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Compressed hydrogen passes through a series of layered structures in which the layers can be
viewed as distorted graphene sheets. The electronic structures of these layered structures can be
understood by studying simple model systems- an ideal single hydrogen graphene sheet and three-
dimensional model lattices consisting of such sheets. The energetically stable structures result from
structural distortions of model graphene-based systems due to electronic instabilities towards Peierls
or other distortions associated with the opening of a band gap. Two factors play crucial roles in the
metallization of compressed hydrogen: (i) crossing of conduction and valence bands in hexagonal or
graphene-like layers due to topology and (ii) formation of bonding states with 2pz π character.

PACS numbers: 67.63.Cd, 67.80F-, 71.30.+h

I. INTRODUCTION

The creation and characterization of metallic hydro-
gen under pressure has been described by Ginzburg as
one of the “Key Problems of Physics and Astrophysics”1.
Hydrogen in a metallic state is expected to exhibit high-
Tc superconductivity2 and other exotic properties, and
achieving such a state is thus of great fundamental in-
terest. At low temperatures hydrogen forms a simple
hexagonal close packed structure with freely rotating
molecules, called phase I3. At such temperatures, the
material transforms to the quantum broken symmetry
phase (phase II) at pressures of 125 GPa and phase III
at 150 GPa3. The transition to phase III is characterized
by a strong change in the infrared vibron absorption.

Recently, solid hydrogen has been intensively investi-
gated in a new pressure-temperature domain (200-360
GPa, and just above 300 K), both experimentally4–9

and theoretically10–15. A new phase (phase IV) has
been discovered above 220 GPa in the higher temper-
ature regime4,5,8. Though several different structures
have been proposed for phase IV from first-principles
calculations,11,12,15 there is agreement that this phase
can be viewed as a mixed– layer structure, where lay-
ers of weakly interacting H2 molecules are sandwiched
between graphene-like layers.

Since the band structures associated with 1s elec-
trons in a hydrogenic honeycomb lattice and 2pz elec-
trons in graphene are identical both topologically and by
symmetry16, two seemingly unrelated topics in modern
condensed matter physics– graphene physics and hydro-
gen metallization are intimately interconnected. This in-
terconnection is wider than might appear at first sight.
In fact, the stability of solid hydrogen in structures con-
sisting of graphene-like hexagonal sheets was predicted
in 198117, well before the discovery of graphene. Using
ab-initio calculations we show that the electronic prop-
erties of all the proposed candidate structures for solid
molecular hydrogen at high density can be understood by
studying a single graphene layer and/or simple systems
composed of such layers. The structures can be viewed

as underlying model graphene layers that are distorted
due to intrinsic electronic instabilities leading to the ap-
pearance of an excitonic insulator, Peierls distortion or
molecular tilting.

This analysis leads us to identify two new factors that
can control the metallization of compressed hydrogen.
We show that hydrogenic hexagonal- or graphene-like
layers form band states with Dirac-type cones where the
bonding valence and antibonding conduction bands in-
evitably touch each other leading to the zero-gap semi-
conductor or semimetallic behavior. This effect explains
why many proposed structures with nearly the same en-
ergy and symmetry exhibit nevertheless distinct band
structures in the vicinity of the Fermi level EF . We also
show that lowering of the bonding 2pz and other states
comes into play above 200 GPa when the energy differ-
ence between the 1s and 2p atomic orbitals become com-
parable with the bandwidths of the 1σg and 1σ∗u states.
The implications of these results for experiments, and
in particular the interpretation of recent optical data, is
presented elsewhere18

II. METHODS

Calculations were performed using density functional
theory as implemented in the ABINIT package. A
16×16×1 Monkhorst-Pack k-point grid has been used
in the case of the ideal hydrogenic honeycomb lattice
containing only two atoms per cell; approximately the
same k-point density was retained in going from the 2D
honeycomb lattice to 3D systems. The sheets have been
simulated by a slab-supercell approach with inter-planar
distances of 25 aB to ensure negligible wavefunction over-
lap between the replica sheets. For the plane-wave ex-
pansion of the valence and conduction band wave func-
tions, a cutoff energy was chosen to be 40 Ha. A norm-
conserving pseudopotential with a cutoff radius of 0.5
a.u. was first generated using OPIUM codes and then
used, along with the Wu-Cohen exchange and correlation
functional19. The obtained results were tested against
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all-electron FLAPW calculations, and very good consis-
tency between the two was found.

