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Recent advances in methods for computing both Hashin-Shtrikman bounds and related self-
consistent (or CPA) estimates of elastic constants for polycrystals composed of randomly oriented
crystals can be applied successfully to hexagonal close packed solid He4. In particular, since the
shear modulus C44 of hexagonal close-packed solid He is known to undergo large temperature vari-
ations when 20 mK ≤ T ≤ 200 mK, bounds and estimates computed with this class of effective
medium methods, while using C44 → 0 as a proxy for melting, are found to be both qualitatively and
quantitatively very similar to prior results obtained using Monte Carlo methods. Hashin-Shtrikman
bounds provide significantly tighter constraints on the polycrystal behavior than do the traditional
Voigt and Reuss bounds.

PACS numbers: 62.20.de, 67.80.B-

I. INTRODUCTION

Methods for computing Hashin-Shtrikman1−4 bounds and related self-consistent (also coherent potential approxima-
tion, or CPA) estimates5−8 of elastic constants for polycrystals composed of anisotropic crystals have been known for
about five decades, and actively applied to a wide variety of real systems for about three decades. To reduce the over-
all computational effort required by these methods, some simplifications were introduced recently by the author.9−10

In particular, difficulties inherent in tracking the Hashin-Shtrikman bounding curves have been minimized by noting
that the self-consistent estimates of the effective elastic constants are themselves very robust, involving a quickly
converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the
computations of the Hashin-Shtrikman bounds themselves, especially for orthorhombic or less symmetric systems.
Although it is well-known that isotropic elastic materials have compressional/extensional modes measured typically

by a hydrostatic bulk modulus, as well as distortional modes measured typically by a shear modulus, the majority of
elastic materials have more complicated behavior than that observed in the isotropic case. In general there may be
as many as five shear-like modes and just one bulk-like mode. But for anisotropic media, the coupling among shear
and bulk modes is nontrivial, and can lead to complexities in the analysis of elastic data, whether laboratory or field
measurements, and whether the data are derived from quasi-static or dynamic measurements, as is often the case
whether ultrasonic, acoustic, or seismic waves11 are used to probe such media.
There are basically seven types of elastic crystal symmetries (see Nye12) usually considered: cubic, hexagonal,

tetragonal, trigonal, orthorhombic, monoclinic and triclinic. Of these seven, cubic symmetry is the only one that
has a simply defined bulk modulus, since the bulk modulus K in this case can be precisely determined and will
give the same value whether the measurement is made in compression via uniformly applied external pressure, or
in either extension or compression if the sample can be uniformly strained. In all other cases, the measured results
can differ depending on whether they are obtained using applied strains, applied stresses, or combinations of these.
Furthermore, the shear behavior of anisotropic media can be quite complex since – in orthorhombic symmetry systems
(for example) – there are three independent twisting shears that can be applied to any material sample, as well as three
quite different shearing forces that can result (for example) from applying a uniaxial compression (or extension) in
any of the three principal orthogonal directions. These cases do not exhaust all the possibilities for shearing motions,
but all others can normally be found by considering linear combinations of the ones already mentioned.
It is because of these complexities that Voigt13 and Reuss14 studied elastic systems and determined that there were

two sets of constants that seemed to capture much of the nature of these linear elastic materials. These results were
then called the Voigt and Reuss averages of shear and bulk behavior until Hill15 showed that these same averages were
actually rigorous bounds on the possible responses and behaviors of these complicated systems. Since Hill’s work, the
Voigt and Reuss estimates of elastic response have become known as the Voigt and Reuss (rigorous) bounds on elastic
system (really polycrystalline) behavior.
Subsequently, Hashin and Shtrikman1 also studied the problem of finding bounds on elastic constants and deter-

mined that it was possible to do somewhat better than these early bounds of Voigt and Reuss. They established
general procedures for computing such bounds and carried the work through themselves for some of the simpler cases,
including cubic materials. Other workers continued to elaborate the theory, including first Peselnick and Meister,2

