proportional to the pop-
ulation difference σ−1/2 − σ1/2 via a π/2 rotation in the
sub-space Sz = ±1/2.

III. EXPERIMENTAL PROCEDURE

The Rabi oscillation measurements were performed us-
ing a conventional Bruker Elexsys 680 pulse EPR spec-
trometer working at about 9.6 GHz. The second fre-
quency source is provided by the ELDOR bridge of the
spectrometer. To verify the reproducibility of the exper-
iments, two different spectrometers using two different
resonators, a dielectric (MD-5) and a split coil (MS-5)
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FIG. 2. (Color online). (a) Fourier transform of detuned Rabi
oscillations measured at medium microwave power, hmw =
0.5(3) mT. The one-photon branch, marked with ”1” can
reach tens of MHz. An off-resonance two-photon branch,
marked with ”2”, is also visible. The color map is in arbitrary
units. (b) Quasi-energies of Hamiltonian 5 calculated for low
(dashed lines) and medium (continous lines) microwave pow-
ers. The one-photon Rabi splitting (1) is excited when f1 = f2

while the two-photon transition (2) is at a detuned location
given by Eq. 6.

were used. The power-to-field conversion rate of the res-
onators is dependent of the frequency f1 and it has been
calibrated for all the frequencies used in this study using
DPPH, an isotropic S = 1/2 system. The sample is a
(3×3×1)-mm3 single crystal of MgO doped by a small
amount of Mn2+.

A Rabi measurement consists of recording the FID in-
tensity, as explained above, as a function of pulse length
τR. Such Rabi oscillations are acquired for different exci-
tation frequencies f1, around the main one-photon Zee-
man resonance f2. Other important experimental pa-
rameters are the sample temperature and external field
orientation (parameter p). In the current work, the tem-
perature was set at 50 K which provides a long enough
Rabi coherence time (∼ 1µs), while keeping the relax-
ation time sufficiently short to ensure a fast acquisition
time6,12. Thus, the waiting time between the pump and
probe pulses was set at 3 µs, larger than the decoherence
time, but shorter than the relaxation time. The exter-
nal field was oriented along the [111] axis of the crystal,
ensuring a sizable anharmonicity of the six level system
(p = −2/3) allowing the creation of virtual levels de-
picted by the dashed line in Fig. 1b. It is important to
note that the results described below are achievable in
principle, for any orientation of the external field, the
level anharmonicity being a tuning parameter V/(pa) in
such a multi-level quantum system.
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FIG. 3. (Color online). Measured (a) and simulated (b)
Fourier transform of Rabi oscillations in the case of high mi-
crowave power (hmw = 1.7(8) mT). The very good agree-
ment allows identification of each Rabi splitting (shown in
Fig. 2): two-photon (2 and 2’), three-photon (3 and 3’) and
four-photon coherent rotations (4). The color map is in arbi-
trary units.

IV. RESULTS AND DISCUSSIONS

After a Rabi oscillation is recorded, a Fourier trans-
form indicates the Rabi frequency and its decay prop-
erties. An important aspect of our study relies on the
possibility of detuning the excitation frequency f1, as
shown in the contour plot of Fig. 2a. For moderate pow-
ers [hmw = 0.5(3) mT], one observes a fast one-photon
branch (marked with “1”) reaching Rabi flops of several
tens of MHz. The branch shows a typical square-root
law as a function of detuning23 (see also Fig. 5). This
technique allows for a significant speed-up of electronic
or nuclear spin Rabi frequencies16,24,25 which are usually
much slower than those achievable in superconducting
qubits26. The quasi-energies calculated as eigen-energies
of Hamiltonian (5) are shown in Fig. 2b as a function
of f1. Crossings of the dashed lines (low power case)
indicate the location of resonances by cross-overs, e.g.
the one-, three- and five-photon resonances at ∆ = 0
(discussed in our previous studies 6 and 12).The labels
in Fig. 2b indicate the number of photons involved in a
given quasi-energy crossing. We thus provide a method
to reach any multi-photon resonance in the dressed state
diagram by the use of detuning. Examples of such ”res-
onances by detuning” are those labeled “2,3’,4”. At the
same time, by detuning away from such resonances, accel-
eration of their multi-photon Rabi frequency is observed
, as indicated in Fig. 2a and Fig. 3a for each labeled res-
onance.The continuous lines represent the eigen-energies
calculated for the same power as the experimental data
in Fig. 2. One observes the large one-photon splitting
(1) which can be further accelerated by detuning (here,
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FIG. 4. (Color online). Microwave field dependence of two-
photon coherent Rabi oscillations. The contour plot of the
background is obtained via numerical simulations using the
RWA (shade intensity in arbitrary units). The dashed line
is given by Eq. (8) and it is in excellent agreement with the
experimental values of the Rabi frequency (red squares). For
comparison, the linear dependence of the one-photon Rabi
frequency is shown by a dash-dotted line. Two-photon Rabi
coherent oscillations are shown (insert) for three values of the
microwave field, as indicated by small vertical arrows in the
main panel.

f1 < f2). A two-photon splitting of ∼ 4 MHz is visible
as well (actual two-photon Rabi oscillations are shown in
Fig. 4).