III. RESULTS

A. A single honeycomb layer

We begin with a discussion of the electronic and atomic
properties of a 2D honeycomb hydrogenic lattice under
pressure, which we mimic by changing the nearest dis-
tance between two hydrogen atoms b. At zero pressure,
this distance was found to be 1.177 Å, which is consid-
erably larger than that found for a 6-membered hexagon
with D6h symmetry (0.992 Å)14. This reflects the fact
that chemical bonding in an isolated hexagon is stronger
than in a periodic network of such hexagons, where each
atom must share its electron with three neighbors.

The band structure of an ideal 2D hydrogenic honey-
comb lattice is shown in Fig. 1. When the bond length
b is larger than 1.10 Å, this structure is similar to that
in carbon graphene, where the conduction and valence
bands touch each other in a linear fashion at two inequiv-
alent Dirac points, K and K′, connected by time-reversal
symmetry (Fig. 1a). However, the next (and higher) en-
ergy level(s) at Γ are very sensitive to the lattice spacing
and quickly move downwards as the lattice parameter
decreases, as shown by a vertical arrow in Fig. 1a. As
a result, at b =1.10 Å, the second energy level becomes
lower than the Dirac level, and the system undergoes a
transition from a zero-gap semiconductor to a semimetal-
lic state, Fig. 1b. This level is the bottom of the bonding
2pz band, so that the transition is accompanied by the
charge flow from the antibonding 1s orbitals to the bond-
ing 2pz orbitals.

The ideal honeycomb lattice is unstable with respect
to structural distortions. The existence of Dirac cones
implies that there are nestings between the valence and
conduction bands, which can be expressed as

−εi(k) = εj(k) (1a)

or

−εi(k) = εj(k + K − K′), (1b)

where the k vector is measured relative to a Dirac point
and the valence (i) and conduction (j) band energies
are measured relative to EF ; note that the difference
K − K′ is again a Dirac point plus a reciprocal lat-
tice vector. The conditions (1a) and (1b) lead to strong
electron-phonon coupling and Kohn anomalies in phonon
spectra ωλ(q) for vibrations with q = Γ or q = K. Such
anomalies manifest themselves as sharp kinks and have
been observed in carbon systems– graphite and bilayer
graphene20,21. They should also exist in the hydrogenic
honeycomb lattice and even be stronger in the absence
of sp2 bonding. Special attention must be given to the
soft phonon modes with q = K capable of opening up

FIG. 1: (color online) Calculated band structure of H-
graphene for two different bond lengths: (a) b=1.23 Å and
(b) b=0.94 Å. The vertical arrow in (a) indicates the bonding
conduction band 2pz moving quickly downward as the lattice
parameter decreases. At b=1.10 Å this band becomes lower
than the Dirac level as seen in (b). The equilibrium b=1.177
Å. Note that the bands are colored in order of energy.

the gap at the Dirac points via K − K′ mixing. These
modes are actually the transverse optical (TO) and lon-
gitudinal acoustic (LO) modes that have been studied in
Ref.22. When frozen, they break the translation symme-
try and lead to

√
3 ×
√

3 superstructures which can be
viewed as 2D Peierls-like distortions23.

We now consider the stability of the lattice against
such distortions for different lattice parameters. The
TO (or so-called Kekulé) distortion can be introduced
via in-plane atomic displacements preserving the initial
D6h point symmetry. It can be described by only one
structural parameter or amplitude, δ, which can be ei-
ther positive or negative (Fig. 2). Positive δ’s lead to
the dimerization of ab initial atomic lattice where the in-
tramolecular distance is b(1− δ), and the intermolecular
distance b(1 + δ/2), where b is the initial bond length.
In contrast, negative δ’s describe the process of breaking
of the initial lattice into smaller hexagons (“hexamer-
ization”) in which the nearest distance between different
hexagons is b(1− δ), whereas the bond length inside the
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FIG. 2: (color online) Peierls distortions of a honeycomb lat-
tice, leading to a

