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Abstract

Modeling interfacial phenomena often requires both a detailed atomistic description of surface

interactions and accurate calculations of long-range deformations in the substrate. The latter can

be efficiently obtained using an elastic Green’s function if substrate deformations are small. We

present a general formulation for rapidly computing the Green’s function for a planar surface given

the interatomic interactions and coupling the Green’s function to explicit atoms. The approach is

fast, avoids ghost forces and is not limited to nearest-neighbor interactions. The full system com-

prising explicit interfacial atoms and an elastic substrate is described by a single Hamiltonian and

interactions in the substrate are treated exactly up to harmonic order. This concurrent multi-scale

coupling provides simple, seamless elastic boundary conditions for atomistic simulations where

near-surface deformations occur, such as nanoindentation, contact, friction, or fracture. Applica-

tions to surface relaxation and contact are used to test and illustrate the approach.
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I. INTRODUCTION

A large number of interfacial problems are challenging to simulate using brute force

methods. The response depends on details of atomic interactions at the interface, and also

on long-range elastic deformations of the bulk. This situation arises in studies of contact

and friction in scanning probe experiments1,2 or between atomically rough surfaces3,4, and

fracture of brittle5 or ductile6 materials. The elastic response of the supporting solid can

also appreciably influence chemi- and physisorption processes at crystal surfaces, including

stress corrosion7 and thin film growth8.

There has been great recent interest in accelerating such simulations by treating each spa-

tial region with the modeling method that most efficiently captures material response5–7,9–12.

An explicit atomistic treatment is essential at the interface where gradients in stress, strain

and chemical composition may be large. Long-range elastic deformations in the bulk extend

to depths that are comparable to the length scale of variations along the interface L, but

the strains at these depths may be small enough to treat with models that assume slow

variations and/or linear response. In many cases, a simplified treatment of the substrate

may decrease the computational cost for force calculations substantially, from order L3 to

order L2 ln(L).

A variety of methods for approximating the response of the substrate have been proposed

and many are reviewed and contrasted in Refs. 9 and 11. Most treat the interface atomisti-

cally and transition to a finite element description for the bulk. In general this introduces

ghost forces near the interface or leads to a model with no underlying Hamiltonian.9,12 There

is an alternative approach that avoids both problems. An atomistic description is retained

throughout the system, but atomic interactions in the substrate are treated in the harmonic

approximation. The linear response of the substrate can then be efficiently calculated using

Green’s function methods.

Traditionally, Green’s function techniques have been used to describe the elastic response

of the infinite or semi-infinite bulk to inclusions such as point, line or planar defects by in-

voking the Dyson equation.13–16 Recent extensions of this approach have included a full

nonlinear atomistic description of the defect coupled to a harmonic lattice17 that smoothly

connected to a continuum description at large distances.18–20 Green’s function techniques

have also been employed to solve boundary value problems in continuum elasticity.21–23 An
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atomistic system can be coupled to a continuum boundary20,24, but the strain field will only

match exactly for long wavelength deformations. Recently, Campaña and Müser25 showed

that a Green’s function approach can be used for the solution of atomic-scale contact prob-

lems. In their work, the surface Green’s function is evaluated from a fluctuation-dissipation

theorem. Assuming that the underlying potential is harmonic, the mean response is not

affected by these fluctuations. A similar method was used to find the dynamic Green’s

function in complex geometries by Cai et al.26 Most applications of the Green’s function

approach to contact problems4,25,27–29 have used the analytic solution30 for simple cubic lat-

tices, or the isotropic continuum Green’s function.3,31 An implementation of the code has

been ported to the widely used molecular dynamics package LAMMPS.32–34.

There are two difficulties with the Green’s function approach as it has been implemented

for contact problems. One is that the formulation does not include all the atomic forces

near the interface between explicit and harmonic regions. The neglected forces vanish in the

special case of nearest-neighbor interactions at zero pressure, which has been considered in

most past work. In other cases, these forces must be included or the coupled system does

not satisfy Newton’s third law. Neglecting them creates problems similar to ghost forces

in other methods9 and creates artificial surface relaxation at the elastic/explicit interface.

The second difficulty is that calculating the Green’s function with the fluctuation dissipation

theorem can require significant computation. All L3 atoms in the substrate must be included

and sampling long wavelength modes correctly requires times that are at least of order L.35

Thus, while the Green’s function only needs to be calculated once, it may require more

computational effort than calculations using it.

In this paper we describe an approach that includes all interatomic forces near the inter-

face and allows rapid calculation of the elastic Green’s function for an arbitrary interaction.

Fourier transforming the equations of motion in the plane of the substrate decouples the

equations for each in-plane wavevector ~q.36 The remaining coupling between atomic planes

of the substrate is effectively one-dimensional and can be solved for any crystalline solid

without the need of separate molecular dynamics simulations and fluctuation-dissipation

analysis. Prescriptions for solving the equations using a transfer matrix formulation36,37 and

a renormalization transformation38,39 are described. Full dynamical equations are developed

for a number of crystals and interactions, and then implemented for static problems. The

static Green’s function can be precomputed in a time that is O(L2 lnL) and thus represents
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a negligible fraction of the total computation time for contact problems. The only approxi-

mation intrinsic to this construction is linear response sufficiently far below the surface.

To demonstrate that the resulting approach provides seamless boundary conditions for

interfacial calculations we apply the method to three cases (Section III). The first is relax-

ation of the spacing between atomic planes near a free surface. Full atomistic results are

reproduced by our method, but previous formulations do not include the forces that produce

surface relaxation.25,33 We next consider Hertzian contact between a rigid sphere and elastic

substrate and show that a few planes of explicit atoms on the Green’s function layer allow

the anharmonic corrections to Hertz theory to be captured. Our last example is contact

of a randomly rough stepped surface with a flat substrate. A few planes of explicit atoms

allows both anharmonic effects and subsurface plasticity to be captured up to relatively high

contact areas.

II. ELASTIC SURFACE GREEN’S FUNCTIONS

We start from the total energy E({~riα}) of the crystal as a function of the positions

of all atoms ~riα. The energy may have arbitrary form and could be replaced by the free

energy to model the response at finite temperature. Atoms are then partitioned into three

types (see Fig. 1): Substrate atoms, boundary atoms and explicit atoms. The explicit

atoms may be anything that interacts with the boundary atoms, including a continuation

of the crystal, adsorbed atoms, or atoms from an opposing surface. The goal of the Green’s

function formulation is to absorb the linear response of the substrate atoms into an effective

interaction between boundary atoms. This reduces the total number of degrees of freedom

to those of the boundary and explicit atoms.

