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Abstract 

 

A detailed investigation of the electronic structure and electron-phonon coupling 

for Au monolayers on the Mo(112) surface is presented. The electronic states of bulk Mo 

and the (112) surface-derived states are seen to strongly hybridize with those of the Au 

overlayer resulting in the formation of surface resonance states localized near the surface 

and the interface of Au/Mo(112). The experimentally extracted self-energy due to the 

electron-phonon coupling on one of the surface resonance bands gives a good 

quantitative agreement with the calculations. The strength of electron-phonon coupling 

for Au/Mo(112) is discussed in terms of the mass enhancement factor and is considerably 

larger than for the Mo(112) surface. Such an increase in the mass enhancement factor in 

the vicinity of the Fermi level likely derives from the soft surface phonon modes created 

upon Au adsorption.      
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1. Introduction 

 

Electron-phonon coupling is one of the most fundamental many-body interactions 

in solid state physics, which is essential for the proper description of normal properties of 

materials as well as critical phenomena in solids [1]. The former includes low-

temperature electronic heat capacity and finite electrical conductivity. The latter ranges 

from surface reconstructions to superconducting phase transitions [2,3]. Although the 

electron-phonon coupling is ubiquitous, due to the low excitation energy of phonons 

(typically <100 meV for metals), its effect on the electronic structure is most pronounced 

in the vicinity of Fermi level (EF). Therefore, the quantification of electron-phonon 

coupling is most readily realized in the metallic systems for which the excitation energy 

is, by definition, zero. 

The detailed experimental investigations of electron-phonon coupling utilizing 

high-resolution angle-resolved photoemission spectroscopy (ARPES) have become more 

common. Since the first direct experimental quantifications of the electron-phonon 

coupling in Be(0001) [4] and Mo(110) [5] in 1999, ARPES has been applied to elucidate 

the nature of electron-phonon coupling in various metals including Be(0001) [6-8], 

Cu(111), Ag(111), Au(111) [9-12], Fe(110) [13,14], Al(100) [9,15-17], and Mo(112) 

[18,19]. So far, the characterization of the electron-phonon coupling has been largely 

limited to clean, adsorbate-free systems and only a few studies have been devoted to the 

examinations of the electron-phonon coupling of adsorbate structures, such as H/W(110), 

for which a noticeable enhancement of the electron-phonon coupling is observed [20,21]. 

Yet, the adsorbate structures are known to exhibit various types of interesting phenomena 



such as overlayer structural phase transitions, and thus, major insights in such adlayer 

phase transitions and its properties may be obtained from a quantitative characterization 

of the electron-phonon coupling in overlayer structures.  

 The Mo(112) surface is known to exhibit highly anisotropic electronic structure 

[22] on which Au forms the commensurate atomic chains, as schematically illustrated in 

Figure 1a. At certain coverages of Au/Mo(112), order-disorder transitions of the Au 

chains have been observed [23]. Electron-phonon coupling may well play an important 

role in such overlayer instabilities and thus, our investigation of the electron-phonon 

coupling of Au/Mo(112) can serve as an important milestone in the study of such 

overlayer instability.    

 

2. Experimental Details 

 

The high-resolution ARPES was performed at the linear undulator beamline (BL-

1) [24] of Hiroshima Synchrotron Radiation Center (HiSOR) at Hiroshima University, 

Japan. The surface of the Mo(112) sample was cleaned by the standard method of 

repeated annealing (at ~1400°C) in oxygen atmosphere with the oxygen partial pressure 

of ~1×10-6 torr, followed by cycles of annealing at 1000-1300°C and flashing at ~1800°C, 

similar to the procedures used elsewhere [22,25-29]. Low energy electron diffraction 

(LEED) and Auger electron spectroscopy (AES) were used to verify the quality of the 

Mo(112) surface. The amount of surface contamination, mainly C and O, were evaluated 

to be below the detection limit of the AES.  



Deposition of Au was performed by physical vapor evaporation of Au onto the 

Mo(112) sample by heating the Au source below the melting temperature. The Au growth 

rate was adjusted to be sufficiently slow to ensure the layer-by-layer growth on Mo(112) 

surface up to the coverage of 1 monolayer (ML), for which the structure is illustrated in 

Figure 1a. The constant gradual growth of Au film within the submonolayer coverage 

was monitored by the linear relationship between the adsorbate coverage and Au peak 

intensity in AES [30]. At coverages near the completion of 1 ML, LEED was utilized to 

confirm the formation of the 1 ML 1x1 adlayer.        