√
3×
√

3 superstructure and described by an
amplitude δ. (a) TO distortion, (b) LA distortion; modified
after Ref.22. (c) TO distortions for different δ; δ=0 corre-
sponds to a pristine honeycomb lattice where a non-primitive
unit cell is chosen in the form of hexagon. In the case of δ > 0
the initial lattice dimerizes, so that the initial atomic hexagon
expands. In the case of δ < 0, the initial lattice hexamerizes,
and the initial atomic hexagon decreases in size. Modified
after Ref.23.

new, smaller hexagons is given by b(1 + δ/2).
Similar to the TO Peierls distortions, the LA coun-

terparts can also be described by a single amplitude δ
(Fig. 2). The LA distortions reduce the symmetry from
D6h to D3h, and the corresponding energy profile is sym-
metric with respect to the change of the sign of δ. Both
δ > 0 and δ < 0 lead to the dimerization of hydrogen
atoms where the resulting intramolecular and intermolec-
ular distances are b(1− |δ|) and b(1 + |δ|), respectively.

The energy profiles calculated as a function of the am-
plitude δ for different initial bond lengths b are shown
in Fig. 3. In the case of TO distortions, such profiles ex-
hibit two asymmetric minima, one for δ >0 and the other
for δ <0. The first one corresponding to dimerization of
hydrogen atoms is more stable than the second leading
to separated hexagons. This is in agreement with early
results17 showing that the energy of the hexagonal H6

complex is higher than that of three H2 molecules. The
minimum for δ > 0 is not only deeper but also sharper
because here the atoms in each pair move towards each
other and at some point start mutually repelling as the
separation becomes somewhat less than 0.75 Å, the bond
length in isolated H2.

The profiles for the LA Peierls distortions are similar
to that for TO counterparts with δ >0; this is not sur-
prising because in both cases they describe the process
of dimerization. Again, the minima correspond to a in-

FIG. 3: (color online) Total energy vs TO and LA mode am-
plitude δ for different initial bond lengths b: (a,b) 1.40 Å,
(c,d) 1.177 Å and (e,f) 1.0 Å. The TO and LA modes are
actually symmetrized to produce the distortions of the D6h

and D3h symmetries, respectively.

tramolecular distance of 0.75 Å and are sharp in form
due to the repulsion of the H atoms below this critical
separation. Figure 3 shows that the wells become pro-
gressively shallower and closer to each other as the initial
bond length is decreased. Just below b = 1 Å, the minima
merge and the energy profile becomes single-welled. This
point correlates well with the moment when the bonding
2pz-band at Γ passes the Dirac energy (1.1.Å). This fact
can be easily understood. The Peierls distortions mix
the unperturbed K and K′ Bloch states and break the
4-fold degeneracy at Γ of a pristine honeycomb lattice
into two 2-fold degeneracies, opening the gap and low-
ering the total energy. But the latter can happen only
when the Dirac point coincides with the Fermi level. The
is not the case when the 2pz band near Γ becomes no-
ticeably lower than the Fermi level, thus eliminating the
driving force for the Peierls distortions. Though freezing
of these modes opens up a gap at Dirac points and lowers
the total energy, it does not effect much the pace of the
lowering of the 2pz states.

Analysis shows that the ideal honecomb lattice can be
unstable against other distortions leading to the dimer-
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FIG. 4: (color online) Total energy vs Γ optical phonon ampli-
tude δ for different initial bond lengths b: (a) 1.177 Å and (b)
1.0 Å. The inserts illustrate that in case of δ > 0 two nearest
hydrogen atoms in each unit cell approach each other, whereas
for δ < 0 they move away from each other. The vertical blue
arrow indicates the moment when two Dirac points merge to
open a band gap.