The width of the boundary region must be greater than the range of interactions so that

there are no direct interactions between explicit and substrate atoms. The boundary layer

is constructed so it satisfies this condition and contains an integer number of primitive unit

cells along its width. The substrate is then divided into layers of the same width, so that all

atoms are accounted for and each layer only interacts with adjacent layers. In the following,

Greek indices α, β, . . . identify layers, with the boundary layer at α = 0 (see Fig. 1). Latin

indices i, j, . . . will number unit cells within each of these layers.

The total energy is divided into terms that involve interactions between explicit atoms,
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FIG. 1: (Color online) (a) Side view of a face-centered cubic (fcc) crystal with a (100) surface

showing the layer structure for second-nearest neighbor interactions. The top atoms are treated

explicitly. In this case they represent a continuation of the crystal. The boundary layer (α = 0)

is thick enough to prevent direct interactions between explicit and substrate atoms. The effect

on boundary atoms from the elastic response of substrate atoms is captured using the Green’s

function. The force-constant matrix D has diagonal components U′
0 and U′ within the layers and

off-diagonal components V coupling adjacent layers. Layers are labeled by the index α and unit

cells in each layer (square boxes) by the index i. Arrows show the atoms that produce a force on

one atom in the boundary layer. Only the atoms in the boundary and substrate (solid arrows)

contribute to the net elastic force ~fi0. As a result, there is a net force that would be balanced

by the force from explicit atoms (dashed arrows) if the explicit atoms continued the fcc crystal.

(b) Top view of atoms at top of boundary layer. Periodicity in this plane is used to decouple the

response at different wavevectors in the first Brillouin zone of the crystal. The solid and dashed

lines show the conventional and primitive unit cells for the surface.

Eee, between explicit and boundary atoms, Eeb, and between boundary and substrate or

boundary atoms, Ebs:

Etot = Eee + Eeb + Ebs . (1)

The first two terms are treated exactly, while Ebs is treated in the usual harmonic

approximation.17,40 The energy Ebs is expanded in terms of displacements about a refer-

ence configuration. This is usually the ground state, but could be a crystal under a uniform

strain that most closely approximates the loaded crystal. For example, under high contact
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pressures, there will be a mean compressive strain that extends throughout the substrate.

We will denote the set of displacements from equilibrium for the nc atoms in unit cell i

in layer α by the 3nc dimensional vector ~uiα (see also Appendix A). The harmonic approx-

imation for Ebs can then be written as:

Ebs = E0 −
∑

iα

~fiα · ~uiα +
1

2

∑

iαjβ

~uiαDiαjβ~ujα +O(u3), (2)

where E0 is the energy of the reference state, ~fiα is a 3nc dimensional vector giving the force

on atoms in the iα unit cell, and Diαjβ is the 3nc × 3nc force-constant matrix:

Diαjβ ≡ ∂2Ebs

∂~uiα∂~ujβ

∣

∣

∣

∣

~uiα=0,~ujβ=0

. (3)

Since we expand about a static solution, the total force

~fiα ≡ −∂Ebs

∂~uiα

∣

∣

∣

∣

~uiα=0

(4)

must vanish for all substrate atoms (α > 0). For boundary atoms, ~fi0 is generally not zero

because it only includes the boundary and substrate interactions. These are indicated by

solid arrows in Fig. 1a, and the forces coming from explicit atoms are indicated by dashed

arrows. In this figure, the explicit atoms continue the ideal crystal and exert a force that

is equal and opposite ~f exp
i0 = −~fi0. If the crystal is terminated at the boundary layer, the

unbalanced forces give rise to the well-known phenomena of surface relaxation.41 Previous

applications of Green’s functions to contact mechanics25 did not include ~fi0. However they

generally focused on nearest-neighbor interactions and crystals at zero pressure. For this

very special case ~fi0 vanishes and there is no surface relaxation. In almost all other cases

the forces must be included.

The dynamical equation for the boundary and substrate atoms can now be written as:

m
∂2~uiα

∂t2
+
∑

jβ

Diαjβ~ujβ = δ0α(~fi0 + ~f exp
i0 ) (5)

where m is a diagonal matrix whose elements equal the mass associated with each degree of

freedom in the unit cell, the forces are only nonzero for the boundary layer, and ~f exp
i0 is the

force from explicit atoms. Note that even if explicit crystalline atoms are present on top of

the boundary layer, the forces ~fiα and f exp
iα do not vanish individually and hence we need to

consider both explicitly.
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The dynamical equation is simplified by transforming into reciprocal space within the

plane of the layers and remaining in real space in the perpendicular direction. Because the

crystal retains translational symmetry within the plane (Fig. 1(b)), the equations for each

two-dimensional wavevector ~q in the first Brillouin zone (BZ) are decoupled. We denote the

set of two dimensional lattice vectors that connect the unit cells within the boundary layer

by ~Ri0. The unit cells in all other layers are then located at ~Riα = ~Ri0 + α~c where ~c is the

basis vector connecting unit cells in adjacent layers. The Fourier transforms in space and

time are defined as:

~uα(~q, ω) =
∑

j

∞
∫

−∞

dt~ujα(t)e
−i~q·~Rj0+iωt, (6)

~ujα(t) =

∫

BZ

d2q

ABZ

∞
∫

−∞

dω

2π
~uα(~q, ω)e

i~q·~Rj0−iωt, (7)

where the sum in the first equation is over all unit cells in the boundary layer. The integral in

the second equation runs over all wavevectors in the two-dimensional first BZ of the surface

and ABZ =
∫

BZ
d2q is the BZ area.

Translational symmetry in the substrate guarantees that Diαjβ only depends on relative

positions Ri0 − Rj0 and β − α. The Fourier transform is:

Dβ−α(~q) =
∑

k

Djαkβe
−i~q·(~Rj0−~Rk0), (8)

and must vanish for |β −α| > 1 because interactions do not extend beyond adjacent layers.

The convolution theorem can be used to write the Fourier transform of the dynamical

equation (Eq. (5)) as:

∑

β

(

−mω2δαβ +Dαβ(~q)
)

~uβ(~q, ω) = δα0 ~ftot(~q, ω) (9)

where ~ftot includes both internal and explicit forces and only acts on the boundary layer.

