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We consider bipartite SU(N) spin Hamiltonians with a fundamental representation on one sub-
lattice and a conjugate to fundamental on the other sublattice. By mapping these antiferromagnets
to certain classical loop models in one higher dimension, we provide a practical strategy to write
down a large family of SU(N) symmetric spin Hamiltonians that satisfy Marshall’s sign condition.
This family includes all previously known sign-free SU(N) spin models in this representation and
in addition provides a large set of new models that are Marshall positive and can hence be studied
efficiently with quantum Monte Carlo methods. As an application of our idea to the square lattice,
we show that in addition to Sandvik’s Q-term, there is an independent non-trivial four-spin R-term
that is sign-free. Using numerical simulations, we show how the R-term provides a new route to the
study of quantum criticality of Néel order.

I. INTRODUCTION

The study of the ground states of lattice spin Hamilto-
nians has a long history in physics.1 Due to its relevance
to quantum magnetism in solid state materials, the study
is currently one of the cornerstones of modern condensed
matter physics.2 The scarcity of controlled analytic so-
lutions of spin models has spurred the development of
a wide array of sophisticated numerical approaches.3–5

Quantum Monte Carlo (QMC) is often the method of
choice for unbiased studies of large higher dimensional
(d > 1) quantum spin systems.6 In practice this capa-
bility is restricted to models that do not suffer from the
notorious sign-problem.7,8 The absence of this problem
is guaranteed in standard world line methods only if the
Marshall sign rule9 (〈α|H|β〉 < 0 for α 6= β) is satis-
fied in a convenient local basis. Surprisingly, at the cur-
rent time, there is no systematic knowledge of the extent
of Marshall-positive spin Hamiltonians. Such an under-
standing would clearly be of great practical and concep-
tual value, since Marshall-positive Hamiltonians consti-
tute a large fraction of the valuable examples of higher-
dimensional models that can be simulated on a classical
computer in polynomial time.10,11

Here we will address this issue for a specific but im-
portant subset of models, SU(N) quantum spin Hamilto-
nians on the square lattice, which have spins that trans-
form as the fundamental representation (N ) on the A
sublattice and the conjugate to fundamental (N̄ ) on the
B sublattice, Fig. 1(a).12 Let us call the set of all such
Hamiltonians N -N̄ . Note that for N = 2 the fundamen-
tal representation is self-conjugate so this class includes
all SU(2) symmetric Hamiltonians. N -N̄ includes both
models that are widely believed to have no solution to
the sign problem (e.g. the J1-J2 Heisenberg model with
J1, J2 anti-ferro13) and others for which the absence of
the sign problem is well known. The simplest interaction
in N -N̄ was introduced by Affleck,12

H
(N)
J1

= −J1T ai · T a∗j , (1)

where i and j are on different sublattices of the biparti-
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FIG. 1. Cartoon illustration of the various Marshall positive
interaction terms studied in the paper. (a) shows the decom-
position of the bipartite square lattice into A and B sublat-
tices, and the groups of sites that the various interactions act
on. (b-e) cartoons of the different interactions acting on the
basis states, the initial state is shown at the bottom and the
final state is shown on top. (b) shows the J1 interaction that
acts between sites on different sublattices. (c) shows the J2 in-
teraction that acts on sites on the same sublattice. (d) shows
an example of a Q interaction and (e) shows an example of
an R interaction that both act on elementary plaquettes of
the square lattice. Colors of the loop represent the N colors
of SU(N). Note that loops meeting at a vertex may have
the same color and that the loops always travel in opposite
directions on the A and B sublattices. (f) Cartoon illustra-
tion of singlet rearrangements effected by R and Q terms, see
discussion on Eq. (5).

tion and T a are the SU(N) generators in the fundamental
representation (sum on a is implied). It happens that this
interaction is Marshall positive and can hence be simu-
lated efficiently with QMC.14 We note that the familiar

