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Rare-earth based scintillators in general and lanthanum bromide (LaBr3) in particular represent a
challenging class of materials due to pronounced spin-orbit coupling and subtle interactions between
d and f states that cannot be reproduced by standard density functional theory (DFT). Here a de-
tailed investigation of the electronic band structure of LaBr3 using the quasi-particle self-consistent
GW (QPscGW) method is presented. This parameter-free approach is shown to yield an excellent
description of the electronic structure of LaBr3. Specifically it is able to reproduce the band gap,
the correct level ordering and spacing of the 4f and 5d states, as well as the spin-orbit splitting
of La-derived states. The QPscGW results are subsequently used to benchmark several computa-
tionally less demanding techniques including DFT+U , hybrid exchange-correlation functionals, and
the G0W0 method. Spin-orbit coupling is included self-consistently at each QPscGW iteration and
maximally localized Wannier functions are used to interpolate quasi-particle energies. The QPscGW
results provide an excellent starting point for investigating the electronic structure of excited states,
charge self-trapping, and activator ions in LaBr3 and related materials.

PACS numbers: 29.40.Mc 71.20.-b 71.20.Eh 71.70.Ej

I. INTRODUCTION

Scintillators are materials that exhibit luminescence
upon excitation by ionizing radiation,1 which means that
a fraction of the absorbed energy is re-emitted as light.
The emitted photons can be subsequently converted into
an electric current using for example photomultiplier
tubes or photo diodes, which allows one to measure
the energy spectrum of the incoming radiation. Scin-
tillation is observed in crystals, plastics, liquids, and
glasses.2 Examples of inorganic crystal scintillators in-
clude halides, oxides, and chalcogenides.1,2 The emitted
light can be produced by exciton recombination (e.g., al-
kali halides, CsI, MgWO4), core-to-valence, also known
as cross-luminescence or Auger-free luminescence, (e.g.,
BaF2, CsCl) or most commonly by the relaxation of an
excited activator atom (e.g., NaI:Tl, SrI2:Eu, LaF3:Ce).

1

Over the course of the last couple years, interest in
scintillator materials has surged thanks to large scale ap-
plications in nuclear and radiological surveillance, high-
energy physics and medical imaging. While the gen-
eral potential of scintillators has been demonstrated, one
of the current goals is to develop materials with im-
proved energy resolution sufficient to detect fissile ma-
terials with a low probability of errors at ports, borders,
and airports.3 The current state-of-the-art material is Ce-
doped LaBr3,

4 which has been extensively characterized
both experimentally5–8 and theoretically.8–13 Yet funda-
mental features of its electronic structure are still incom-
pletely described and quantified. Such information is,
however, crucial for understanding the much improved
performance of LaBr3 compared to other scintillators.

An ab-initio description of the electronic structure of
LaBr3 is challenging due to the presence of La-4f and 5d
states as well as pronounced spin-orbit coupling (SOC).
If one furthermore aims to model Ce activator ions, the
Ce-derived f and d levels need to be considered as well.

Previous electronic structure calculations of LaBr3
have been based on the Hartree-Fock (HF) method,9,
the LDA+U approach,10 or hybrid exchange-correlation
(XC) functionals.9 As is well-known, the HF method
grossly overestimates the band gap in extended systems
and the two latter methods both rely on additional fit-
ting parameters. They are therefore not predictive and
require experimental information or higher-level calcu-
lations as reference. In view of this situation the ob-
jective of the present work is to calculate the electronic
structure, specifically the quasi-particle (QP) spectrum,
of lanthanum bromide from an essentially parameter-free
approach. In doing so one obtains a very good starting
point for investigating e.g., charge self-trapping, exciton
spectra or activator level alignment. To accomplish this
goal the quasi-particle self-consistent GW (QPscGW)
method14–16 is employed in conjunction with maximally
localized Wannier functions.17,18

The remainder of this paper is organized as follows.
In the next section the methodology and computational
details are reviewed. Section III A presents as the
main result of the present work the band structure and
density of states from QPscGW calculations including
SOC. The convergence of our calculations is elaborated
in Sect. III B. A detailed comparison with both hy-
brid, DFT+U , and G0W0 calculations is presented in
Sect. III C. Finally, the main conclusions and an outlook
of future work are given in Sect. IV.