In the following we assume that the substrate terminates at layer α = N . Within the

substrate, D only depends on β−α and only couples adjacent layers. Let U′(~q) = Dαα(~q) be

the force-constant matrix that couples within each layer and Vα(~q) = Dα(α+1)(~q) the matrix

coupling to the nearest layer beneath. Then V
†
α(~q) is the matrix coupling to the nearest layer

above (see Fig. 1), where † denotes the Hermitian conjugate. The force-constant matrix has
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a tridiagonal form that facilitates solution:

D =



























U
′
0 V 0 · · · 0 0

V
†
U

′
V · · · 0 0

0 V
†
U

′ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U
′

V

0 0 0 · · · V
†
U

′
N



























. (10)

As discussed below, the diagonal term for the final layer, U′
N , depends on the boundary

conditions imposed on the bottom of the substrate. The term U
′
0 differs from U

′ because

the diagonal elements of Diαiα include terms from nearest neighbors in all layers. This can

easily be seen by considering the case of a pair potential coupling two atoms, φ(~ri−~rj). The

second derivative of this part of the total energy will contain terms diagonal in i. Since the

top layer has fewer neighbors included in the harmonic approximation, the diagonal terms

will be reduced. Specific examples are provided in Appendix A.

The displacements throughout the substrate are linear functions of the forces applied to

the boundary layer:

~uβ(~q, ω) = Gβ0
~ftot(~q, ω) (11)

Here the Green’s function G satisfies the equation

∑

β

(

−mω2δα,β +Dαβ(~q)
)

Gβγ(~q, ω) = δαγI (12)

where I is a 3nc × 3nc identity matrix.

We only need to calculate G00, since Eeb only involves displacements of the boundary

layer. It is convenient to express everything in terms of these displacements, which can then

be used to calculate the forces from explicit atoms as well as the substrate force. Defining

the surface stiffness matrix Φ = G
−1
00 we have

~ftot(~q, ω) = Φ(~q, ω)~u0(~q, ω). (13)

Equation (13) resembles Hooke’s law, and the coefficients Φ can be regarded as renormalized

spring constants that govern the response of the elastic half space.25 Note that even though

the atomistic interaction within the bulk may be short ranged, the real space coefficients Φ

typically couple the surface over all length scales.
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One can evaluate the Green’s function using a transfer matrix formulation. This approach

has been previously applied to the analysis of the electronic36 and phononic37 structure of

surfaces, and more generally to the statistical mechanics of systems with only short ranged

interactions, like the Ising model.42–44 Our derivation is most similar in form to that of

Velasco and Ynduráin.37 Unlike the force-constant matrix, the Green’s function is not sparse.

We denote the individual elements by

G =





















G00 G01 G02 · · · G0N

G10 G11 G12 · · · G1N

G20 G21 G22 · · · G2N

...
...

...
. . .

...

GN0 GN1 GN2 · · · GNN





















, (14)

where we will drop the explicit reference to ~q and ω below.

From Eq. (12) we obtain generally (N + 1)2 equations for our finite system with N + 1

layers. We only pick the N + 1 equations involving the surface layer. These are

U0G00 +VG10 = I (15)

V
†
G00 +UG10 +VG20 = 0

V
†
G10 +UG20 +VG30 = 0

...

V
†
Gn−1,0 +UGn,0 +VGn+1,0 = 0 (16)

...

V
†
GN−1,0 +UNGN,0 = 0 (17)

where U = U
′ −mω2. It is also straightforward to include wavevector dependent damping

by adding a term of the form iωΓ(~q) in addition to the mass term.

Given the structure of these equations it is useful to define the transfer matrix Tn as

Gn+1,0 = TnGn,0. (18)

The surface Green’s function G00 and stiffness Φ are then obtained from Eq. (15) as

Φ = G
−1
00 = U0 +VT0. (19)
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Combining Eqs. (16), (17) and (18) yields

VTnTn−1 +UTn−1 +V
† = 0 (20)

and

UNTN−1 +V
† = 0. (21)

For physically relevant solutions the displacements produced by static surface forces (i.e.

at ω = 0) must decrease or remain constant with increasing depth. This implies that the

eigenvalues of Tn have magnitude between 0 and 1. If the eigenvalues are less than one, the

deformation decays exponentially with distance from the surface and the result is insensitive

to the depth of the system. The analytic solution to the continuum Green’s function for a

semi-infinite plane45 gives an exponential decay with length of order 1/|~q| and we find that

the lattice Green’s function is consistent with this scaling for small |~q|dnn where dnn is the

nearest neighbor spacing. As a result, the surface stiffness matrix is sensitive to boundary

conditions for small wavevectors: |~q| ∼ 1/Ndnn.

One interesting case is that of free boundary conditions. In this case, one allowed solution

is uniform translation of the entire system, i.e. T = I for ~q = 0. Translational invariance

requires that no force is produced by a uniform translation of the crystal and this imposes an

acoustic sum rule on the components of D.17,40 It is straightforward to show that Eq. (20) is

consistent with this sum rule for Tn = I. The surface stiffness matrix for uniform translation

of all atoms vanishes for this case because from Eq. (19) we get Φ(Γ) = U0(Γ)+V(Γ) which

is precisely the acoustic sum rule at the surface.

To maintain a finite stiffness, one normally considers systems with a rigid boundary

condition applied at the bottom of the substrate. This corresponds to UN = U. In essence,

this equality implies that there is a contribution from neighbors below layer N but that

their displacement is set to zero. The acoustic sum rule is violated because these neighbors

impose a frame of reference. For the rigid boundary condition we expect a constant, uniform

force will produce a constant uniform strain. Then T0 ≈ I(1−1/N) and the surface stiffness

Φ(Γ) is finite, but goes to zero as 1/N with increasing system depth N .

The fact that the termination at layer N is important for small ~q means that we can not

in general assume that Tn is independent of n. We solve the equations using a continued

fraction approach based on the relation

VTn−1 = −V(U+VTn)
−1
V

†. (22)
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The continued fraction has the form:

Φ = U0 −V

1

U−V

1

U−V

1

U−V

1

U− . . .
V†

V†

V†

V
† (23)

For large q the bottom boundary is unimportant and the continued fraction converges after

a few iterations. For small q, the continued fraction is terminated after N terms using

Eq. (21). In the examples below we focus on static solutions ω = 0. For dynamic solutions

a small imaginary part is added to the frequency to obtain the retarded Green’s function.46

The above method of findingΦ is of order N for small q. Since the Green’s function can be

precomputed, this does not represent a significant computational barrier. However there is

an alternative approach based on decimation that is only of order logN . Related approaches

have been used for real-space renormalization calculations of electronic structure.38,39

Equations (15) to (17) only couple nearest neighbor elements of G. The equations for

odd n can be used to express G2n+1,0 in terms of G2n+2,0 and G2n,0. Substituting the result

into the equations for even n, one obtains equations of the same form as Eqs. (15) to (17),

but with renormalized U
(2) and V

(2):