SU(2) Heisenberg antiferromagnet, H
(2)
J1

= J1~Si · ~Sj , a
special case of Eq. (1) with N = 2, was the original model
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for which Marshall proved his theorem.15 This fact has
been exploited to study it using QMC on various ordered
and disordered bipartite lattices for the last three decades
(see for example the bibliography in Ref. [6]). In an im-
portant breakthrough, Sandvik found that in addition to
the two spin interactions, a four-spin plaquette Q-term,16

H
(2)
Q = −Q

(
~Si · ~Sj −

1

4

)(
~Sk · ~Sl −

1

4

)
+ i↔ k, (2)

also satisfied Marshall sign condition (see Fig. 1(a) for
site labeling). The sign-free J1-Q hamiltonian has since
been studied extensively using QMC17–21. The discov-
ery of the Q-idea has lead to the proposal and study
of a number of extensions, including generalizations for
N > 2 along the lines of Eq. (1).22–27 The discovery of
the Q-term and its popularity in numerical studies begs
the questions: Are there other N -N̄ models that satisfy
Marshall’s sign rule? What is the full extent of these
sign-free models?

II. GENERAL SIGN FREE N -N̄ MODELS

We now show that it is easiest to address these ques-
tions by considering the structure of the imaginary time
statistical mechanics (Z = Tr[e−βH ]) generated by the
N -N̄ Hamiltonians. Each site on the bipartite lattice has
N states. Our goal is to write down sign-positive model
interactions that are invariant under rotation by U (an
SU(N) matrix) on all the A sublattice spins and rotation
U∗ on all the B sublattice spins. Let us begin by re-
viewing how this works for a two-spin interaction, which
we can write in the form Γαβγη|αβ〉〈γη|. To preserve
SU(N) invariance, the spin indices on the sites have to
be paired up. If the two sites are on opposite sublattices

the only interaction is H
(N)
J1

= −J1N
∑
αβ |αα〉〈ββ| which

can be shown to be unitary equivalent to Eq. (1) up to a
constant. Between sites on the same sublattice we must
have H

(N)
J2

= −J2N
∑
αβ |αβ〉〈βα| 28,29 (for N = 2 this is

a ferromagnetic Heisenberg interaction between sites on
the same sublattice). The effect of these two-spin terms
on the imaginary time evolution of the basis states can
be represented by the diagrams shown in Fig. 1(b), (c).
It becomes clear that the quantum statistical mechanics
of models in N -N̄ is equivalent to the classical statisti-
cal mechanics of specific tightly packed loop models of N
colors in one higher dimension. The staggered represen-
tations of SU(N) appear in the loop picture by requiring
the orientation of a given loop to be such that it trav-
els (in imaginary time) in opposite directions on opposite
sublattices. Stated explicitly, if the loop travels up when
its on an A site, it must always do so on all other A sites
and it must always travel down when its on a B site; this
property is illustrated for a 1-d system with J1 interac-
tions in Fig. 2. SU(N) invariant Hamiltonian operators
must reconnect the loops without termination and pre-
serve the directionality of the loops. Avoiding the sign
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�

FIG. 2. An illustration of a path-integral or SSE contribu-
tion to the partition function of an SU(N) anti-ferromagnet
with only J1 interactions with 7 sites at a temperature β,
which may be viewed as a higher dimensional closed packed
loop model. The orientation of one particular loop is followed
with black arrows to show how it always travels in imagi-
nary time in opposite directions on opposite sublattices (up
on A and down on B). This orientation is preserved by the
J1 interaction as well as all other SU(N) invariant interac-
tions. An SU(N) antiferromagnet will have N different color
assignments to the loops.

problem only requires that the weight associated with a
reconnection of loops be positive (this is Marshall’s sign
condition).