ization of hydrogen atoms. These distortions, however,
become energetically less favorable than the Peierls type
for the initial bond lengths b shorter than ∼ 1.15 Å. To il-
lustrate this, consider, for example, the simplest path for
the association of hydrogen atoms into molecules when
two nearest hydrogen atoms in each unit cell move to-
wards each other. The distortion can be visualized as
a freezing of the optical phonon mode at the Γ point.
As for the TO(K) and LA(K) symmetrized modes, this
distortion can be described by a single parameter δ > 0
defining the distance between the initially nearest atoms,
b(1 − δ) (see inset in Fig. 4a). For comparison, we will
also consider the case δ < 0 when the atoms move apart
so that the initial hexagonal lattice transforms toward a
rectangular lattice corresponding to δ = −0.5. The en-
ergy as a function of δ is shown in Fig. 4; it is similar to
that for TO(K) distortions. At b=1.177 Å it exhibits two
highly assymmetric minima, for positive and negative δ.
The first one, associated with the pairing of the hydrogen
atoms, is significantly deeper. It is even slightly deeper
than the minima for the Peierls distortions correspond-
ing to the same initial b (Fig. 3c,d). However, as seen
from Fig. 4b, for b=1.0 Å, double well profile is already
turned into single-welled, in contrast with the profiles in
Fig. 3e,f. This proves that the Peierls distortions ener-
getically are the most preferable distortions for the re-
lartively short initial bond lengths b. Note that in the
case of δ < 0 for b=1.177 Å, the minimum forms just be-
fore the structure becomes rectangular. This minimum is
very shallow because the intramolecular distance on this
path can not be smaller than b

√
3/2 ∼ 1.02 Å and the

molecules with the optimal bond length ∼ 0.75 Å cannot
form.

A closer examination of Fig. 4 reveals that the position
of the minimum in panel (a) for δ > 0 is very close to
the bond length in an isolated H2 molecule, 0.75 Å. Be-
fore this minimum is reached, the energy curve exhibits
the steepest fall exactly at the moment when two Dirac
points shifted from their initial positions merge at the
point (G1−G2)/2, where G1 and G2 are the two short-
est reciprocal lattice vectors forming the angles 600 and –
600 with the line connecting two nearest atoms separated
by the distance b(1 − δ). This suggests that opening a
gap is one of the major stabilizing factors in compressed
hydrogen.

FIG. 5: (color online) Calculated band structures at 260 GPa:
(a) forP63/mmc and (b) for Cmca-4. For the sake of compari-
son, the high symmetry points in the hexagonal Brillouin zone
of the P63/mmc structure are indicated by double labels with
the orthorhombic labels in parentheses.

We point out that the states with Peierls distortions
can be equally interpreted as excitonic insulators char-
acterized by charge-density oscillations, as discussed by
Halperin and Rice24. Indeed, condition (1) also means
that the electron and hole Fermi surfaces are identical in
size and shape–a necessary condition for the formation of
the excitonic insulators. Another necessary condition–
weak screening of Coulomb interactions between elec-
trons and holes– is also fulfilled in hydrogen graphene
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due the vanishing density of states at the Dirac points
and the single-atom thickness of the system. Therefore,
excitonic states are likely to form in compressed hydro-
gen, especially at low temperatures.

The (Peierls) distortions considered above are not the
only ones capable of inducing an energy gap at the Fermi
level in a 2D honeycomb hydrogenic lattice via K and K′

mixing. Other distortions with non-zero wavevectors can
also do this, provided that their amplitude exceeds some
(usually small) critical value25. Among such Peierls-like
distortions are the 3 × 2 superstructures in which the
length of the super-period along zigzag type directions
are larger than that in honeycomb lattice by a factor
of 3, whereas the super-period along an armchair type
direction is larger by a factor of 2.

B. Stacked honeycomb layers

We now consider 2D hydrogen honeycomb lattices
stacked in AB (Bernal26) fashion to produce a 3D
graphite hexagonal structure with P63/mmc symmetry.
In the 3D lattice there are four atoms per unit cell, twice
as many in the honeycomb layer. Each layer must give
rise to two three-dimensional states near the K and K′

points of the hexagonal Brillouin zone. So the four initial
single-layer bands mix together by interlayer interactions
in order to form the band structure in the vicinity of K
and K′ points27. Though the AB stacking destroys the
sublattice or inversion symmetry in each single layer, the
necessary condition for the formation of Dirac degener-
acy points, such points nevertheless do survive in the
3D structure due to the interlayer interactions27, as seen
from Fig. 5a. Moreover, the degeneracy points merge
together along the vertical edges HKH of the hexagonal
Brillouin zone, thus forming band-contact lines. These
lines exhibit the following interesting topological prop-
erty: the line integral of the Berry connection for any
curve enclosing them is ±π29.