U
(2)
0 G00 +V

(2)
G20 = I (24)

(V(2))†G2n−2,0 +U
(2)
G2n,0 +V

(2)
G2n+2,0 = 0 (25)

(V(2))†GN−2,0 +U
(2)
N GN,0 = 0. (26)

The procedure can then be repeated with the renormalized equations. The general recursion

expressions for the renormalized matrices at iteration m are:

U
(m+1) = U

(m) − (V†
U

−1
V)(m) − (VU

−1
V

†)(m) (27)

V
(m+1) = −(VU

−1
V)(m) (28)

U
(m+1)
0 = U

(m)
0 − (VU

−1
V

†)(m) (29)

U
(m+1)
N = U

(m)
N − (V†

U
−1
V)(m) . (30)

The greatest efficiency is achieved when N = 2M . The equations are then iterated M
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times to produce two linear equations containing only G00 and GN0:

U
(M)
0 G00 +V

(M)
GN0 = I (31)

(V(M))†G00 +U
(M)
N GN0 = 0. (32)

This yields

Φ = U
(M)
0 −V

(M)(U
(M)
N )−1(V(M))† (33)

For large wavevectors, the renormalized V
(m) goes rapidly to zero as m increases and U

(m)
0

goes to a constant.38 The surface stiffness matrix Φ is equal to the renormalized U
(m)
0 .

We numerically checked that transfer matrix and renormalization group calculations give

identical results.

III. APPLICATION TO STATIC CONTACT MECHANICS

To show that the Green’s function method provides seamless boundary conditions we

present results for three cases. The first is surface relaxation at a flat crystal/vacuum

interface, where the unbalanced forces ~fi0 are important. The second is Hertzian contact of

a rigid sphere and a flat elastic substrate. In the final example the sphere is replaced by a

randomly rough surface, which enhances plastic deformation in the crystal.

Results for different crystals and interactions are presented. The simplest is the (100)

surface of a face-centered cubic (fcc) crystal with nearest-neighbor harmonic interactions

with spring constant k. This system is called nn-fcc below.

The second system, called 2n-fcc, is also the (100) fcc surface but with second-nearest

neighbor interactions. Particles interact with a Lennard-Jones potential

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(34)

for r < r1 = 1.35σ. The potential and force are then smoothly brought to zero at r2 = 1.8σ

using a third-order spline.64 The value of r2 is chosen so that the potential extends only to

second-nearest neighbors in the zero pressure ground state of the fcc structure.

The third case, called sc, is the (100) surface of a simple cubic solid with the same spring

constant k between first and second neighbors. This solid has also been used by Campaña

and Müser in their work on the contact of rough surfaces.25,27–29 We checked that the transfer
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matrix and renormalization formulations gives surface stiffness matrix coefficients that are

identical to the analytic result of Saito30 for the sc system.

The final system uses the Green’s function from continuum theory for an isotropic

medium. Here the surface stiffness matrix is approximately linear in ~q for all wavevec-

tors. The full continuum expression is given in Appendix B. Explicit expressions for the

force-constant matrices of the other models are given in Appendix A.

As a first example, we consider surface relaxation at a flat crystal/vacuum interface.

Terminating the crystal generally leads to nonzero internal forces on atoms that lie on

the ideal lattice sites. These are described by ~fi0 in the Green’s function method. One

consequence is that the spacing between atomic planes deviates from the bulk value and

varies as a function of the depth below the interface. For a flat surface, the forces are the

same on all unit cells so we only need to consider the ~q = 0 contribution.

Figure 2 shows the deviation from the bulk spacing between atomic planes as a function

of depth for the 2n-fcc system. Results for 0, 2, 4 and 8 atomic planes of explicit atoms

on top of the boundary layer are all equivalent. (Note that there are 2 atomic planes per

boundary and substrate layer.) This confirms that the Green’s function provides a seamless

boundary condition for the explicit region. Note that in some systems surface relaxation

leads to a different periodicity of the surface and bulk layers. To capture this relaxation,

one must include layers of explicit atoms above the Green’s function boundary layer.

The previous Green’s function implementation of Campañá et al.25 did not include ~fi0

and thus did not capture surface relaxation. We found that excluding ~fi0 had several effects.

One was that it led to nonuniform spacing between atomic planes of explicit atoms placed

on top of the boundary layer. This variation is effectively a form of surface relaxation due

to an effective discontinuity in the forces between surfaces. It also represents a violation

of Newton’s third law because boundary atoms feel a force from explicit atoms, but the

counterforce is missing. When the explicit atoms were from an opposing surface, we found

that the change in spacing of atomic planes led to changes in the force on the second layer

that could be important for adhesive contact.

Our second example is Hertzian contact45 of a rigid spherical indenter with radius R

and an elastic substrate with contact modulus E∗. Continuum theory45,47 predicts contact

occurs in a circle of contact radius a. Both a and the peak pressure p0 in the center of the
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FIG. 2: Fractional change in spacing of atomic planes d from bulk value d0 as a function of depth

below a free (100) surface of an fcc crystal. Results from the Green’s function with 0, 2, 4, and 8

atomic planes (0, 1, 2 and 4 unit cells) are equivalent. The surface layer is 0 and the separation is

plotted at the midpoint between layers. Open symbols show the spacing within the explicit crystal

and between explicit and substrate layers. Full symbols denote spacing within the substrate.

contact rise as the cube root of the normal load N :

a

R
=

π

2

p0
E∗

=

(

3N

4E∗R2

)1/3

(35)

These analytic predictions are compared to different atomistic models in Fig. 3.

All atomistic models have substrates with a square array of 256× 256 surface atoms and

a depth of 256 atomic planes. Different numbers of atomic planes are treated explicitly

and the number of atomic planes in the boundary and substrate layers depends on the

interaction range. Here and in all following simulations we move the indenter and then

relax the positions of the substrate atoms assuming a rigid boundary at the bottom of

the substrate. The sphere is featureless and interacts with an atom at position ~ri via the

potential Vrigid(~ri) = V (|~ri − ~r0| − R) where ~r0 is the center of the sphere and R its radius.

The potential V is the Lennard-Jones potential of Eq. (34), but cut-off at its minimum and

with ǫ increased by a factor of 100 to approximate a hard-sphere interaction.

The contact modulus E∗ is analytically known for the isotropic continuum case, where

E∗ = 2µ(1+ ν)/(1− ν2), µ is the shear modulus and ν Poisson’s number (see Appendix B).