 The high-resolution ARPES spectra were taken along the  line in 111  

direction in the surface Brillouin zone (SBZ), schematically illustrated in Figure 1b, with 

the p-polarization geometries (where A lies within the detection plane or xz-plane in 

Figure 1a). The ARPES experiments were carried out using the angular mode of the 

hemispherical electron analyzer (R4000, VG-Scienta). The experimental band structure 

mappings for the entire dimension along  line (Figure 2) were performed using the 

incident photon energy of = 22 eV with the analyzer acceptance angle of ±15° 

(Angular 30 mode). The energy resolution was estimated to be 10 meV and the angular 

resolution was ~0.9°, corresponding to the wave vector resolution of ~0.03 Å-1 at EF. The 

close-up of the surface resonance band near EF (Figure 3) was taken with the incident 

photon energy of = 22 eV with the analyzer acceptance angle of ±7° (Angular 14 

mode) with the estimated energy resolution of ~10 meV and the angular resolution of 

~0.2°, corresponding to a wave vector resolution of ~0.008 Å-1 at EF. The temperature of 

the sample was maintained at ~60 K by constant flow of liquid helium. Throughout the 

discussion, the binding energies are referenced to the Fermi level, in terms of EF - E.  
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3. Theoretical Methodology 

 

The DFT semirelativistic calculations included the generalized gradient 

approximation (GGA) [31], and were performed with the ABINIT [32] package using 

Troullier-Martins norm-conserving pseudopotentials [33]. The periodicity in the direction 

normal to the surface was maintained by adopting the repeat-slab model. The slabs were 

built of 7 layers of Mo(112) atomic planes with one Au layer on one side of the slab for 

the 1 ML Au/Mo(112) system. The vacuum gap was about 10 Å. The optimization of 

positions of atoms was performed until all forces became less than 0.05 eV/ Å. The 

energy cutoff of 20 Ha (Hartrees) and 6×4×1 Monkhorst-Pack set of special k points 

provided the 0.001 Ha convergence of the total energy. 

 The phonon band structure, phonon density of states, F(ω), and the Eliashberg 

function, α2F(ω), were calculated by the response function method [34], implemented in 

the ABINIT set of programs [32]. The isotropic Eliashberg function was obtained by 

averaging over the wave vectors ki and kf of initial and final states on the Fermi surface. 

Using the Eliashberg function, we calculated the real and imaginary parts of the self-

energy due to the electron-phonon coupling, and compared with the experimental ones in 

Sec. 5.  



4. Electronic structure of Au/Mo(112) 

 

Prior to the investigation of the electron-phonon coupling of Au/Mo(112), its 

detailed electronic band structure near EF must be understood. This is crucial in two 

ways: (1) since the electron-phonon coupling parameters in bulk and in surface are 

generally different, the origin of the bands (that is to say the contributing weight is 

surface-derived, bulk-derived, or a surface resonance) should be clearly understood when 

the experimental results are to be compared to the ab initio calculation, (2) due to the 

finite resolution of ARPES, there arises, in some cases, overlap of the spectral intensities 

which can obscure the small renormalization of the electronic band dispersion [22]. 

Having the detailed picture of the band structure mapped by ARPES enables us to choose 

the appropriate band (not obscured by the band nearby) for the accurate characterization 

of the electron-phonon coupling parameters.    

 Figure 2a shows the experimental band structure of the clean Mo(112) substrate 

along the  line obtained by ARPES with the p-polarization geometry (after ref. 

[22]). Among the four bands seen to cross the Fermi level, the bands labeled a2 (kF = 

0.60) and a4 (kF = 0.81 Å-1) have been identified to be surface-derived, while the bands a1 

(kF = 0.47 Å-1) and a3 (kF = 0.64 Å-1) are projected bulk bands. As the surface of Mo(112) 

is covered by Au, the significant change in the band structure is observed. Figure 2b 

shows the ARPES band mapping of Au/Mo(112) at the nominal Au coverage of 1 

monolayer (1 ML) as schematically illustrated in Figure 1a. Note that since the ARPES 

band mapping in Figure 2b was taken with p-polarization geometry (see sec. 2), only the 

electronic states with even reflection-parity with respect to the  line are observed 
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due to the photoemission selection rules [35] (the initial states with odd reflection-parity 

can be observed with s-polarization geometry). As is expected, the adsorption of Au 

monolayer results in the significant modification to the surface-derived bands (a2 and a4 

in Figure 2a) of the Mo(112) substrate. The clean Mo(112) surface weighted band a4 

(Figure 2a), with kF = 0.81 Å-1, is shifted to larger wave vectors away from the SBZ 

center to become the band b4 in Figure 2b, observed with kF = 0.91 Å-1 for Au/Mo(112). 

On the other hand, the other surface band of Mo(112), labeled a2 (Figure 2a), has 

disappeared from the ARPES spectrum upon Au adsorption (Figure 2b).  

 The bulk-derived bands are affected less upon Au adsorption. Although the band 

a1, a projected Mo bulk band with kF = 0.47 Å-1 (Figure 2a) is slightly shifted and ARPES 

intensity diminishes within 0.5 eV from EF (relative to the rest portion of the band), the 

general features of dispersion remain unchanged after the Au adsorption, which is then 

seen as the band b1 in Figure 2b. The dispersion of the band a3 (another Mo bulk band 

with kF = 0.64 Å-1) is more significantly affected by the Au adsorption, which evolves 

into the band b3 in Figure 2b. This change in the E-k dispersion and the enhancement of 

the ARPES intensity for the band b3, near 0.8 eV binding energy, is clearly evident in 

Figure 2b; the E-k dispersion changes sufficiently so that the b3 band exhibits ‘bending’ 

that is absent in the band a3 in clean Mo(112). Thus, it is evident that adsorption of a Au 

monolayer results in modification of the band structure of Mo(112) not only for its 

surface-derived states but also for the projected bulk states.  