Let us apply these ideas to design Marshall-
positive four-spin Hamiltonian terms acting on the
sites of an elementary plaquette. The simplest
such connection is shown in Fig. 1(d), writing

this as a Hamiltonian operator, it is H
(N)
Q =

− Q
N2

∑
αβγη (|ααββ〉〈γγηη|+ |βααβ〉〈ηγγη|) (the bra

and kets are labeled by the spin indices at sites, ijkl).
It is easy to prove that for N = 2 this interaction is uni-
tarily equivalent to the Q term in Eq. (2). Interestingly,
an independent four-spin interaction can be achieved by
re-connecting the loops differently as shown in Fig. 1(e).
In the bra-ket notation the new Hamiltonian is,

H
(N)
R = − R

N2

∑
αβγη

(|ααββ〉〈ηγγη|+ |βααβ〉〈γγηη|) ,

(3)
Written this way, the Marshall positivity of the R-term
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is obvious. We point out however that, unlike the Q term
which is a product of two Marshall-positive J1 terms, in
the usual language the R interaction’s positivity is non-
trivial. Indeed, for N = 2, our new term may be writ-

ten with familiar S = 1/2 operators on each elementary
plaquette (labeling the sites ijkl cyclically as shown in
Fig. 1(a))

H
(2)
R = R

((
~Si · ~Sk −

1

4

)(
~Sl · ~Sj −

1

4

)
−
(
~Si · ~Sl −

1

4

)(
~Sk · ~Sj −

1

4

)
−
(
~Si · ~Sj −

1

4

)(
~Sk · ~Sl −

1

4

))
. (4)

In contrast to the Q-term, the first term contains dot
products between spins on sites on the same sublat-
tice. Naively the first term would seem to make the
R-interaction violate the Marshall rule, and indeed the
first term by itself would. Remarkably however when all
three terms of the R-interaction are taken together the
offending matrix elements exactly cancel (after one does
the usual Marshall rotation by an angle of π about the
z-axis for the spins on one of the sublattices). We can re-
write the Q and R terms in a way in which their physics
is more transparent,

H
(N)
Q = −Q (|SijSkl〉〈SijSkl|+ |SilSkj〉〈SilSkj |)

H
(N)
R = −R (|SijSkl〉〈SilSkj |+ |SilSkj〉〈SijSkl|)

(5)

where |Sij〉 = 1√
N

∑
α |αiαj〉 is the SU(N) singlet (re-

fer to Fig. 1(a) for ijkl labeling). Now the physical
distinction between these two terms is apparent, see
Fig. 1(f): The Q-interaction is a diagonal attractive
term between two neighboring parallel singlet, whereas
the R-interaction is an off-diagonal term that causes
neighboring x-oriented singlets to become y-oriented sin-
glets on an elementary plaquette. We note here that
the Q and R are very reminiscent of the diagonal and
off-diagonal terms respectively of the original quantum
dimer model,30 but defined for spin models. Indeed in
the N → ∞ mapping of the SU(N) antiferromagnet to
the quantum dimer model,31 these are precisely the terms
they would become.

We note here that both Q and R act within the total
spin zero sector of the four sites. For completeness, two
additional sign-free 4-spin interactions (S and T ) that act
on higher-spin sectors are shown in Fig. 3. Analogous to
our discussion above for 2- and 4-spin interactions, we
can systematically enumerate the 6-, 8-, or even higher
spin interactions and can be carried out on any bipar-
tite lattice by constructing loop reconfigurations of the
kind shown in Fig. 1 (b-e) with the desired sets of sites.
The study of this large family of Marshall positive Hamil-
tonians is an exciting direction for future work. In the
remainder of this manuscript we present a study of the
new R interaction.

S T

(a) (b)

FIG. 3. For completeness we show here the diagrams that cor-
respond to two more sign-free four-spin interactions, in addi-
tion to those shown in Fig. 1(d,e). Taken together, these four
terms are the complete set of sign-free four-spin interactions
that can be obtained from our construction.
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FIG. 4. Magnetic phase transitions from the crossing of ρs
(stiffness) data shown for SU(3) and SU(4). In the main pan-
els data for Lρs is shown for the J1-R model as a function
of R/J1. Clear evidence for a crossing is found which implies
the existence of a critical point where magnetic order is de-
stroyed. The insets show the magnetic phase boundaries for
the J1-Q-R model inferred from the kind of data shown in the
main panel with Q 6= 0 (not shown). We have chosen β = L
and J1 = 1 here.