In the results below ν = 0. The 2n-sc substrate is isotropic with E∗ = 8
3
k/Aa where Aa is the

surface area occupied by a single atom. The nn-fcc and 2n-fcc cases are anisotropic, and in

this case the contact modulus generally depends on orientation and indenter geometry.48,49
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FIG. 3: Contact of a rigid spherical indenter with radius R = 100σ on an elastic substrate. Shown

is (a) the peak pressure p0 and (b) contact radius a as a function of load N normalized by the

elastic contact modulus E∗. We compare calculations for (100) surfaces of the fcc lattice with

nearest neighbor (nn) and second-nearest neighbor (2n) interactions to calculations of a simple

cubic (100) surface and continuum calculations. The effective size of the substrate is a cubic block

with 256 atoms in each lateral direction and periodicity parallel to the surface. The values for the

effective contact modulus E∗ for the anisotropic nn-fcc and 2n-fcc cases are fit to the peak pressure

shown in panel (a).

There is no simple analytic relation and we will use Hertz theory to fit effective values of

E∗.

Fig. 3(a) shows the variation of p0 with load for all atomistic systems. We first discuss

results where the entire substrate is treated with the Green’s function method so that the

elastic response is linear. Data for each system were divided by the value of E∗ that optimizes

the fit to the solid line showing the prediction of continuum theory. For the cases where

E∗ is known, the fit value is within about 2% of the analytical expression. Some deviation

is expected from the discrete geometry and finite-compliance interface potential. For the

continuum Green’s function the fit yields E∗ = 2.02µ compared to the analytic E∗ = 2µ. For

the 2n-sc solid we obtain E∗ = 2.73k/Aa as compared to the analytic E∗ ≈ 2.67k/Aa. For
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the nn-fcc and 2n-fcc substrate, the fits give E∗ = 1.4k/Aa and E∗ = 70.4ǫ/σ3, respectively.

While we have no prediction to compare to, these numbers are of the order of the relevant

elastic moduli.

Fig. 3(b) compares the load-radius relationship for different models to continuum theory

using the value of E∗ obtained from fitting p0 above. Contact was defined by a repulsive

interaction between atoms and indenter. The contact radius was then obtained by equating

πa2 to the number of contacting atoms times the surface area per atom. While a/R rises

with the slope predicted by continuum theory, there is an offset corresponding to an increase

in contact area. An even larger offset is observed in previous simulations of atomic scale

contact.1,50–52 The deviations are minimized in our work by using a featureless indenter

and making the interaction closer to a hard wall repulsion by increasing ǫ by two orders of

magnitude. The same limit was achieved in Ref. 52 by increasing the density of atoms on

the indenter.

The peak strain at the interface is of order a/R and one may expect nonlinear behavior

at the largest values of ∼ 10% in Fig. 3. The Green’s function approach allows this to be

studied while only treating a small number of explicit atoms. Fig. 3 shows that including 16

layers of explicit atoms does not change the contact area on the scale of the figure, but does

increase the peak pressure. The full pressure distribution for different numbers of atomic

planes at several loads is shown in Fig. 4 for R = 100σ and R = 1000σ. In all cases, the

Green’s function results follow the analytic solution for elastic substrates (solid line). When

explicit atomic planes are included, there are deviations from Hertz theory. The pressure

needed to deform the central regions is higher for the explicit solution because Lennard-

Jones bonds become stiffer as they are compressed. As expected from Hertz theory, the

deviations increase with a/R which sets the peak strain. Increasing R from 100a to 1000a

reduces the deviations at a fixed value of a. Deviations are very small for a/R less than 2%,

which is consistent with direct evaluations of anharmonic effects.

Note that the number of layers needed to capture nonlinear effects grows with a/R. A

single pair of layers has little effect, while 8 layers is sufficient for a/R up to about 0.09

(Fig. 4a). All atom simulations are consistent with the 16 layer results for a/R = 0.12 and

one may expect plastic deformation at larger a/R for most materials. In the Hertz solution,

strains decay over scales of order a and the peak shear strain is at a depth of about a/3.45

Including explicit layers to greater depths should allow the system to capture nucleation of
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FIG. 4: Pressure as a function of distance from the tip center in along a row of atoms in the (110)

direction for rigid spherical indenters with radius (a) R = 100σ or (b) R = 1000σ on an elastic

substrate.

defects and other nonlinear effects.

The next test considers the case of contact with a rigid, randomly rough surface, which has

been extensively investigated using similar techniques.3,4,25,27–29 Many experimental surfaces

are found to have roughness on all scales that can be described as a self-affine fractal. The

root-mean squared (rms) change in height dh over a lateral distance ℓ scales as dh ∝ ℓH

where H is called the Hurst or roughness exponent. We generate a self-affine surface with

H = 0.8 on a 1024 × 1024 grid using Voss’ random midpoint algorithm.53 This surface is

Fourier filtered to remove roughness on all wavelengths below 16 grid spacings. We then

use bicubic splines to interpolate the discrete positions to a continuous surface with height

h(x, y). The final surface has a root mean square slope of h′
0 =

√

|∇h|2 = 0.09.

The rough surface is pushed against a 2n-fcc solid with 256 × 256 surface atoms and

different numbers of explicit layers. Atoms at position ~r = (x, y, z) interact with the surface

via the potential Vrigid(x, y, z) = V (z − h(x, y)), where V (z) has the same functional form
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as the interaction used for the rigid sphere but only depends on the height difference. The

area of contact A is determined by multiplying the area per atom by the number of atoms

in the top layer of the crystal that feel a repulsion from the rough surface.

Previous numerical and analytic work has found a linear relationship between load and

contact area of the form
N

h′
0E

∗A0
=

1

κ

A

A0
(36)

with κ ≈ 2.29,54,55 Fig. 5 compares this prediction (solid line) to results for 2n-fcc surfaces

with different numbers of layers of explicit atoms. At small loads, results for all numbers of

explicit atoms lie close to the solid line. The purely elastic calculation where the entire elastic

solid is described by the Green’s function follows the solid line all the way to 10% contact

area. When two explicit layers are included, the area rises less rapidly as the load increases.

This reflects anharmonicity in the explicit layers, where the Lennard-Jones potential stiffens

as bond lengths shrink under the applied pressure. Note that results with 4 and 8 explicit

layers are nearly indistinguishable, implying that anharmonicity is largely confined to the

outer layers. A small number of explicit layers is sufficient in this case because the effective

radius a of local contacting regions for this rough surface is only of order 4σ. This allows the

Green’s function method to reproduce the full nonlinear response of the atomistic system

at a small fraction of the computational cost.