II. METHODOLOGY

A. The GW approximation

In the most common implementation of the GW
approximation19–22 QP energies are computed to zeroth
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order in perturbation theory according to

εnk = ε0nk + Znk (1)

Re
[〈

ψnk|T + Vn−e + VH +Σ(ε0nk)|ψnk

〉

− ε0nk
]

.

Here, T , Vn−e, and VH denote the kinetic energy term
as well as the nucleus-ion and Hartree potentials, respec-
tively. The renormalization factor (or QP weight) Znk is
obtained from the energy derivative of the self-energy.23

Typically, the unperturbed single particle energies and
wave functions are obtained from a density functional
theory (DFT) or HF calculation. This approach is usu-
ally referred to as the G0W0 method.
Obviously, the application of Eq. (1) does not alter the

underlying single particle orbitals. It is primarily for this
reason that a starting guess is usually required to yield
qualitatively the correct level ordering (at least of the oc-
cupied states). This condition is violated for example in
lanthanide oxides and can be overcome by generating the
initial wave function and QP energies using the LDA+U
method.24 From this description it is apparent that the
G0W0 method yields results that are dependent on the
initial wave function.
To overcome these limitations Kotani, Schilfgaarde,

and Faleev developed the QP self-consistent GW
method.14–16 The key idea in the QPscGW approach
is to optimize an effective self-consistent non-interacting
Hamiltonian H0 = T + Veff such as to reproduce the en-
ergy dependence of the self-energy as closely as possible
within the random phase approximation (RPA). This is
accomplished by minimizing a norm that measures the
difference between H0 and H(ω) with respect to the ef-
fective one-body potential Veff. A practical scheme is
obtained by requiring the XC potential to depend on an
average of the Hermitian part of the self-energy operator,

Vxc =
1

2

∑

ij

|ψi〉
{

Re [Σ(εi)]ij +Re [Σ(εj)]ij

}

〈ψj | , (2)

where Brillouin zone indices have been dropped for
brevity. It can be argued that within the limits of the
RPA the solutions of H0 can be interpreted as quasi-
particles.15

The original form of the QPscGW method was later
slightly modified by Shishkin, Marsman, and Kresse25

and extended to account for vertex correction in W . For
practically all materials considered so far the QPscGW
has been found to give band gaps in very good agree-
ment with experiment safe for a slight overestimation in
particular for small gap materials.2627

From our point of view the two major features of the
QPscGWmethod in comparison to the G0W0 method de-
scribed by Eq. (1) are that (i) the single particle orbitals
are updated during the course of the self-consistency
loop and (ii) the final results are independent of the
initial wave function and thus also independent of any
adjustable parameters. For the latter statement to be
fulfilled, it is essential that the basis in which H0 is ex-
panded is sufficiently large to be considered complete as
discussed in Sect. III B.

B. Maximally localized Wannier functions

Wannier functions28 (WFs) provide a complementary
basis set to the Bloch functions. WFs are defined as
Fourier transformations of Bloch functions with respect
to crystal momentum vectors. This formulation is, how-
ever, arbitrary due to the undetermined phases of the
Bloch functions. This was utilized by Marzari and Van-
derbilt who introduced generalized Wannier functions17

for composite bands defined by

wRi(r) =
Ωcell

(2π)3

∫

BZ

dke−ik·R

Nk
∑

n=1

U
(k)
ni ψki(r). (3)

Here the unitary matrices U (k) mix Bloch states having
the same wave vector k. The quadratic spread of the set
of WFs can then be expressed in terms of matrix elements

M (k,b)
mn =

〈

ψkm

∣

∣e−ib·r
∣

∣ψkn

〉

, (4)

and subsequently minimized to obtain so-called maxi-
mally localized Wannier functions (MLWFs). This for-
malism was later extended by Souza et al. to the case of
entangled energy bands.18 For the purpose of the present
work, the underlying first-principles code was modified to
enable the calculation of the matrix elements appearing
in Eq. (4),29 which were then used as input for wan-

nier90
30 to obtain MLWFs. The site and angular mo-

mentum projected QP energies were finally interpolated
using the MLFW basis to generate accurate band struc-
tures and DOS.