4

0.00 0.02 0.04 0.06 0.08 0.10 0.12

1/L

0.000

0.001

0.002

0.003

0.004

0.005

O
2 V

B
S

SU(3)

R = 0.0

R = 0.6

R = 0.9

0.00 0.02 0.04 0.06 0.08 0.10 0.12

1/L

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

SU(4)

R = 0

R = 0.05

R = 0.12

0.00 0.05 0.10

1/L

0.00

0.04

0.08

O
2 M

0.00 0.05 0.10

1/L

0.00

0.04

0.08

O
2 M

FIG. 5. Representative VBS (main panels) and magnetic (in-
sets) order parameters for SU(3) and SU(4) for R = 0 and on
either side close to the critical points (the order parameters
are defined in the SM). All fits through the QMC data points
are shown only as a guide to the eye. The dashed (solid) lines
correspond to cases where finite (zero) order parameters are
obtained in the thermodynamic limit.

III. NUMERICAL SIMULATIONS

Since the SU(N) symmetric J1-R model on the square
lattice does not suffer from a sign problem we are able to
study it on large system sizes and at low temperatures.
Here we use the stochastic series expansion (SSE) method
for which we have efficient loop updates for the quantum
Monte Carlo.6

It is well known that the J1 only model has Néel order
for N = 2, 3, 4.14 We first ask whether the new R in-
teraction can destroy this Néel order in the J1-R model.
While this is not the case for N = 2 (see Supplemental
Materials), clear indications for crossings of βρs = 〈W 2〉
(the average square of the winding number of the loops),
which signal the destruction of magnetic order, are shown
for SU(3) and SU(4) in Fig. 4. It has been previously
shown that the Q interaction can also destroy the Néel
order for N = 3, 4, giving rise to a VBS.24 For complete-
ness, the insets in Fig. 4 show the phase diagram of the
J1-Q-R model to connect our work with previous work
on the J1-Q model.

The natural candidate for the large R non-magnetic
state is a valence-bond solid. Finite-size scaling of the
VBS and Néel order parameters (OVBS and OM ) close
to the critical point confirm this expectation as shown
in Fig. 5. The definition of the order parameters are
standard, they are included in the SM for completeness.
It is found that the Néel order parameters turn off at
the same time the VBS order parameters first come on,
consistent with the observation of such behavior in the J-
Q model24 and with the deconfined criticality scenario.32

An in depth study of the critical behavior is beyond the

(a) (b)

(c) (d)

Q/J1 = 0.5 R/J1 = 0.5

Dy
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Dx

FIG. 6. Comparison and contrast of the VBS ordering in the
J1-Q (left) and J1-R (right) model for SU(4). (a,b) show 2-d
histograms of the VBS order parameter, Dy and Dx, mea-
sured at equal time on a 64 × 64 systems at a coupling of
Q/J1 = 0.5 and R/J1 = 0.5 (deep in the VBS phase for both
models, see inset of right panel of Fig. 4 for phase diagrams).
At the same couplings, the columnar nature of the ordering
is much more apparent in the Q model as compared to the
R model, where a U(1) symmetry is observed. (c,d) Showing
the probability P (θ) of getting a particular angle for the VBS
order parameters on 64 × 64 system for different couplings.
By symmetry the function repeats itself in an eight-fold way
and hence we show it only for 0 < θ < π/4 (a half period).
Note again the weak decay of P with θ in the R-model, as
compared to the Q-model. See text for discussion.

scope of the current work and will be presented elsewhere.