The Rabi splittings between consecutive quasi-energies
are strongly dependent on the microwave power. A
Fourier transform contour plot for the high power regime
[hmw = 1.7(8) mT] is shown in Fig. 3: the panel (a)
shows experimental data while panel (b) shows numeri-
cal simulations based on exact diagonalization of Hamil-
tonian 1 after the RWA unitary transformation 4. One
observes two two-photon coherent rotations (2 and 2’),
two three-photon processes (3 and 3’) as well as a four-
photon detuned oscillations. The positions of these tran-
sitions as a function of detuning is visible in Fig. 2b.
The very good agreement between experiment and sim-
ulation allows the identification of all Rabi frequencies,
and thus a predictable method of tuning level superpo-
sition between various Sz states of the Mn spin. More-
over, the possibility of frequency detuning between the
control pulse f1 and the π/2 read-out pulse f2 allows for
selection of certain Rabi splittings without changing the
external magnetic field. In the following, we demonstrate
this protocol in the case of detuned two-photon coherent
spin manipulation.

As discussed above, for ∆ = −5pa/4, one brings in res-
onance the levels E1/2 and E−3/2. Thus, the excitation
frequency is given by:

f1 =
1

2
(E1/2 − E−3/2) (6)
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FIG. 5. (Color online). Acceleration of n-photon Rabi
frequencies as a function of detuning. Experimental data is
showing by black squares (one-photon), red dots (two-photon)
and blue triangles (three-photon Rabi splittings), while the
continuous lines are calculated from Eq. 9.

and Hamiltonian (5) becomes

HRW A =
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(7)
showing the coupling between the diagonal elements
3pa/8 via a two-photon process.

Taking h̃ = V/pa and restricting the analysis to low
powers (keeping only terms quadratic in h̃), one finds that
there is one eigenvalue ǫ = 3/8. By looking for another

eigenstate ǫ′ close to 3/8 (F 2photon
Rabi = ǫ − ǫ′ ≪ 1), one

can solve analytically for the Rabi frequency associated
with this two-photon process:

F 2photon
Rabi =

1902h̃2

585 + 713h̃2
(8)

as a function of microwave power. This analytical rela-
tionship is in excellent agreement with experimental data
(red squares), as shown in Fig. 4. The contour plot of
the background is calculated using full diagonalization of
time-dependent Schrödinger equation, while the dashed
line is given by Eq. (8), with no fit parameters. The lin-
ear microwave field dependence of a one-photon Rabi fre-
quency is given as dash-dotted line, as a comparison. The
insert shows actual two-photon Rabi oscillations for three
values of the microwave field, as indicated by the small
vertical arrows in the main panel. These measurements
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are done at the two-photon resonance (marked with “2”
in Fig. 2b) by properly detuning f1 by respect to f2.

One can also study the effect of the detuning away
from a particular Rabi resonance. We record spin oscilla-
tions for value of f1 around Rabi splittings corresponding
to one-, two- and three-photon processes (marked with
“1”,“2” and “3” respectively in Fig. 2b). Their Fourier
transform give the values of the Rabi splittings, as plot-
ted in Fig. 5. The obtained frequencies follow very well
a generalized Rabi formula for n-photons, given by:

FR =
√

(F 0
R)2 + n2δF 2 (9)

where F 0
R is the Rabi frequency at resonance, n is the

number of photons responsible for the coherent drive and
δF is the detuning away from a Rabi resonance. For
instance, in the case of the two-photon coherent oscilla-

tions, n = 2, F 0
R = F 2photon

Rabi of Eq. (8) and the detuning
is the shift of f1 away from the splitting marked ”2” in
Fig. 2b. For one-photon, the above equation is reduced
to the well-known Rabi formula23. This observed ac-
celeration of the Rabi flops due to detuning can be an

important tool to achieve fast operation of spin qubits16.

V. CONCLUSION

In conclusion, we demonstrate a pulse technique al-
lowing for coherent operation of multi-photon Rabi os-
cillations through detuning. Two microwave pulses are
detuned such that one excites with a specified number of
photons while the other one provides the readout at the
single photon resonance. The technique allows for a sig-
nificant speed-up of Rabi nutation by detuning the one or
multi-photon coherent rotation. The provided analytical
and numerical methods allows for a well defined control
and tuning of the spin dynamics in this multi-level solid
state system.
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