C. Spin-orbit coupling and symmetry operations

The spin-orbit correction to the Hamiltonian can be
obtained from the Dirac equation by three successive
Fouldy-Wouthuysen transformations.31 In atomic units,
the resulting Hamiltonian for an electron in a central po-
tential V can be written as32

Hso =
α2

2

1

r

dV

dr
ℓ · s. (5)

Here α is the fine structure constant and ℓ and s

are the orbital and spin angular momentum operators,
respectively. Aryasetiawan and Biermann generalized
Hedin’s equations19,20 to the case of spin-dependent
interactions.33,34 The algebraic structure of the modi-
fied set of equations is very similar to Hedin’s original
equations, although it is shown that in general the self-
energy becomes spin-dependent and the polarization now
describes the response of the charge density to magnetic
fluctuations and vice versa. In the absence of explicit
two-particle spin-interaction the self-energy will only de-
pend on variations in the electric field.33 Therefore, if
vertex corrections, spin-spin, and spin-other-orbit inter-
actions are neglected, this reduces for a non-magnetic
system to adding Hso to the unperturbed single-particle
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Hamiltonian and embodies an explicit spin dependence
of the Green’s function. Sakuma et al.35 applied this for-
malism to study the effect of SOC in Hg chalcogenides in
the G0W0 approximation and found an enhancement of
the spin-orbit splitting of 0.1 eV. In the context of QP-
scGW calculations Chantis et al. have included SOC as a
perturbation on top of already converged orbitals for III-
V and II-VI zincblende semiconductors.26 In the present
case, to investigate spin-orbit splitting SOC is included
in the self-consistency cycles of the QPscGW method.
In the projector augmented wave method36,37 (PAW)

the SOC Hamiltonian consists of three terms

H̃so = Hso +
∑

ij

∣

∣p̃i
〉

(

〈

φi
∣

∣Hso

∣

∣φj
〉

−
〈

φ̃i
∣

∣Hso

∣

∣φ̃j
〉

)

〈

p̃j
∣

∣,

(6)

where the projectors p̃ and orbitals φ and φ̃ have their
usual meaning.36 In DFT calculations it is customary to
only include the SOC in a sphere around each atom, us-
ing the spherically averaged self-consistent Kohn-Sham
potential. Assuming a complete PAW basis set, the first
and third terms in Eq. (6) cancel. In the current imple-
mentation only the second term is kept.38

For the QPscGW calculations reported in this work
the local potential in Eq. (5) is computed at each step in
the self-consistent cycle as the spherically averaged sum
of the external, Hartree and PBE39 XC potential.38 As
a result, these calculations include SOC only on a DFT
level.
To render hybrid XC and GW calculations including

SOC computationally feasible it is imperative to take ad-
vantage of the space group symmetries and solve for QPs
within the irreducible Brillouin zone only. To this end we
augmented the action of a symmetry operator in Carte-
sian space on wave functions, projected wave functions,
and the action of the self-energy operator and its deriva-
tive with respect to energy on a Bloch function to include
rotations in spin space. Now, a general space group oper-
ation contains a point group operator S and a translation
w. The action of this operator on a spinless Bloch func-
tion is40