The rough surface just considered is artificial because it has no atomic structure. As a final

example we consider a rough rigid surface made of discrete atoms on a crystalline lattice.

The layered structure leads to steps or terraces that focus stress and lead to dislocation

nucleation.

The stepped surface is created from an fcc crystal with a (100) surface and the same

lattice spacing as the substrate. A smooth randomly rough surface with rms slope h′
0 = 0.03

and H = 0.5 was created using the procedure described above. Then all atoms of the lattice

with heights below the surface were removed. The elastic substrate is like the nn-fcc case

described above. However, since ideal springs would not allow plasticity, neighbors interact

with a Lennard-Jones potential that is splined to zero force between 1.2σ and 1.25σ. All

systems had 256 × 256 surface atoms and 256 atomic planes. Two atomic planes make up

a unit cell and the spacing of atomic planes d0 is the nearest neighbor spacing dnn divided

by
√
2. To identify plastic deformation, we detect atoms whose environment deviates from

the crystal using common neighbor analysis (CNA).56,57
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FIG. 5: Contact of a rigid rough surface on a crystalline fcc (100) surface. The periodicity of the

rough surface is 256 nearest neighbor distances d0 in both directions with a nominal surface area

of A0 = 256d0×256d0. The solid interacts via a pair potential that extends to second neighbors as

described in the text. Shown are the load N normalized by the root mean square slope h′0 =
√

|∇h|2

of the rough surface and the contact modulus E∗ as a function of area. The effective size of the

substrate is a cubic block with 256 atoms in each lateral direction. We compare the results of a

simulation with only a harmonic half space, a system with two explicit atomic planes that interact

via the pair potential on top of the half space, and a system with eight additional layers. The

anharmonicity of the explicit interatomic interactions leads to a stiffening and a slightly smaller

contact area at larger loads. The solids line has slope 1/κ = 1/2.

Figure 6a plots the depth of the deepest plastic atom Dpl normalized by the spacing of

atomic planes d0. Fully atomistic calculations of the entire volume are used as a benchmark.

They are compared to calculations where the top 16 atomic planes (8 substrate layers) are

treated explicitly and the remaining atoms are replaced by the Green’s function. Note that

the Green’s function and all atom calculations give nearly identical results until plastcity

reaches the depth of the boundary layer. Dislocations can not propagate in to the boundary

layer, but their motion is not affected by the boundary layer when there are a couple of

explicit layers separating them. Arrest of dislocations at the boundary is unavoidable in most

continuum/atomistic coupling schemes58, with a notable exception of the coupled atomistic

and discrete dislocation method.59 Projections showing the geometry of the dislocations

generated in the full and 16 layer calculations are compared in Fig. 6(b). The structure is

fully captured for the load corresponding to point ”1” in Fig. 6(b). At point ”2”, the deepest
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FIG. 6: (a) Load dependence of the depth Dpl of the deepest plastically deformed atom divided by

the layer spacing d0 as determined from a common neighbor analysis (CNA). The Green’s function

results with 16 atomic planes of explicit atoms follow the all atom calculation until plasticity

reaches the Green’s function layer. (b) Snapshots showing the projections of the atoms that have

displaced plastically as determined from a CNA. The CNA shows dislocation loops are emitted

from the surface. Snapshots shown by 1, 2 and 3 correspond to the loads marked 1, 2 and 3 in

panel (a) and are recorded at 8, 15, and 16% contact area, respectively. Dislocations in the full

atomistic and reduced system behave identically until the deepest dislocation loop hits the elastic

boundary where it cannot propagate.

plastic atom has nearly reached the boundary layer. The largest dislocation loop is slightly

suppressed in the 16 layer system, but the remaining dislocations are not affected. At point

”3”, the dislocations have clearly penetrated past the boundary layer and this can not be

captured by the Green’s function. Note that this load is comparable to the highest load in

Fig. 5 and the contact area is close to 16%. We have found that global measures, such as

plots of contact area vs. load are much less sensitive to the number of explicit layers than

the dislocation depth.

IV. CONCLUSIONS

An approach for coupling an explicit atomistic region to a substrate described with a

Green’s function was developed and tested. The entire system is described by a single

Hamiltonian and the only approximation is to neglect anharmonic terms in the substrate.
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Many other atomistic/coupling schemes introduce ghost forces or can not be described by

a single Hamiltonian.9,12 Previous applications of the Green’s function approach have also

neglected some forces near the elastic/explicit boundary leading to violations of Newton’s

third law and ghost forces when interactions extend beyond nearest layers.

Efficient methods for calculating the Green’s function given the interatomic potential

were described. Fourier transforming in the plane of the substrate reduces the problem to a

one-dimensional coupling between layers for each in-plane wavevector ~q. These equations can

be solved using a transfer matrix approach36,37 or a renormalization group method38,39 with

computational effort that scales as 1/|~q| or − ln |~q|, respectively. This is order L2 faster than

a previous fluctuation-dissipation formulation for obtaining the Green’s function.25 While

we have exclusively presented calculations using pair potentials, an extension to many-

body formulations such as embedded-atom60 or bond-order61 potentials is straightforward.

Similarly, we consider only static applications, but present equations for the full dynamic

problem with arbitrary masses and damping.

Three tests of the method were discussed. The first is surface relaxation, which reflects the

loss of neighbors at a free surface. The Green’s function approach accurately reproduced

explicit atomistic simulations. The previous Green’s function implementation was only

accurate for nearest neighbor interactions at zero pressure where relaxation vanishes. The

second test was Hertzian contact by a rigid sphere. With no explicit atoms, the elastic

Green’s function reproduced the analytic response for an elastic continuum. Adding only 8

to 16 atomic planes of explicit atoms allowed anharmonic corrections to Hertz theory to be

captured with a relatively modest increase in computer time. The final example was contact

with a randomly rough surface with atomic steps that nucleated subsurface dislocations. The

Green’s function method captured the full response including contact area and dislocation

distribution until the dislocations came very close to the elastic layer.

There are several ways in which the current approach can be extended. Periodic changes

in elemental composition of the crystal as encountered in nanolaminates can be included

straightforwardly by allowing the force-constant matrix to vary spatially. Another exten-

sion is to evaluate both the full force and the harmonic approximation for atoms at the elas-

tic/explicit interface. The deviation can be used to estimate errors and determine whether

to terminate the calculation or add additional layers of explicit atoms. This addition could

be done adaptively on the fly. A third is to include finite temperature. The static elastic re-
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sponse can still be described by a Green’s function that must be modified if the temperature

is high enough to produce anharmonic effects. The success of recent extensions of the qua-

sicontinuum method62,63 suggests that the most important changes in the Green’s function

can be captured by using the thermally expanded lattice to determine the force-constant

matrix.
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Appendix A: Force-constant matrices for (100) surfaces and pair interactions

The force-constant matrices are readily derived for any potential, but we focus on pair

potentials V (r) that only depend on the separation r between each pair of particles. The

potential energy of the boundary and substrate then becomes

Ebs =
∑

ij,i<j

V (rij) =
1

2

∑

ij

V (rij) (A1)

where the sum is over all atomic sites i and j that lie in the boundary or substrate layers

(Fig. 1).