It is important to note that the modification of the surface potential induced by the 

Au adsorption should quickly diminish into the bulk of Mo(112) due to the screening in 

metal substrate and therefore, the observed change in the projected bulk band structure 



should not be directly attributed to the change in the surface potential. The noticeable 

modification in the projected bulk states should therefore be derived from the 

hybridization with the electronic states of Au overlayer. Consequently, it is plausible to 

expect that the bands b1 and b3, observed with kF = 0.51 and 0.64 Å-1 respectively in 

Figure 2b, are surface resonance bands which have large weight (i.e., amplitude of the 

wave function) near the surface but penetrate into the Mo bulk with non-negligible 

amplitude. 

This view is consistent with the theoretical expectations. Figure 2c shows the 

calculated band structure of free-standing Au monolayer (detached from the Au/Mo(112) 

surface shown in Figure 1a) plotted along the  direction. In this plot, the band that 

crosses the Fermi level at kF = 0.64 Å-1, labeled c1, is apparent and it is seen to exhibit 

nearly parabolic dispersion down to ~500 meV. This Au band (c1) is expected to 

hybridize with the Mo bulk band (a3) to form a surface resonance band upon the 

adsorption on the Mo(112) surface. This is due to the presence of projected bulk bands of 

Mo(112) [22], namely the band a3 observed in ARPES ( Figure 1a), in the region of band 

c1 for the free standing Au monolayer. Figure 2d shows the calculated surface band 

structure of 1 ML Au/Mo(112) based on the 7-layer slab model overlaid on the ARPES 

spectrum of Figure 2b. The expected surface resonance band (the result of hybridization 

of the band c1 and a3) appears with kF = 0.66 Å-1 and agrees well with the band b3 

observed in ARPES. The band structure calculation for Au/Mo(112) indicates noticeable 

surface weight for this band (~52%) as well as for the other two bands seen to cross the 

Fermi level in ARPES spectrum (i.e., b1 and b4). 
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Here it must be noted that the band structure calculation indicates the odd 

reflection-parity for the Au band with downward dispersion away from the SBZ center. 

Therefore, due to known photoemission selection rules [35], this Au-derived band should 

only be observed with s-polarization geometry (or with unpolarized light). This explains 

the absence of this Au band in the ARPES band mapping taken with p-polarization 

geometry (Figure 2b). Although there are several other Au bands that are not clearly 

identified in ARPES band mapping in Figure 2b, this is perhaps either due to the odd-

reflection parities of those states or weak matrix elements in the photoemission process. 

Nonetheless, it is evident that the band b3 observed with kF = 0.64 Å-1 in ARPES should 

be identified as the surface resonance band arising from the hybridization between the Au 

overlayer states and the projected bulk states of Mo(112).  

 

5. Electron-phonon coupling 

  

The central equation in the analysis of electron-phonon coupling as well as other 

many-body interactions is quasiparticle spectral function (note that for convenience we 

set =1 throughout the following discussion) [36]: 

 

A(ω, k;T ) = − 1
π

ΣI (ω, k;T )
ω − E(k)− ΣR (ω, k;T )[ ]2 + ΣI (ω, k;T )2

,  (1) 

 

where ΣR and ΣI are respectively the real and imaginary part of self-energy (Σ = ΣR + iΣI) 

and E(k) is the dispersion relation for the bare particles (i.e., without many-body 

interactions). Note that ΣI is intrinsically a negative quantity. From the experimental 



perspective, starting point is the observation of A(ω, k) by ARPES and the goal is to find 

the self-energy associated with electron-phonon coupling. By finding the bare particle 

dispersion relation E(k) using some method, it is possible to obtain the complex self-

energy Σ(ω, k) from the observed spectral function, which characterizes the many-body 

interactions of the material in question [5,8,13-18].  

In general, the total self-energy (Σ) in (1) consists of contributions due to electron-

phonon coupling (Σ(e-p)), electron-electron coupling (Σ(e-e)), and electron-impurity 

coupling (Σ(e-i)). These self-energy contributions are additive, provided that the 

interaction mechanisms are independent, namely,  

 

.      (2) 

 

As the self-energy is a causal complex function, between the real and imaginary part, the 

Kramers-Kronig relation should hold as  

 

  
ΣR (ω, k) = 1

π
P

ΣI (ω ', k)
ω '−ω

dω
−∞

∞∫ ' ,    (3) 

 

where P denotes the Cauchy principal value. In calculations near the singularity at ω' = ω 

in the Kramers-Kronig transform, ω' = ω ± 1 meV was each divided into the increment of 

10-5 meV to obtain the proper convergence, equivalent to taking the Cauchy principal 

value numerically.  