{S|w} exp [iSk · r]uk(r) =

exp [iSk · (r −w)] uSk(r −w), (7)

where uk is the cell-periodic wave function. The rotated
wave function thus corresponds to a Bloch function of
wave vector Sk. If the point group operator S contains
a rotation by an angle α around some unit axis n̂ the
action of the space group operator on a Bloch spinor
would be augmented by an additional rotation of the two
spin components by the spin-space rotation matrix

Rs(n̂, α) = exp

[

−
iασ · n̂

2

]

= exp(A) (8)

where σi is a Pauli matrix. In practice this rotation ma-
trix is computed by Rs = V † exp(D)V where V and D

are the eigenvector matrix and diagonal eigenvalue ma-
trix of A, respectively.
We also note in passing that operations of the type

given by Eq. (7) coupled with spin rotations are also use-
ful for the evaluation of the matrix M (k,b) defined in
Eq. (4).

D. Computational details

Calculations have been performed using the projector
augmented wave method36,37 as implemented in the Vi-
enna ab-initio simulation package.41–44 First wave func-
tions and QP energies were obtained within a general-
ized Kohn-Sham scheme using several different approx-
imations to represent exchange and correlation effects.
Subsequently the single particle states of these calcula-
tions served as starting points for G0W0 and QPscGW
calculations. For the XC potential in the initial calcula-
tions, we considered a generalized gradient functional,39

the DFT+U method45 with parameters from Ref. 46,
several range-separated hybrid XC functionals with vari-
able mixing parameter α and a fixed screening length of

µ = 0.2 Å
−1

,47 as well as exact-exchange (EXX), where
the latter is equivalent to carrying out a restricted HF
calculation.
All calculations were performed at the experimental

lattice parameters48 using a Γ-centered 6× 6× 3 grid, a
general plane-wave cutoff energy of 219 eV, and a cut-
off energy of 146 eV for the response function in the
GW loop. The Green’s function and the screened in-
teraction in the GW loop were evaluated using 2088 and
1056 bands in calculations with and without SOC, re-
spectively. The effective QPscGW Hamiltonian was ex-
panded in a basis containing up to 192 bands (384 when
including SOC) equivalent to states up to 34 eV above
the conduction band minimum (CBM). In general, our
parameters ensure convergence of the valence band and
lower conduction band QP energies of about 0.05 eV. The
convergence of our calculations is demonstrated and dis-
cussed in Sect. III B.

III. RESULTS

A. Band structure and density of states

Figure 1 represents the main result of the present pa-
per. It shows the band structure and density of states
(DOS) of lanthanum bromide from QPscGW calculations
taking SOC into account. As in virtually all halides that
we are aware of, the valence band is predominantly com-
posed of halogen p-states. Similar to other compounds
with comparably low symmetry and a valence band max-
imum (VBM) that is primarily derived from p-states (for
example In2O3, Refs. 50 and 51, and SrI2, Ref. 52), the
VBM in LaBr3 is very flat indicating a very low hole
mobility.
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FIG. 1. (a) Band structure and (b) density of states of LaBr3
as obtained from QPscGW calculations including spin-orbit
coupling. Experimental X-ray photoelectron spectrum from
Ref. 49.
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FIG. 2. Comparison of (a) valence and (b) conduction band
density of states from QPscGW calculations with and with-
out spin-orbit coupling (SOC). Valence and conduction band
states are shown with respect to valence band maximum and
conduction band minimum, respectively obtained from calcu-
lations without SOC to highlight the SOC-induced shift.

By comparison the conduction band structure is more
complex. Its bottom mostly consists of La-5d states that
extend up to about 3.0 eV above the CBM where a mini-
mum in the DOS is observed. At slightly higher energies
a pronounced peak due to La-4f states is clearly visible,
superimposed on a rather broad band that has predomi-
nantly Br-derived d-character.