Watt and Peselnick,3 and also Watt4 alone, who subsequently published a long series of papers on methods covering
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essentially all of the crystal classes of common interest.
Another line of thinking on such problems arose around the same time as the work of Peselnick and Meister,6 and

was focused on effective-properties estimates, rather than rigorous bounding methods. This work was based in part
on early scattering theory approaches by Soven5 and Taylor6 via the coherent potential approximation (CPA), and
then carried further for elastic constants by Gubernatis and Krumhansl,7 and also in related work by Willis,8 who
based some of his ideas on earlier work in this area by Hill.16 Olson and Avellaneda17 also contributed to the same
stream of ideas.
The present study will make use of the same theoretical tools, but will apply them to the problem of determining

what might be the predicted response of polycrystals composed of solid He4, when it appears in the form of a
polycrystal. In particular, the tools already at hand appear to be sufficiently rigorous and relatively easy to use for
computing estimates and bounds on the elastic responses of such systems. The methods developed for orthotropic
systems10 are more general than what is required for polycrystals of hexagonal closed packed He4. But those codes
could also be used instead of the ones we develop here, based on the somewhat simpler earlier work.9

Recommended advanced textbooks on elasticity include Landau and Lifshitz18 and Ting.19

The first application of this analysis will be to determine the isotropic polycrystal constants for an aggregate
composed of hexagonal close-packed solid He4. It is known that helium solidifies only in the presence of external
pressure; so such prestress must also be the source of nonzero values of the shear constants C44 and C55 (to be defined
in Section II) in particular. Therefore, a second application makes use of these results to study how the softening
of these shear constants C44 = C55 in such an isotropic polycrystal of hexagonal close-packed solid He4 affects the
overall behavior of such a system.
The physical issue to be addressed then concerns the observed large variation in elastic behavior observed in the

temperature range 20 to 200 mK. Some similar work along these lines has been published previously by Maris and
Balibar.20 However, these authors used Monte Carlo computer simulations to obtain their estimates, whereas the
present work shows how to get comparable results more quickly and easily using the established analytical and
semi-analytical methods, including those published previously by the author.9,10

II. ELASTIC PROPERTIES OF POLYCRYSTALS COMPOSED OF HEXAGONAL CRYSTALS

There are both explicit and implicit assumptions in the polycrystal constants estimation procedures. In particular,
one strong assumption is that a polycrystal is macroscopically isotropic, and (at least equally important) that there
are no gaps (holes) within the polycrystal.
If the dimensionless second rank tensor of strain for an elastic body in three dimensions is ǫij , with i, j = 1, 2, 3

being the three spatial dimensions in some convenient choice of coordinate system, and the second rank tensor of stress
(having dimensions of pressure) of the same body is σij in the same coordinate system, then the stress is related to the
strain (see Landau and Lifshitz18) by the fourth rank tensor cijkl according to: σij = cijklǫkl, assuming the Einstein
convention of summation over repeated indices k, l = 1, 2, 3. It is often convenient to simplify the mathematics of these
relationships by replacing tensor with matrix notation. In this case, the cijkl’s are replaced by the matrix Cij , while
the stress and strain tensors are replaced by vectors according to the well-known (see Ting19 for extensive discussion)
Voigt 6× 6 matrix prescription relating the stiffnesses Cij to stresses σij and strains ǫij :
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Equation (1) clearly implies the six equations: σ11 = C11ǫ11 + C12ǫ22 + C13ǫ33, . . ., σ23 = C66ǫ12. [Also note that
we are using the lower-case c four-index notation for elastic tensor cijkl and the upper-case C two-index notation Cij

as shown in (1) commonly used in the Voigt matrix notation for elasticity. Both of these quantities as used here are
for isothermal conditions, but may or may not (depending on the context) also incorporate prestress (see Barron and
Klein21 and Stixrude22 for extended discussions of this point).]
The example shown in (1) is that for orthorhombic symmetry, which is the most general case that will be considered