Σ = Σ(e−p) + Σ(e−e) + Σ(e−i)



Besides the self-energy, another quantity of interest is mass enhancement factor at 

the Fermi level 1+λ(k = kF; T), which is defined by the equation 

 

 m* m =1+ λ(kF ;T ),      (4a) 

 

where m and m* are the ‘bare’ (or unrenormalized) band mass and the ‘dressed’ (or 

renormalized) band mass of the electron respectively. The mass enhancement parameter 

λ can be related to the real part of self-energy as 

 

 λ(kF;T ) = − ∂ΣR (ω, kF ;T )
∂ω ω=0

.     (4b) 

 

From a theoretical perspective, the starting point, in assessing band 

renormalization of the experimental band structure due to electron-phonon coupling, is 

the calculation of the Eliashberg function α2(ω, k)F(ω, k) and the goal is to obtain the 

spectral function (or the self-energy). Once the Eliashberg function has been determined, 

it is possible to calculate the imaginary part of the self-energy due to the electron-phonon 

coupling using the equation 

 

ΣI (ω, k;T ) = −π α 2 (ω ',k)F(ω ',k)
0

∞∫ 1− f (ω −ω ';T )+ f (ω +ω ';T )+ 2n(ω ';T )[ ] dω ' ,  (5) 

 

where f and n are Fermi and Bose distribution functions, respectively. To obtain the self 

energy, the integration of (5) was performed in 1 meV step using the midpoint rule. 



Further decrease in the integration step size was seen to result in negligible alterations to 

the numerical results. The real part of the self-energy can then be obtained using the 

Kramers-Kronig relation (3). If the bare particle dispersion relation E(k) is known, the 

spectral function can also be obtained with the self-energy.  

The difficulty is, of course, in calculating the Eliashberg function, which in the 

most general case depends on energy ω as well as the wave vector k. The first-principle 

calculation of such ω- and k-dependent Eliashberg function is a formidable task and it is 

conventional to compute the Eliashberg function averaged over the entire Brillouin zone, 

so that it only depends on ω (i.e., α2(ω)F(ω)). The mass enhancement parameter due to 

the electron-phonon coupling (or electron-phonon coupling parameter) λ, in the zero-

temperature limit, can be obtained as the inverse moment of the Eliashberg function in 

energy as 

            

 λ(T = 0) = α 2 (ω)F(ω)
ω

dω
0

∞∫ .   (6) 

 

There are two physically equivalent methods to extract the self-energy from the 

observed spectral function. One method is to slice the ARPES spectrum at constant 

momentum k, which gives the sequence of energy distribution curves (EDCs) for each k. 

The other method is to slice the ARPES spectrum at constant energy, which gives the 

sequence of momentum distribution curves (MDCs). Although, in principle, both 

methods are equivalent, the MDC method is usually more advantageous. The spectral 

functions are not precisely Lorentzian either in the EDC or the MDC due to the k- and ω-



dependence of Σ as well as the functional dependence of E(k). However, the k-

dependence of Σ is negligible in many cases including the present one compared to the ω-

dependence in the vicinity of single band. Furthermore, if we make the approximation 

E(k) = -v(k-kF) (v = band velocity), justified sufficiently close to EF, then the MDC 

lineshape is in fact Lorentzian with the peak position (kpeak) and FWHM (Γ) given by 

 

kpeak (ω) = kF − 1
v

ω − ΣR (ω)[ ]

Γ(ω) = − 2
v

ΣI (ω)
     (7) 

 

for each MDC with fixed energy ω. Thus, MDC slices are generally expected to fit a 

Lorentzian lineshape better than the EDCs, whose lineshape can be strongly asymmetric 

in ω. For this reason, in the present study, the MDC methods were employed to extract 

the peak position and the width of the lineshape, which directly relates to the real and 

imaginary part of Σ as in (7). 

The presence of the surface resonance states for Au/Mo(112), resulting from the 

hybridization of the Mo bulk states with the surface states on Au overlayer, makes the 

system ideal for investigating the effect of adsorption on the strength of electron-phonon 

coupling. So far, several experimental and theoretical studies of Mo [5,18,19,34] have 

been devoted to the characterization of the electron-phonon coupling parameters of the 

bulk as well as various surfaces. In particular, the mass enhancement parameter due to the 

electron-phonon coupling for Mo bulk was calculated to be λ = 0.39-0.42 [19,34], which 

may be in agreement with the possible experimental identification of λ = 0.42 for the 



bulk-weighted band [18,22] (some of the possible complication are detailed in [22]). The 

electron-phonon coupling parameters λ for Mo(110) and Mo(112) have also been 

reported [5,19] and are summarized in Table 1. Thus, there are fairly consistent 

characterizations of the electron-phonon coupling parameters for the Mo substrate. 