The SOC lifts the top of the valence band by 0.19 eV
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FIG. 3. (a) Absorption spectra measured by Sato49 and (b)
state resolved contributions to joint density of states (JDOS)
from QPscGW calculations due to transitions from valence
band (VB) states to different conduction states (SOC contri-
butions are included).

while leaving both the bottom of the Br-4p band and
the Br-4s band unchanged. The most significant effect
is observed for the La-4p derived states which split by
2.25 eV in excellent agreement with experiment [com-
pare Fig. 2(a)]. In general over the energy considered
the agreement of the QPscGW calculation with X-ray
photoelectron spectroscopy (XPS) data49 is very good if
SOC is included.

The bottom of the conduction band, which is com-
posed of La-5d states, is virtually unaffected by SOC.
There is also no change in the position of the La-4f peak
situated about 3.2 eV above the CBM, although one no-
tices a slight redistribution of weights in this band. The
QPscGW calculations yield a band gap of 6.19 eV, which
is reduced to 5.99 eV when SOC is taken into account.
This value is in very good agreement with experiments,
which indicated a value of 5.9 eV.5

To the best of our knowledge, there are currently no
spectroscopic data corresponding to the single-particle
excitation spectrum that would enable a direct compar-
ison of the calculated conduction band structure with
experiment. Sato49 measured the absorption spectrum,
which depends on both valence and conduction band
states. Since excitonic effects are known to be impor-
tant in halides, as shown specifically for LaBr3 in Ref. 5,
an accurate description of absorption would require the
inclusion of electron-hole interactions (see e.g., Refs. 53
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and 54). This could be accomplished for example by solv-
ing the Bethe-Salpeter equation,54–58 which is, however,
the subject of future work. In the present paper, we re-
sort to a simplified comparison based on the joint density
of states (JDOS). On a single-particle level, the latter is
related to the dielectric function and thus the absorp-
tion coefficient as discussed for example, in Ref. 59. One
can therefore expect a correlation between characteristic
features in the absorption spectrum with features in the
JDOS.
As observed in Fig. 3, there indeed exist similar fea-

tures in absorption spectra measured by Sato49 and the
JDOS obtained from QPscGW calculations, as indicated
by letters A and B.
When separating the contributions from different con-

duction band states to the JDOS, Figure 3(b) shows that
features A and B arise from transitions from valence band
(VB) to La-d and f states, respectively. The fact that the
computed features occur at slightly higher energies com-
pared to experiment is consistent with the observation
that electron-hole interactions usually lead to a red shift
of the calculated spectrum. In Sect. III C we compare
the JDOS obtained from different computational meth-
ods, which will demonstrate that reproducing the two
features discussed above is not trivial. The good agree-
ment between the QPscGW JDOS and the XPS data
therefore provides evidence for the reliability and accu-
racy of the QPscGW results.

B. Convergence of QPscGW calculations

In Sect. II it was argued that the QPscGW method
yields results that are independent of the starting wave
function. This feature is illustrated in Fig. 4(a), which
compares the convergence of several characteristic QP en-
ergy differences starting from both DFT and EXX wave
functions. The two different starting points correspond
to a significant underestimation (DFT) and overestima-
tion (EXX) of the band gap, respectively. Yet after con-
verging the QPscGW cycles, the converged QP energy
differences agree to within 0.05 eV for valence and lower
conduction band levels, and to 0.18 eV for the La-4f
states. The remaining differences can in principle be re-
duced further by increasing the basis set in which the ef-
fective Hamiltonian of the QPscGWmethod is expanded.
The previous statement is confounded by Fig. 4(b),

which shows the convergence of several QP energy differ-
ences with respect to the number of bands included in the
QPscGW basis set.60 Due to the presence of both La and
Br d-states as well La-f states, the density of states in
the conduction band is larger than in conventional semi-
conductors such as Si or GaAs. As a result, one needs five
times as many unoccupied than occupied states in order
to reach the convergence exhibited in Fig. 4(a), a number
that is considerably larger than for the aforementioned
semiconductors. In general we have found it very useful
not only to check convergence with respect to the num-
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FIG. 4. (a) Convergence of QPscGW calculations starting
from DFT and EXX wave functions, respectively, as evi-
denced by several quasi-particle energy differences. (b) Con-
vergence with respect to QPscGW basis set size starting from
DFT wave function. The results shown in (a) were obtained
using 192 bands to expand the effective QPscGW Hamilto-
nian, corresponding to states up to 34 eV above the CBM.
The calculations shown do not include SOC.

ber of bands as shown in Fig. 4(b) but also to confirm
convergence of our calculations by comparing the results
obtained from initially very different wave functions such
as DFT and EXX.