To simplify the notation we will first calculate the force-constant matrix for the case of

a single atom per unit cell, nc = 1, and thus nearest-neighbor interactions. We denote the

atomic positions by ~ri and ~rij = ~ri − ~rj is the vector between atoms i and j. The force-

constant matrix is defined in terms of derivatives of the energy relative to the displacement

~ui ≡ ~ri−~r0i from equilibrium positions ~r0i . It is useful to separate the components along and

perpendicular to the unit vector ~e0ij = ~r0ij/|~r0ij| in the direction between equilibrium positions

of i and j:

Dij = D
‖
ij +D

⊥
ij . (A2)
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The parallel component is

D
‖
ij =

1

2

∑

kl

∂2V

∂r2kl

∂rkl
∂~ui

⊗ ∂rkl
∂~uj

∣

∣

∣

∣

∣

~ui=0,~uj=0

=− kij~e
0
ij ⊗ ~e0ij + δij

∑

n∈neighb.

kin~e
0
in ⊗ ~e0in

(A3)

where ⊗ denotes the outer product and

kij =
∂2V

∂r2ij

∣

∣

∣

∣

r0ij

(A4)

is the effective spring constant in the equilibrium structure. The perpendicular component

is

D
⊥
ij =

1

2

∑

kl

∂V

∂rkl

∂2rkl
∂~ui∂~uj

∣

∣

∣

∣

∣

~ui=0,~uj=0

=
fij
r0ij

(I− ~e0ij ⊗ ~e0ij)

− δij
∑

n∈neighb.

fin
r0in

(I− ~e0in ⊗ ~e0in)

(A5)

where

fij = − ∂V

∂rij

∣

∣

∣

∣

r0ij

(A6)

is the absolute force at the equilibrium separation r0ij. Note that D
⊥
ij vanishes for crystals at

zero pressure that interact via nearest neighbors only since in this case fij = 0 in the above

equations. Even for interatomic potentials that act over a larger range this contribution is

typically an order magnitude smaller than D
‖
ij and indeed often ignored in discussions of

phononic excitations.40 We explicitly checked the influence of D⊥
ij for the contact situations

discussed in Section III and found no visible change on the scale of the plots. Yet, for the

sake of completeness, we retainD
⊥
ij in the following derivations and denote the force-constant

for bond rotation by k⊥ = −f/r0.

The following sections consider different crystal systems. In all cases, the free surface of

the elastic halfspace is oriented perpendicular to the z-direction. To simplify expressions

involving phase factors, we use the abbreviations cx = cos qxdnn, sx = sin qxdnn, cx
2

=

cos qxdnn
2

and sx
2
= sin qxdnn

2
.
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a. sc (100) with second-nearest neighbor interaction

This solid is sc with nearest neighbor and second neighbor interactions, both with identical

spring constant k. At zero pressure, the forces between neighbors all vanish, so the spring

constants for bond rotations k⊥ = 0. The crystal is oriented with the (100), (010) and (001)

directions along the x, y and z axes, respectively. Since the second-nearest neighbors lie

in the same plane as nearest neighbors, a single atom unit cell and boundary layer can be

used. There are 4 nearest and 4 second-nearest neighbors in each layer and one nearest and

4 second-nearest neighbors in layers above and below. Summing contributions over these

neighbors, one finds that the dynamical matrices for this system are given by

U(~q) = k











6− 2cx(1 + cy) 2sxsy 0

2sxsy 6− 2(1 + cx)cy 0

0 0 6











(A7)

U0(~q) = k











5− 2cx(1 + cy) 2sxsy 0

2sxsy 5− 2(1 + cx)cy 0

0 0 3











(A8)

V(~q) = k











−cx 0 isx

0 −cy isy

isx isy −1− cx − cy











. (A9)

From these expressions we obtain a Green’s function that is identical to the analytic expres-

sion of Saito.30

For this solid the explicit forms of the acoustic sum rule40 in the bulk and at the surface

are:

V
†(Γ) +U(Γ) +V(Γ) = 0 (A10)

U0(Γ) +V(Γ) = 0 (A11)

Equations (A7) to (A9) fulfill these rules.

b. fcc (100) with nearest neighbor interaction

The fcc crystal is oriented with the (110), (11̄0) and (001) directions along the x, y and

z axes, respectively. This orients the axes along the nearest-neighbor directions and we use
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the single atom, square unit cell shown in Fig. 1b. There are 4 nearest-neighbors in the same

plane and 4 in each adjacent layer. The translation vector connecting neighboring layers is

~c = dnn(1/2, 1/2, 1/
√
2) so successive layers are offset in the x-y plane.

We consider the case k⊥ 6= 0 to allow for cases where the reference state is under pressure.

The intra-layer force-constant matrix for this lattice is written as U = knnU
‖
nn+k⊥

nnU
⊥
nn with

the subscript nn denoting nearest neighbors. Then

U
‖
nn(~q) =











4− 2cx 0 0

0 4− 2cy 0

0 0 4











(A12)

U
⊥
nn(~q) =











8− 2cy 0 0

0 8− 2cx 0

0 0 8− 2cx − 2cy











(A13)

in the bulk and U0 = knnU
‖
0(~q) + k⊥

nnU
⊥
0 (~q) with

U
‖
0(~q) = U

‖
nn(~q)−











1 0 0

0 1 0

0 0 2











(A14)

U
⊥
0 (~q) = U

⊥
nn(~q)−











3 0 0

0 3 0

0 0 2











(A15)

at the surface. The inter-layer force-constant matrix is V = (knnV
‖
nn + k⊥

nnV
⊥
nn) exp{i(qx +

qy)dnn/2} with

V
‖
nn =











−cx
2
c y

2

sx
2
s y

2

i
√
2sx

2
c y

2

sx
2
s y

2

−cx
2
c y

2

i
√
2cx

2
s y

2

i
√
2sx

2
c y

2

i
√
2cx

2
s y

2

−2cx
2
c y

2











(A16)

V
⊥
nn =











−3cx
2
c y

2

−sx
2
s y

2

−i
√
2sx

2
c y

2

−sx
2
s y

2

−3cx
2
c y

2

−i
√
2cx

2
s y

2

−i
√
2sx

2
c y

2

−i
√
2cx

2
s y

2

−2cx
2
c y

2











. (A17)

Equations (A12) to (A17) fulfill the sum rules Eqs. (A10) and (A11).