In Fig. 5a we present the band structure for this
P63/mmc structure calculated at a pressure of 260 GPa.
We indicate the energy bands in the vicinity K and K′

points by by 1, 2, 3 and 4 in order to stress that they
originate from the mixing of the initial layer states. It
is remarkable that their forms are in qualitative agree-
ment with that predicted in Ref.27 for carbon graphite
on the basis of tight-binding calculations. From Fig. 5a
it is clearly seen that at K, the 2-fold degenerate state
lies between the two single levels, thus forcing the va-
lence and conduction bands to touch27. Since band 2
exhibits a local maximum near the K point, the Fermi
level is forced also to cross band 3 as well. As a result,
in contrast to the 2D hydrogen honeycomb lattice, this
system represents a semimetal without involving of the
2pz states.

The bonding 2pz states in the P63/mmc structure fall
at the bottom of the third band near Γ, Fig. 5a. At
P=0, their energies practically coincide with the Fermi

level EF but gradually move away from the latter as the
lattice parameter is decreased. As a result, at 260 GPa,
they become well above the EF , by 3 eV. This is not the
case, for example, in the Cmca-4 phase, as we will see be-
low. We stress that the degenerate states on the contact-
band lines (HKH) in the P63/mmc structure transform
according to a two dimensional representation and the
lines themselves coincide with the 3-fold symmetry lines.
However, due to their topological properties, these con-
tact lines are stable against any (not too severe) lattice
distortions including those breaking 3-fold symmetry. As
a result the contact-band lines may shift from the high-
symmetry lines in the Brillouin zone becoming curved
in shape like spirals. (Such a spiral ending up on the
faces of the Brillouin zone is found, for example, in the
rhombohedral graphite with ABC stacking26,28.)

C. Analysis of candidate structures

Though a graphene motif is most evident in the candi-
date structures Cc, Pc and Pbcn for phase IV11–14, it can
be also found in other candidate structures proposed for
dense hydrogen. Thus, the distorted hexagons are clearly
seen in the layered C2/c and Cmca-4 structures. The
former is the most plausible candidate for the low tem-
perature phase III and the latter is a predicted at higher
pressures and low temperatures7,11,12. The intermolec-
ular distance in graphene-like layeres of high-pressure
structures like C2/c,Cc, Pc and Pbcn is on the order of
1.0–1.1 Å11–14. This is noticeably shorter than the min-
imal distance separating two hydrogen atoms from the
neighboring layers (1.4 –1.5 Å). We expect therefore that
such layers play a key role in forming their electronic
properties and atomic structures.

Among these candidate structures, the C2/c phase
would appear to be a very large distortion of an ideal
honeycomb lattice. Yet such a comparison is possible. To
mimic this phase we designed an artificial phase where
four ideal honeycomb layers are the stacked equidistantly
in a ABCD fashion in such a way that resulting symmetry
is again C2/c. In fact, this model structure can be contin-
uously transformed within the given symmetry into the
phase C2/c by moving the atoms inside the unit cell. As
seen from the Fig. 6, the band structure of the model sys-
tem does mimic well that of C2/c, especially above and
below the Fermi level. The main difference, of course, is
in the vicinity of EF where the model structure exhibits,
in contrast to C2/c, an overlap of the conduction and va-
lence bands producing a metal. Such a difference is not
surprising because each layer in the C2/c structure can

be considered as a
√

3 ×
√

3 superstructure relative to
an ideal graphene sheet; in this superstructure the initial
graphene K and K′states are mixed to form a band gap.
Hence, according to Sec. A, this structure can be viewed
as a Peierls or excitonic insulator phase.

We find that the band structures of all the other can-
didate phases can be understood in this way, including
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FIG. 6: (color online) The band structures of the C2/c phase
at 300 GPa (a) and of an artificial phase composed from four
ideal honeycomb layers ABCD in such a way that the re-
sulting symmetry is also C2/c (b). The artificial phase, like
C2/c, has 24 atoms per cell and its lattice parameters are also
identical to that for the C2/c structure. The notation of the
symmetrical points is borrowed from Ref.11

mixed phases like Cc, Pc and Pbcn11–14, where the lay-
ers of unbound H2 molecules are sandwiched between
the graphene-like layers. The situation with Pbcn struc-
ture, for example, is similar to that for C2/c. Here again
the insulating behavior of the systems can be easily ex-
plained: each layer in the Pbcn structure can be presented
as a 3×2 superlattice stabilized by Peierls-like distortions
that mix the Dirac states K and K′ and open an energy
gap (see Sec. A).