C. Hybrid DFT and G0W0 calculations

For studying various problems of interest such as
charge self-trapping, defect formation, or alignment of
activator levels one needs to consider ionic relaxations
and representative supercells. At present QPscGW cal-
culations are, however, computationally still extremely
expensive because a large number of unoccupied bands
has to be included. More severely, the method does not
allow to obtain total energies and forces. It is therefore
important to determine to which extent computationally
lesser demanding calculation schemes can reproduce the
reference electronic structure provided by QPscGW cal-
culations. To this end, a number of conventional and
hybrid exchange-correlation functionals, as well as the
corrections from G0W0 to some of these functionals have
been considered.
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FIG. 5. (a) Band gap, (b) position of La-4f states, and (c)
valence band width from conventional exchange-correlation
functional (PBE), several hybrid exchange-correlation func-
tional (hybrid XC), and exact-exchange (EXX) calculations.
Vertical arrows indicate the improvement obtained by carry-
ing out G0W0 calculations. Gray bars indicate QPscGW val-
ues that serve as reference data in this comparison. All data
obtained without spin-orbit coupling. In (a) two values are
shown for PBE corresponding to the gaps between VBM and
La-4f and 5d states, respectively (compare Fig. 6). For all
other cases the band gap between VBM and La-5d is shown.

Figure 5 shows the variation of several QP energy
differences with the mixing parameter α of a range-
separated hybrid exchange-correlation functional47 with
a screening length of µ = 0.2 Å−1. For α = 0 this
functional is identical to the XC functional by Perdew et

al. (PBE).39 For comparison we also included data from
EXX calculations, which do not include correlation.

The data shows that at the PBE level, the ordering of
the La-4f and 5d states is incorrect with 4f located be-
low 5d levels. Upon inclusion of exact-exchange and/or
by adding a G0W0 calculation the level ordering is cor-
rected but for most functionals the QP energies are still
quantitatively very different from the QPscGW values.
In general as α is increased the QP energy differences con-
sidered here increase. Performing G0W0 calculations in
general improves the agreement. The same trend was ob-
served by Aulbur et al. for medium and wide-gap materi-
als using G0W0 on top of an EXX-based XC functional.61

While the G0W0 method reduces the dependence of the
results on α, it remains pronounced.
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For α values between approximately 0.5 and 0.65 all
QP energy differences considered in Fig. 5 intersect the
respective reference values. This suggests that a hybrid
functional with α in this range could possibly reproduce
the DOS obtained from QPscGW calculations. We there-
fore considered a hybrid functional with α = 0.62, for
which the total DOS is shown in Fig. 6 together with re-
sults obtained from PBE, EXX, DFT+U , and QPscGW.
For simplicity SOC effects were neglected in this com-
parison. In fact apart from the deep semi-core states the
DOS for the modified hybrid functional compares very
favorably with the QPscGW reference.
The figure also contains the DOS obtained from

DFT+U calculations using U and J parameters deter-
mined previously for other La-compounds,46 both as-
calculated (DFT+U) and with a rigid shift of the con-
duction bands to the QPscGW band gap (“scissors” cor-
rection, DFT+U +χ). Both the upper valence and lower
conduction band structures from DFT+U + χ are in ex-
cellent agreement with QPscGW data, and even though
the agreement worsens for deeper lying valence states,
among the methods considered the DFT+U+χ approach
still yields the best agreement with the reference DOS.
Still for practical calculations one would have to resort
to the DFT+U method without the scissors correction,
which exhibits a pronounced band gap underestimation
(3.60 eV vs 6.19 eV without SOC).
In this context it is furthermore interesting to revisit

the JDOS, shown in Fig. 7, which was compared earlier
with absorption data (see Fig. 3). Also in this arena both
the DFT+U method and the modified hybrid XC func-
tional (not shown in Fig. 7) yield good agreement with
QPscGW calculations exhibiting the features discussed
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FIG. 7. Joint density of states from different calculation
schemes (without SOC). It is instructive to compare these
curves with the data in Fig. 3.