In this study, the theoretical and experimental investigations of the electron-

phonon coupling parameters for 1 ML Au/Mo(112) have been carried out and are 

compared to those of clean Mo substrate. Here, the band b3 with kF = 0.64 Å-1 (see Figure 

2b) is analyzed with MDC method described above with the energy increment of 1.5 

meV to extract the peak positions (kpeak) as well as the linewidth (Γ). Figure 3a shows the 

ARPES spectrum of the analyzed band within 150 meV from EF. The MDC peak 

positions as well as the expected bare dispersion (broken curve fitted by parabola with the 

fixed kF determined from the experiment) are overlaid. The distortion of the band within 

~50 meV below EF, characteristic of the electron-phonon coupling, is apparent. The 

parabolic fit shows an excellent match down to at least 500 meV and is given by  

 

E(k) =  -17.666k2 + 14.404k - 1.9828,    (8) 

 

where E and k are measured in units of eV and Å-1 respectively.  

Figure 4 shows the calculated phonon density of states F(ω) and the phonon band 

structure. The electron-phonon coupling function α2(ω) are calculated as outlined in 

section 3 and it gives the Eliashberg function α2(ω)F(ω) shown as solid curve in Figure 4. 

Given the Eliashberg function, the spectral function can be calculated using the 

experimentally determined bare dispersion E(k) given by (8) and the broadening due to 



the electron-impurity coupling (whose value is estimated below) as shown in Figure 3b. 

The calculated MDC peak positions are shown as a solid curve. In the simulation (Figure 

3b), the finite energy resolution and the self-energy due to the electron-electron coupling 

were not included. As described below the electron-electron coupling is not significant 

near EF. In Figure 3b, the experimental MDC peak positions are also indicated and are in 

good agreement with the calculated spectral function. Figure 3c shows the calculated 

spectral function with electron-impurity coupling “turned off”, in which the agreement 

between the experimental MDC peak positions and the expected characteristic distortion 

(of band b3 in Figure 2b) due to electron-phonon coupling is more clearly seen.  

In order to get further quantitative insights into the self-energy, resulting from 

electron-phonon coupling, the experimental self-energy was extracted using (7) with the 

group velocity v = -35.332k + 14.404 eV/Å-1 and may be compared to the calculated self-

energy at T = 60 K (solid curves), as in Figure 5. It can be seen that for the real part of the 

self energy (Figure 5a), there is reasonable agreement between theory and experiment 

(note that in the binding energy scale as employed here, ΣR is negative for the occupied 

states). Figure 5b also illustrates good agreement between theory and experiment for the 

imaginary part of the self energy, provided that the calculated ΣI is rigidly shifted up by 

171 meV, corresponding to the electron-impurity coupling and the instrumental 

broadening of the MDC linewidth. Since the MCD width at EF is evaluated to be ~0.022 

Å-1 and the instrumental angular resolution is estimated to be 0.2° (or in k-space ~0.008 

Å-1), the broadening due to the electron-impurity coupling can be estimated as ~0.019 Å-1  

Thus, the self-energy contribution from the electron-impurity coupling can be estimated 

as 2Σ(e-i)
I ~156 meV. Note that the electron-impurity coupling only affects the lifetime of 



the quasiparticle and hence Σ(e-i)
R = 0, while the electron-impurity coupling gives 

Lorentzian lineshape and the instrumental broadening is modeled by Gaussian lineshape.  

It is important to mention that since the Au band, that is the focus of much of our 

attention here, is a surface resonance, the hybridization of local (surface) state of Au 

(band c1 in Figure 2c) with the Mo bulk continuum (band a3 in Figure 2a) may cause the 

linewidth broadening. However, given the agreement of the experimental and calculated 

self-energy due to electron-phonon coupling and the internal consistency between 

experimental ΣR and ΣI (related by Kramers-Kronig relation (3)), the linewidth 

broadening due to such Au-Mo hybridization is either negligible or nearly constant within 

the small window of 150 meV below EF. Thus, some portion of the estimated 2Σ(e-i)
I ~156 

meV may be due to the bulk-surface hybridization. Note that the real part of self-energy 

due to hybridization is already accounted for in the ‘unrenormalized’ parabolic fit in 

Figure 3a and thus expected to give negligible alteration in Figure 5a.  

Another scattering mechanism, electron-electron coupling is expected to give rise 

to the self-energy Σ(e-e) with the monotonic increase in |2Σ(e-e)
I| as a function of binding 

energy [15,37,38] and has been observed in various metallic systems including Mo [18]. 

For Au/Mo(112), as can be seen from the essentially constant imaginary part in Figure 5b 

(2ΣI ~ 210 meV for E > 50 meV), Σ(e-e) appears to be dominated by Σ(e-p) and Σ(e-i) and the 

contribution from Σ(e-e) is likely rather small, in contrast to situation that applies to the 

Mo substrate [18]. 