25



c. fcc (100) with second-nearest neighbor interaction

For the discussion of second-nearest neighbor interactions we use the same unit cell within

the surface plane, but must increase the width of the boundary layer to two atomic planes

so nc = 2. Successive layers are not offset so the translation vector is perpendicular to the

plane: ~c = dnn(0, 0,
√
2). There are 4 second-nearest neighbors in the same plane, and 1 in

each layer with distance 2. The vectors and matrices in Sec. II all have dimension 3nc, but

it is useful to divide them into terms associated with each atom. The displacements and

forces are then expressed as nc vectors of length 3 or nc×nc arrays of 3× 3 matrices. Using

tildes to identify smaller 3× 3 matrices, the force-constant matrix elements become:

U0 =





Ũ0 Ṽei(qx+qy)dnn/2

Ṽ
†e−i(qx+qy)dnn/2 Ũ1



 (A18)

U =





Ũ Ṽei(qx+qy)dnn/2

Ṽ
†e−i(qx+qy)dnn/2 Ũ



 (A19)

V =





W̃ 0

Ṽe−i(qx+qy)/2 W̃



 (A20)

In the following, k
‖
nn and k

‖
2n are the spring constants for nearest neighbor and second

neighbor bond stretching, while k⊥
nn and k⊥

2n are the spring constants for first and second

nearest neighbor bond rotation, respectively. The intra-layer force-constant matrix is given

by Ũ = Ũnn+Ũ2n with Ũnn = k
‖
nnŨ

‖
nn+k⊥

nnŨ
⊥
nn and Ũ2n = k

‖
2nŨ

‖
2n+k⊥

2nŨ
⊥
2n. The expressions

for Ũ
‖
nn and Ũ

⊥
nn are identical to the nearest neighbor fcc (100) case and given in Eqs. (A12)

and (A13). The contribution due to second-nearest neighbors is

Ũ
‖
2n(~q) =











2− 2cxcy 2sxsy 0

2sxsy 2− 2cxcy 0

0 0 2











(A21)

Ũ
⊥
2n(~q) =











4− 2cxcy −2sxsy 0

−2sxsy 4− 2cxcy 0

0 0 4− 4cxcy











. (A22)

In this case, the surface force-constant matrix element becomes Ũ0 = Ũ
‖
0 + Ũ

⊥
0 with
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Ũ
‖
0(~q) = k‖

nn



















Ũ
‖
nn(~q)−











1 0 0

0 1 0

0 0 2





























+ k
‖
2n



















Ũ
‖
2n(~q)−











0 0 0

0 0 0

0 0 1





























(A23)

Ũ
‖
1(~q) = k‖

nnŨ
‖
nn(~q) + k

‖
2n



















Ũ
‖
2n(~q)−











0 0 0

0 0 0

0 0 1





























(A24)

Ũ
⊥
0 (~q) = k⊥

nn



















Ũ
⊥
nn(~q)−











3 0 0

0 3 0

0 0 2





























+ k⊥
2n



















U
⊥
2n(~q)−











1 0 0

0 1 0

0 0 0





























(A25)

Ũ
⊥
1 (~q) = k⊥

nnŨ
⊥
nn(~q) + k⊥

2n



















Ũ
⊥
2n(~q)−











1 0 0

0 1 0

0 0 0





























, (A26)

while the inter-layer force-constant matrices are

Ṽ
‖(~q) = k‖

nnṼ
‖
nn(~q) (A27)

Ṽ
⊥(~q) = k⊥

nnṼ
⊥
nn(~q) (A28)

W̃
‖(~q) = k

‖
2n











0 0 0

0 0 0

0 0 −1











(A29)

W̃
⊥(~q) = k⊥

2n











−1 0 0

0 −1 0

0 0 0











. (A30)

The expressions for Ṽ
‖
nn and Ṽ

⊥
nn are identical to the nearest neighbor fcc (100) case given

in Eqs. (A16) and (A17).

For second-nearest neighbor interactions the acoustic sum rules become:

W̃
†(Γ) + Ṽ

†(Γ) + Ũ(Γ) + Ṽ(Γ) + W̃(Γ) = 0 (A31)

Ṽ
†(Γ) + Ũ1(Γ) + Ṽ(Γ) + W̃(Γ) = 0 (A32)

Ũ0(Γ) + Ṽ(Γ) + W̃(Γ) = 0 (A33)
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It is straightforward to check that these are fulfilled by Eqs. (A21) to (A30).

The values for the individual spring constants are evaluated from the derivatives of the

potential at the equilibrium spacing. Here we use the Lennard-Jones potential given by

Eq. (34) for r < r1 and smoothly spline it to zero force between r1 = 1.35σ and r2 = 1.8σ.

Evaluating the derivatives for the zero pressure equilibrium state yields k
‖
nn = 65.6 ǫ

σ2 , k
‖
2n =

−5.06 ǫ
σ2 , k

⊥
nn = −0.41 ǫ

σ2 and k⊥
2n = 0.41 ǫ

σ2 . The force ~f0 is has magnitude F0 = 0.64 ǫ
σ
at the

boundary layer and is directed away from the bulk at the top layer of atoms and toward the

bulk at the bottom layer: ~f0 = (0, 0, F0, 0, 0,−F0) (see also Eq. (5) in Section II).

Appendix B: Isotropic continuum elasticity

For completeness, we compare the surface stiffness coefficients to the behavior of Φ(~q) =

G
−1(~q) for a purely continuum elastic media. The solution is obtained by a Fourier-analysis

of the equations for mechanical equilibrium in continuous isotropic elastic bodies21,22,65, and

reads

µG(~q) =











1
q
− νq2x

q3
−νqxqy

q3
i (1−2ν)qx

2q2

−νqxqy
q3

1
q
− νq2y

q3
i (1−2ν)qy

2q2

−i (1−2ν)qx
2q2

−i (1−2ν)qy
2q2

1−ν
q











, (B1)

where µ is the shear modulus and ν Poisson’s ratio. All calculations reported here are for

ν = 0. A continuous medium has complete translational symmetry and and the BZ extends

over all q. However we only specify displacements at the discrete set of surface atoms and

use the corresponding BZ. This is similar to approximating the continuum equations by

solving on a discrete mesh.
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