Let us consider in more detail the Cmca-4 structure,
which geometrically is close to the hydrogen graphite

FIG. 7: (color online) Same as in Fig. 5, but for other direc-
tions in the orthorhombic Brillouin zone. In panel (b), the
star * indicates the band gaps that appear due to molecular
tilting, θ 6= 0.

structure with space group P63/mmc discussed in Sec.
B. Like the P63/mmc structure, it can also be consid-
ered as a layered structure with ABAB stacking where
the H2 molecules form an angle θ ∼ 300 with respect
to the xy plane. As seen from Fig. 5 (b) this struc-
ture, like P63/mmc, exhibits band-contact lines which
now coincide well with the vertical lines passing through
the U points. The character of splitting of energy levels
at the U point is different from that at the K and K′

points in P63/mmc structure: the degeneracy point lies
below the single levels. Another difference is that now
the 1s orbitals associated with band 4 near the U point
are strongly hybrydized with bonding 2pz orbitals. It
is the hybridization that makes the 2pz orbitals behave
differently in the comparable systems as the pressure in-
creases. We found that at 260 GPa the 2pz level at Γ in
the Cmca-4 phase is 4 eV above the EF . However, the
former moves quickly down with pressure and passes the
EF at ∼ 300 GPa. But even before this critical pressure
the system is already in a semimetallic state due shifting
of the EF relative to the contact point (Fig. 5b).

As the above analysis shows, the hybridization is due to
the orientational tilting of hydrogen molecules enabling
mixing of 1s and 2pz orbitals to form sp like orbitals.
This tilting opens up a gap at the Fermi level at the T
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FIG. 8: (color online) Calculated band structures: (a) for
Cmca-4 at 260 GPa, (b) for Cmc21, and (c) for C2/m phases.
In going from Cmca-4 to Cmc21 the lattice parameters, in-
tramolecular distances and tilting angles are kept the same.
The only difference between these structures is that in the
latter the centers of molecules lie almost on an ideal hcp lat-
tice. The C2/m structure differs from Cmc21 only by mutual
orientation of two molecules in the unit cell, whereas in the it
Cmc21 structure the molecular axes are tilted by the angles θ
and – θ from the xy plane, in the C2/m the axes are parallel,
i.e. molecules tilted by the same angle, θ ∼ 300.

point, as shown in Fig. 7b. The rotation of hydrogen
molecules tends to prevent the the system from being
(semi)metallic. Despite this fact the valence and con-
duction bands cross each other near the U points due to
topological reasons, as in Fig. 5b .

This crossing, however, can be easily destroyed by slid-
ing of alternate layers of towards the polar Cmc21 struc-
ture, as shown in Fig. 8b. The reason is that such a
sliding breaks an effective in-plane inversion symmetry-
the center of symmetry of a 2D lattice obtained by pro-
jection of two nearest layers on the xy plane. The energy
gap at the U point also opens up in the C2/m struc-
ture where such a symmetry center is also broken, as in
Fig. 8c. Though the opening of a gap due to a Cmca-4 to
Cmc21 structural transformation has already been dis-
cussed in the literature (e.g., Ref.30), the physical reason
for this was not clear.

FIG. 9: (color online) Density of states (DOS) : (a) for C2/m
at 150 GPa and (b) for Cmca-4 at 300 GPa. The calculations
have been performed by using the tetrahedron method and
sufficiently dense k-point meshs: 40×40×40 and 100×100×8
for the C2/c and Cmca-4 structures respectfully.