 From the point of view of anisotropy of the system, it is rather surprising that the 

experimentally extracted Σ(e-p) for a specific band gives a good agreement with that 

calculated by averaging over all the possible ki and kf. Such a calculation gives identical 



Σ(e-p) values for all the bands in the entire SBZ, whereas in general it should be different 

for each band. Either that the structural and electronic anisotropy of 1 ML Au/Mo(112) is 

not significant enough to cause major anisotropy in electron-phonon coupling (to the 

degree it can be readily identified in the scale of Figure 5), or the band chosen for this 

particular analysis “coincidentally” agrees very well with the homogeneous (or averaged) 

model of electron-phonon coupling, in spite of the anisotropic electronic structure [22].  

 

6. The important phonon modes for electron-phonon coupling 

 

 Given the evidence in favor of electron-phonon coupling near the interface of 

Au/Mo(112), it is worthwhile to explore qualitatively the important modes for electron-

phonon coupling (i.e., which phonon modes may be giving rise to the major contribution 

to Σ(e-p)) for the observed band b3 with (kF = 0.64 Å-1). Note that the low energy phonon 

modes contribute more significantly to the self-energy than those lying at higher energy. 

This can be seen from the fact that the electron-phonon coupling matrix element is 

proportional to ω-1/2 (see (A.5) in Appendix A). In fact, it has been pointed out that the 

contributions from the acoustic phonon modes (or Rayleigh modes) give dominant 

contribution to the electron-phonon coupling at the surface of Cu(111), Ag(111) and 

Au(111) [9,10]. In Figure 4, among the surface phonon modes accessible along the  

line (marked by colored squares), the surface acoustic modes (shear horizontal modes in 

brown and vertical modes in red) lie well below the bulk band edge and produces the 

pronounced peaks at 5 and 9 meV in the phonon density of states F(ω). However, along 

the  line, the symmetry of the electronic states and the phonon modes restricts the 
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possible modes available for electron-phonon coupling. Since the electronic states and 

phonon modes lying along  are described by C1h group, they can be classified as 

either even (A’ irreducible representation) or odd (A”) with respect to the reflection about 

 line. Since experimental band mapping in Figure 2b as well as Figure 3a are taken 

with p-polarization geometry, in which vector potential of the incident light lies within 

xz-plane (see Figure 1a), according to the dipole selection rule [35], the electronic bands 

analyzed for the electron-phonon coupling is of even symmetry (A’). On the other hand, 

the symmetry properties of phonons are classified by their polarizations. It can be derived 

for the group of C1h, under certain reasonable approximations, that the electron-phonon 

coupling matrix element vanishes unless the electronic state and phonon mode are both 

even or both odd (the detailed derivations are summarized in Appendix A). Thus, the 

shear horizontal phonon modes (marked brown) are forbidden to couple with the 

electrons in the Au overlayer band that has been the focus of much of our analysis here. 

Although this selection rule is valid only along the  line, the coupling matrix 

element is usually small near this high-symmetry line if present at all. One can therefore 

expect that shear horizontal modes contribute less to the observed self-energy than do the 

shear vertical modes. This leads to the inference that the surface phonons, particularly 

shear vertical modes, play an important role in the observed electron-phonon coupling in 

addition to whatever may be the contribution from the bulk phonons. 
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7. The enhancement of electron-phonon coupling 

 

 The mass enhancement parameter λ(T), as defined in (4), is important in 

characterizing the electron-phonon coupling strength. In the present study, λ estimated 

from the calculated Eliashberg function gives λ(T = 0) = 0.68 and λ(T = 60 K) = 0.67. 

The experimental extraction of λ(T) involves some difficulty as the slope of Σ(e-p)
R(ω), 

with respect ω, must be evaluated right at EF, in the energy region around which the 

ARPES intensity diminishes proportional to the Fermi function. In order to overcome this 

difficulty, we have fit the experimental ΣR(ω) using the free-parameter Eliashberg 

function α2F(ω), in which α2 is taken to be the energy-independent free parameter, and 

extract λ associated with the α2F(ω) which gives the best fit for both ΣR(ω) and ΣI(ω). 

The dotted curves in Figure 5 shows the self-energy extracted from the free-

parameter Eliashberg function with α2 = 0.23. This fit gives a better overall match with 

the experimental data points (particularly for ΣR(ω)). Given this free-parameter 

Eliashberg function, the λ can be estimated as 0.70 at T = 0 and 0.65 at T = 60 K, 

providing fairly good agreement between the theory and the experiment. This is 

consistent with the overall agreement between the theory and the experiment obtained for 

the mass enhancement parameter λ, as summarized in Table 1. 

 The λ of 1 ML Au/Mo(112) should now be compared to that of the Mo substrate. 

Although the combination of theory and experiment gives the range of λ = 0.68 – 0.70, it 

is evidently larger than λ = 0.39 - 0.42 for Mo bulk and λ = 0.42 for Mo(112) surface as 

identified in the previous studies (see Table 1). It is plausible to argue that adsorption of 



Au on Mo(112) enhances the electron-phonon coupling. Such an increase in λ can be 

viewed as a direct consequence of the soft Au phonon modes contributions to the 

electron-phonon coupling. Thus, the addition of soft phonon modes by means of 

adsorption does affect the electron-phonon coupling parameter and the quasiparticle 

effective mass. 