We note the VBS order parameter is finite in both the
columnar and plaquette VBS states. It is now well es-
tablished that the Q term favors columnar order,24 con-
sistent with its interpretation as an attraction between
neighboring parallel dimers. Since the R term appears
to be more like the kinetic term in the dimer model (see
Eq. (5) and discussion), it is interesting to ask what kind
of VBS ordering the R-term favors. In order to make a
comparison of the two, we have studied both with the
VBS histogram technique.16,33 A summary of our his-
togram study is shown in Fig. 6. For each configuration
of our MC sample we can calculate the value of Dx (VBS
order parameter with x-oriented dimers Fourier trans-
formed to (π, 0)) or Dy (analogously defined) – see SM
for more details. A columnar VBS state should show a
desire to be either only in Dx or only in Dy at a given
time, whereas a plaquette VBS would show equal prob-
ability of being in both at any given time. We show
data for the SU(4) case for which both Q and R destroy
the magnetic order at a coupling ratio of order 0.1. So
the data in Fig. 6 is deep in the VBS phase for both
models. Consistent with this both systems show well
formed valence bonds, as is clear by looking at the radius
of the histograms in (a) and (b), though for an equally
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strong coupling the Q term has a larger amplitude. This
weaker VBS order is also evident in the angular distribu-
tion. Here the Q terms shows very strong affinity for a
columnar VBS with sharp peaks forming along the axis
at (±D0

x, 0) and (0,±D0
y), as shown in (c). In contrast,

the R term admits a broad angular distribution even for
large value of the R/J1 and big volumes (the data in
(d) is shown for 64 × 64). As R/J1 is increased even
further, there appears to be a trend towards a colum-
nar VBS with increase of weight around θ = 0, though
as shown in Fig. 6 this crossover is very slow. This is
somewhat surprising since both R and Q destroy Néel
order at approximately the same value of the coupling.
This new microscopic route to quantum criticality pro-
vided by the R term is an alternative to the well-studied
J-Q model and will be useful to test the independence
from microscopic details of critical exponents and other
putative universal quantities in future studies.

IV. SUMMARY

To conclude, we have introduced a systematic method
to generate an infinitely large family of SU(N) Marshall
positive Hamiltonians on bipartite lattice with multi-spin
interactions. Our understanding of this family of models
is poor and their study raises intriguing questions – How

do we choose our coupling in this large paramater space
to stabilize new phases of matter, e.g., a spin liquid, in
a sign-positive Hamiltonian? In what sense is the fam-
ily of models we have found a complete set of Marshall
positive models? As a practical application of our idea,
we provided an alternate way to see the positivity of the
popular Q-interaction,16 and discovered an independent
positive four-spin R-term, which can be utilized as a new
route to quantum criticality. In a straightforward man-
ner, our method can be extended to classify interactions
that involve more than four spins on the square lattice
as well as other bipartite lattices in arbitrary dimensions.
Our general approach might also be useful to design Mar-
shall positive models with symmetries different from the
N -N̄ SU(N) model.
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Appendix A: Test Energies

For future reference, Table I contains test comparisons
between the energies obtained from a SSE-QMC study
and exact diagonalization on 4 × 4 and 4 × 6 systems
with various J2-Q-R at N = 2, working with J1 = 1.
The various interaction terms are described in Sec. II.

size J2 Q R βQMC Eex EQMC

4× 4 1 0 0 16 −1.164574932621 −1.16453(2)

4× 4 0 1 0 16 −1.547407628767 −1.54735(2)

4× 4 0 0 1 16 −1.532604539066 −1.53258(3)

4× 4 0 1 1 16 −2.395806575537 −2.39577(4)

4× 4 0 1 4 16 −4.947607904937 −4.94757(8)

6× 4 1 0 0 16 −1.144492865177 −1.14438(2)

6× 4 0 1 0 16 −1.51911890163 −1.51913(3)

6× 4 0 0 1 16 −1.50323567768 −1.50323(3)

6× 4 0 1 1 16 −2.349607914424 −2.34962(4)

6× 4 0 1 4 16 −4.847067604114 −4.84711(6)

TABLE I. Test comparisons of energies from exact diagonal-
ization and finite-T QMC studies for the SU(2) model. Note
that J1 = 1 always. The energies reported here are per site
and on square lattices with periodic boundary conditions.