in detail in Sect. III A. In stark contrast the JDOS from
PBE and EXX calculations are qualitatively very differ-
ent from the QPscGW data. The position of the features
in the absorption spectra shown in Fig. 3 are not repro-
duced with these functionals.

IV. DISCUSSION AND CONCLUSIONS

In this paper it has been demonstrated that QPscGW
calculations of LaBr3 yield single particle spectra (DOS)
that closely match experimental XPS data (Fig. 1). At
the same time the key features in the JDOS correlate with
those in the experimental absorption spectrum (Fig. 3).
To obtain this result it was essential to include spin-
orbit coupling in the calculations. The very good agree-
ment between our QPscGW calculations and experimen-
tal data provides confidence in the reliability of the QP-
scGW method for treating systems with f -electrons and
weak to moderate correlation. Our work complements
earlier studies of other f -electron systems that used both
the QPscGW method15,62 and the G0W0 approach24 but
focused on systems, in which f -electrons are located in
the valence band.
The presence of both f and d states in the conduction

band of LaBr3 requires —by comparison with more con-
ventional semiconductors and insulators— an unusually
large basis set for the expansion of the effective Hamilto-
nian to obtain converged results [Fig. 4(b)]. It was also
explicitly demonstrated that the QPscGW results are in-
dependent from the initial wave function [Fig. 4(a)]. This
property is a big advantage of the QPscGW approach
compared to other GW methods, as exemplified in Fig. 5,
which shows the G0W0 results to exhibit a rather pro-
nounced dependence on the initial wave function. This
behavior is important to keep in mind when interpreting
such calculations.
Another aspect that deserves mentioning is related to

the computation of matrix elements and their interpola-
tion. The QPscGW method does provide updated wave

functions that in turn can be used to compute matrix
elements. In contrast the wave functions are unchanged
when doing G0W0 calculations. This difference becomes
particularly apparent when interpolation methods are
used. These methods, based for example in the present
work on maximally localized Wannier functions, can be
used to represent the aforementioned matrix elements on
a finer mesh in reciprocal space, dramatically improv-
ing convergence of the calculations. If, as in the case of
LaBr3, the level ordering changes as the result of a G0W0

calculation the connectivity of the states changes as well,
which causes problems for interpolation methods. In such
a case the interpolation of the QP energies and the pro-
jections on the basis of a PBE + G0W0 calculation are
physically not meaningful because the derivative matrices
M (k,b) no longer refer to the same states. The QPscGW
method, however, does not suffer from this shortcoming
and matrix elements can be readily interpolated once the
MLWFs have been determined.
It is instructive to compare the electronic structure of

LaBr3 both with other lanthanum halides and the free
La atom. As discussed at length in this paper in LaBr3
the La-4f levels are located above the La-5d levels. This
is similar to the ordering of excited states in a free La2+

ion.63 In contrast for the 3+ charge state of the La ion
the excited 4f states are indeed observed to lie below
the 5d levels. This situation is compatible with a partial
charge transfer between La and Br.
Finally, it was shown that a hybrid XC functional can

be constructed that yields reasonable agreement with
DOS (Fig. 6) and JDOS (Fig. 7) obtained from QP-
scGW calculations. This functional should be suitable
for studies that require ionic relaxation and/or the use
of supercells. The DFT+U method (using parameters
from the literature46) also reproduces the DOS structure
of valence and conduction band states independently but
still underestimates the band gap significantly.
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