 

8. Summary 
 

The investigation of the electronic structure and the electron-phonon coupling 

parameters of Au/Mo(112), at a nominal adlayer coverage of 1 ML of Au, has been 

performed by means of high-resolution ARPES and DFT calculations. The adsorption of 

Au modifies the electronic band structure of Mo(112) and the details of the band structure 

indicates the hybridization occurs between the projected bulk electronic states of 

Mo(112) and those of Au overlayer. The detailed analysis of the ARPES spectrum leads 

to evaluations of the many-body interactions in terms of electron-phonon, electron-

electron and electron-impurity coupling near the interface of Au/Mo(112) and suggests 

that the electron-phonon coupling provides a dominant contribution to the self-energy of 

quasiparticles. In spite of the appreciable structural and electronic anisotropy of 

Au/Mo(112), the DFT calculation of k-averaged Eliashberg function yields a self-energy 

due to electron-phonon coupling in good agreement with experiment, in spite of the flaws 

of applying a k-averaged Eliashberg function to a particular k point along  Brillouin 

zone line. Given the change in the quasiparticle self-energy upon Au adsorption on 

Mo(112), the Au overlayer enhances the strength of electron-phonon coupling at EF 

(from 0.39-0.42 to 0.68-0.70) and noticeably suppresses the electron-electron interaction. 

Γ − X



The enhancement of electron-phonon coupling likely derives from the creation of soft 

surface phonon modes upon Au adsorption. 

        

Appendix A: Selection rule for electron-phonon coupling 
 

The matrix element that describes the electron-phonon coupling is given by [1,39] 

 

       (A.1) 

 

where Hep is the electron-phonon coupling Hamiltonian and α (α’) and β (β’) denote the 

complete set of quantum numbers for initial (final) electron state and phonon state 

respectively. In the rigid-ion approximation [1,39], Hep can be written in position basis as 

 

      (A.2) 

where uj is the small displacement of j-th ion from its equilibrium position Rj. Assuming 

the electronic part of the wave function can be written as a product of Bloch states, the 

coupling of a single electron with wave vector k with phonon mode of wave vector q and 

polarization p can be described by the matrix element 

 

     (A.3) 

 

α ', β ' Hep α, β

Hep = uj ⋅ ∇V (r − Rj )
j
∑

Mep = β ' ψ*
k ' uj ⋅ ∇V (r − Rj )

j
∑ ψk∫ d3r β



where ψk  and ψk '
 denote the initial and final electronic wave functions, respectively. 

Since the displacement uj is an operator which acts on the phonon states,  

 

     (A.4) 

  

where a+
q,p and a-q,p are the creation and annihilation operators of phonon with wave 

vector q and polarization p respectively, and p̂  is the phonon polarization unit vector. 

The matrix element becomes 

 

 (A.5) 

 

where N is the number of ions, M is the ion mass, and  is the frequency of the 

phonon mode (q, p). The phonon part of matrix element vanishes unless the initial and 

final states differ in the occupation number of the mode (q, p) by unity. In particular, if 

we take the process in which one particular phonon of (q, p) is emitted by an electron, we 

have 

 

  (A.6) 

uj = −i
2NMωq, p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q, p
∑

1/2

eiq⋅Rj a+
q, p + a−q, p( ) p̂

Mep = β ' − i
2NMωq, p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q, p
∑

1/2

eiq⋅Rj a+
q,p + a−q, p( ) β ψ*

k ' p̂ j ⋅ ∇V (r − Rj )ψk∫ d3r
j
∑

ωq, p

Mep = nq, p − i
2NMωq, p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

eiq⋅Rj a+
q, p + a−q, p( ) nq, p −1 ψ*

k ' p̂ j ⋅ ∇V (r − Rj )ψk∫ d3r
j
∑

       = −i
nq, p

2NMωq, p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

eiq⋅Rj ψ*
k ' p̂ j ⋅ ∇V (r − Rj )ψk∫ d3r

j
∑



 

where  denotes the state in which there is nq,p phonons of mode (q, p) (the 

occupation numbers for all the other phonon modes are omitted for brevity). Note that q 

and p now denote the wave vector and the polarization of specific phonon mode involved 

in the electron-phonon coupling and are no longer the running index of summation. Since 

the phonon part of the matrix element is now constant, the electron-phonon coupling 

selection rule is dictated by the electronic part of the matrix element 

 

        (A.7) 

 

In general, the integral must vanish if the triple tensor product of irreducible 

representations of initial state, final state and perturbation operator does not contain a 

fully symmetric representation. In the present study, the band renormalization is observed 

for the electronic states near the Fermi level along  direction and the symmetry of 

the associated wave functions were found to be even with respect to the reflection about 

xz-plane (i.e., transforms as A’ representation in C1h group). Thus, the phonons with wave 

vector along  direction are allowed to couple with these electrons of A’ symmetry 

only if the polarization of phonon and the final electronic state share the same symmetry 