IV. DISCUSSION

Our results suggest two possible mechanisms for the
metallization of compressed hydrogen. The first one is
related to the fact that in the systems with honeycomb-
structured or graphene-like layers a metallic electronic
structure occurs because of symmetry and topology,
as, for example, in graphite-structured hydrogen or the
Cmca-4 phase. The first metallization mechanism in-
volves only 1s bands, whereas the second mechanism in-
volves 1s valence states and 2pz conduction states. Un-
der pressure, the bonding 2π states associated with the
atomic 2pz orbitals become lower in energy than the anti-
bonding 1σ?u states originating from the 1s orbitals. The
fact that the 2pz bands come into play at elevated pres-
sures is not surprising –the energy difference between the
1s and 2p atomic orbitals becomes comparable with the
widths of the 1σg and 1σ?u bands (∼10 eV). The decrease
in the band gap due to these two effects can (and usually
does) widen again due to Peierls-like distortions or molec-
ular tilting; this delays the transition to higher pressures
at low temperatures.

In accordance with these two mechanisms, we found
that metallization in all the candidate structures occurs
over only a very small fraction of the Brillouin zone when
small pieces of Fermi surface first form (see also33,34). As
a result, the density of states (DOS) at the Fermi level re-
mains relatively low not only just after the system enters
a metallic state but also for higher pressures. In Cmca-4,
for example, N(EF ) ∼ 0.05 states/eV at 300 GPa, i.e.
approximately 200 GPa above the gap closure (Fig. 9b).
Surpisingly, the general form of the DOS does not change
much in passing from one structure to another, as seen
by comparing the Figures 9a and 9b. This partly ex-
plains why the main features of the optical properties of
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different candidate structures are similar18.

As a potential high-Tc superconductor, dense hydro-
gen in some respects is similar to MgB2. The latter is also
a layered material where boron atoms form a hexagonal
lattice consisting of honeycomb layers stacked in AA fash-
ion; and its band structure35 is similar, for example, to
that of Cmca-4. Like MgB2, compressed hydrogen should
not belong to the conventional superconductors requiring
a high desity of states at EF . But similar to MgB2, it can
have strong electron-phonon coupling (and therefore be a
high temperature superconductor) due to the quasi-two
dimensionality of the electronic structure36, quite strong
covalent bonding37 and high phonon frequencies38.

Despite the similarities, there are fundamental differ-
ences between H-graphene and C-graphene. The two
have a similar electronic structure and represent a zero-
gap insulator with topologically protected Dirac points
at K and K′. However, in C-graphene the sp2 states
provide most of the structural stability and completely
suppress the Peierls instability associated solely with the
2pz states. In H-graphene, the relationship between the
electronic and atomic structures is more subtle, because
the same 1s-electrons provide the bonding and structural
stability. As a result, ideal H-graphene sheets find a va-
riety of different ways to open a band gap at the Dirac
points and reduce the total energy. Among the most ef-
fective distortions are the Peierls (or Peierls-like) distor-
tions that induce the energy gap via K and K′ mixing.
These displacements lead to the formation of superlat-
tices that are multiples of 3 or

√
3 from the primitive

graphene cell; such superlattices indeed were found in
the proposed phases for dense hydrogen(e.g., Pbcn, Cc,
C2/c). The systems also avoid the crossing of 1s and 2pz
bands by mixing them, as in the case of diamond-type Si
where the mixing of 3s and 3p bands form a gap along
the Γ-X direction32. To enable the 1s− 2pz mixing in a
graphene layer, the H2 pairs should tilt out of the ideal
honeycomb plane. Such a tilting was found, for example,
in the molecular layers of the Pbcn structure and in all
layers of the C2/c structure.

In summary, we have shown that compressed hydro-
gen can reach a semimetallic state via (i) the formation
of bits of Fermi surface representing the intersections of
Dirac cones from graphene related structures (near the
K-point in ideal graphene) or (ii) closing of an indirect
band gap between the valence and conduction bands orig-
inating principally from 1s and 2pz atomic orbitals, re-
spectively. A consideration of quantum and thermal fluc-
tuations should not change our conclusions. These fluc-
tuations will serve to broaden the band states and ini-
tiate band overlap at lower compressions than indicated
here, as shown in31. However, the discontinuity in the
potential at EF or electron self-interaction will increase
the gap. These two effects of opposite sign will at least
partly cancel, as discussed in Ref.10. In any event, the
graphene-like layers will dominate the behavior of high
pressure hydrogen, its metallization, and other optical
and electronic properties.
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