Appendix B: Phase diagram for N = 2

For completeness in Fig. 7 shows an approximate phase
diagram of the SU(2) J1-Q-R model, by monitoring the
crossings of Lρs. It is well known that there are drifts
in the critical point extracted from such crossings but
that they eventually converge,17,20 so this is an approxi-
mate representation of the phase diagram of the model.
Nonetheless, this data shows that as opposed to the
SU(3) and SU(4) cases discussed in the main manuscript,
for SU(2) the R term alone does not destroy Néel order,

in fact it seems to favor it! This is seen because at ratios
of Q/J1 that give a VBS, increasing R drives the system
back into the Néel phase.

0.00 0.02 0.04
J1/Q

0.00

0.02

0.04

0.06

R
/Q Néel

VBS

FIG. 7. An approximate phase digram of the SU(2) J1-Q-R
model. This graph shows the location of the crossings of the
size L = 16 and L = 32 data for Lρs. Similar to data shown
in Fig. 4 but on smaller system sizes.

Appendix C: Observables

We follow previous work27 by defining an SU(N) mag-
netic order parameter:

Qαβ(r, τ) =

{
(|α〉 〈β|)r,τ − δαβ

1̂
N , A sublattice

(|β〉 〈α|)r,τ − δαβ
1̂
N , B sublattice

,

(C1)
where α and β vary over the N colors. We can then
define a magnetic order parameter as:

O2
M ≡

1

(Nsβ)2

∑
r,r′

∫ β

0

dτ

∫ β

0

dτ ′ 〈TτQαβ(r, τ)Qβα(r′, τ ′)〉 .

(C2)
In a similar fashion we can define a VBS correlation

function. First we define the bond operator on a pair of
nearest neighbor sites as follows:

Bµ(r, τ) =
1

N
P(r, τ ; r + µ̂, τ), (C3)

where Pij =
∑N
α,β=1 |αα〉ij 〈ββ|ij , with spacetime loca-

tions of the two points given by the arguments. The
superscript µ denotes the bond type. On the square lat-
tice this index would run over µ = x, y. We can then
study the correlations of these bond operators at differ-
ent points in space and take the ω = 0 component:

http://link.aps.org/doi/10.1103/PhysRevB.85.180411
http://link.aps.org/doi/10.1103/PhysRevB.85.180411
http://link.aps.org/doi/10.1103/PhysRevLett.61.2376
http://link.aps.org/doi/10.1103/PhysRevLett.61.2376
http://www.sciencedirect.com/science/article/pii/0550321389900618
http://www.sciencedirect.com/science/article/pii/0550321389900618
http://www.sciencedirect.com/science/article/pii/0550321389900618
http://link.aps.org/doi/10.1103/PhysRevLett.98.057202
http://link.aps.org/doi/10.1103/PhysRevLett.98.057202
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Cµν(r− r′) ≡ 1

β2

∫ β

0

dτ

∫ β

0

dτ ′ 〈TτBµ(r, τ)Bν(r′, τ ′)〉 − 〈Bµ〉 〈Bν〉 . (C4)

The plaquette and columnar VBS patterns corresponds
to a wavevector Q = (π, 0) and correlated bond type
µ, ν = x. By taking the Fourier component of at this
wavevector, we can check for a signal in this VBS pattern.
This is how we define our VBS order parameter:

O2
VBS ≡

1

Ns

∑
r

Cxx(r)eiQ·r. (C5)

Finally to create the VBS histograms we take a basis

state and assign 1 to all bonds which have same SU(N)
colors on the sites that connect the bonds and 0 to all
bonds connecting different colors. We then Fourier trans-
form all the x directed bonds to (π, 0) and call this Dx

and all the y directed bonds to (0, π) and call this Dy.
This gives us a value of Dx and Dy for each basis state.
We then histogram this data to get the density plots
shown in Fig. 6.
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