(i.e., both A’ or both A”). In particular, for the coupling with q = 2kF, for which the initial 

and final electronic states share the same symmetry (A’), we are lead to conclude that the 

coupling phonons must also have A’ symmetry. Since the horizontal transverse mode 

(marked brown in Figure 5) transforms as A”, it cannot serve as a coupling mode and 

hence not expected to contribute to the Eliashberg function or the observed band 

nq, p

ψ*
k ' p̂ j ⋅ ∇V (r − Rj )ψk∫ d3r

j
∑
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renormalization (at least for the contribution due to electron-phonon coupling). It is 

important to note that this selection rule only applies when the initial and final electronic 

states lie along the same symmetry axis. For any final states at the general point in the 

SBZ (near the Fermi level), the symmetry selection rule does not a priori exclude the 

possibility of electron-phonon coupling, provided, of course, the existence of phonon 

modes which conserve the momentum.  
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Figure captions 

 

Figure 1: The schematic illustration of Au/Mo(112) at the coverage of nominal 1 ML (a). 

The corresponding surface Brillouin zone is illustrated in (b) with the approximate 

dimensions along  and  lines. 

 

Figure 2: The ARPES band mapping taken along the  line with the incident photon 

energy of 22 eV with p-polarization geometry (i.e., only the states with even reflection-

parity about  are visible) for (a) Mo(112) (reprinted from [21]) and, (b) 1 ML 

Au/Mo(112). (c) shows the band structure along  line of free-standing monolayer 

of Au with the same structure as the topmost layer of Mo(112). The band with the Fermi 

level crossing of kF = 0.64 Å-1 can be identified and is expected to hybridize with the Mo 

bulk state with nearly the same Fermi momentum kF. The band structure calculated from 

the 7-layer slab model are overlaid for 1 ML Au/Mo(112) in (d). For (d), the significantly 

surface-weighted states with even reflection-parity are marked with yellow circles ( ). 

 

Figure 3: (a) The ARPES spectrum taken along the line in the vicinity of the Fermi 

level. The surface resonance band with kF = 0.64 Å-1 is seen to exhibit band 

renormalization (a mass enhancement in the dispersion) due to electron-phonon coupling 

within ~50 meV below the Fermi level. The peak positions obtained in the MDCs are 

indicated with circles ( ) and the expected unrenormalized band dispersion is indicated 

with a blue broken curve (---). (b) The spectral function weighted with the Fermi function 

at T = 60 K in the vicinity of Fermi level calculated from the theoretically determined 
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Eliashberg function and experimentally determined bare band dispersion E(k) and the 

impurity scattering rate (estimated to be ~78 meV contribution to ΣI). The experimental 

MDC peak positions ( ), determined from ARPES, are overlaid for the comparison and 

are seen to agree well with the theoretically expected renormalization. The peaks of the 

calculated spectral functions are denoted as a red solid curve (⎯) as a visual guide. (c) 

The calculated spectral function in which impurity scattering is turned off (band 

renormalization is solely due to electron-phonon coupling). The agreement between the 

ARPES-determined MDC peak positions ( ) and the calculated band distortion is more 

apparent. Note that the change to the Fermi edge cut-off at finite temperature (60 K) is 

also turned off for the visual clarity. 

 

Figure 4: The phonon band structure calculated using the 7-layer slab model is shown in 

(a), where the surface-weighted modes are marked with thick dotted line (blue = 

longitudinal mode; red = vertical mode; brown = horizontal mode). The isotropic 

Eliashberg function, α2F(ω), calculated from the 7-layer slab model is shown in (b). Note 

that the Eliashberg function is dimensionless.  

 

Figure 5:  The plots of the real part (a), and the imaginary part (b) of self-energy for the 

surface resonance band with kF = 0.64 Å-1. The experimental data points ( ) for ΣR are 

obtained from the deviation of the ARPES peak positions from the expected 

unrenormalized band dispersion (see Figure 3a) and those for ΣI are obtained from the 

(energy) width of the photoemission peaks as described in the text. The calculated self-

energy due to electron-phonon coupling was obtained using eq. (3) and (5), from the 



calculated isotropic Eliashberg function at T = 60 K, and plotted as solid curves. The 

calculated ΣI is rigidly shifted up by 171 meV so as to fit the experimental data 

(interpreted as deriving from the electron-impurity coupling and instrumental broadening 

as discussed in text). The dotted curves represent the self-energy obtained from the free-

parameter Eliashberg function that gives the best fit to the experimental data. 
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Table 1: 

Mass enhancement factors λ(T = 0) 

    Theory    Experiment  

------------------------------------------------------------------------------------------ 

Mo bulk  0.39 – 0.42 [19,34]    0.42 [18]  

Mo(110)   -     0.42-0.52 [5]  

Mo(112)   0.46 [19]     - 

Au/Mo(112)   0.68 (0.67 at 60 K)    0.70 (0.65 at 60 K) 