(although briefly) in the present work. The elastic constants C44, C55, C66 are elastic moduli for the twisting
shear strains: ǫ23, ǫ13, ǫ12, and their related stresses. For isotropic elastic materials, C11 = C22 = C33 = λ + 2µ,
C44 = C55 = C66 = µ, and C12 = C13 = C23 = λ, where λ and µ are the two Lamé constants, and the isotropic bulk
and shear moduli are given (in this very special case) by K = λ + 2µ/3 and G = µ, respectively. For a thorough
discussion of the orthorhombic case, see Ref. 10.
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For polycrystals composed of grains having hexagonal symmetry, the number of independent components of the
elastic matrix for individual grains is reduced due to higher symmetry so that C22 = C11, C23 = C13, and C55 = C44.
One further restriction is the condition C11 = C12 +2C66, which is often used to eliminate either C12 or C66 from the
list of measured constants.
For hexagonal symmetry elastic materials, there are four simple eigenvectors and eigenvalues. Three of these are

associated with the twisting shear modes ǫ23, ǫ13, and ǫ12, and their respective stiffnesses, namely C44, C55 = C44,
and C66. There will also be three eigenmodes associated with the 3× 3 submatrix in the upper lefthand corner of the
full elastic matrix. But typically (for hexagonal symmetry) only one of these modes will generally be simply related
to a pure mode (since C13 = C23 for hexagonal symmetry), and this is the shear mode corresponding to ǫ22 = −ǫ11,
having the eigenvalue C11 − C12 = 2C66. Thus, there are four simple shear modes, and two other eigenmodes of the
system that are of mixed character, being linear combinations of an effective bulk modulus and a fifth effective shear
modulus. It is these last two modes that make it necessary to study these issues related to the Voigt, Reuss, and
Hashin-Shitrikman bounding methods for overall bulk and shear moduli of hexagonal-symmetry-based polycrystals.
Analysis of these systems is normally designed to quantify the behavior of random polycrystals, where the use of the
word “random” implies that the polycrystals are composed of a large enough number of small (and tightly fitting)
crystallites oriented randomly in space so that the overall polycrystalline behavior is close to isotropic, and there is no
porosity present in the aggregate. The effective isotropic constants can therefore be taken to be effective bulk K∗ and
shear G∗ moduli. The main goal of the polycrystal analysis is therefore to localize these values by providing rigorous
upper and lower bounds on both quantities. The traditional bounds/estimates for these quantities are the Voigt (KV ,
GV ) and Reuss (KR, GR) estimators. These were originally proposed as useful estimates, but later proven by Hill to
be rigorous upper (Voigt) and lower (Reuss) bounds on the polycrystal constants K∗ and G∗. The work of Hashin
and Shtrikman then led to more refined upper and lower bounds that generally improve upon the Voigt and Reuss
bounds.

III. BOUNDS AND ESTIMATES OF ELASTIC CONSTANTS FOR POLYCRYSTALS

Self-consistency conditions (which for elasticity are also the same as the CPA or coherent potential approximation)
are given by:

KSC = K∗ and GSC = G∗, (2)

where in the formulas of Appendix A all the quantities having ± subscripts or superscripts are replaced with the
corresponding expressions with either SC subscripts or ∗ superscripts [these being entirely equivalent in either case
because of the identities in (2)]. The PM and and HS subscripts are also irrelevant for these self-consistency
conditions. Self-consistency results have been easily achieved for all the hexagonal (and also cubic, trigonal and
tetragonal) examples known to the author. Orthorhombic symmetry10 (not specifically considered here) is however
more difficult to treat than these other cases. We are studying only hexagonal symmetry in the present examples.
Table 1 lists the elastic constant values used for the first example. Experimental data are from Crepeau et al.,21

Greywall and Munarin,22 and Greywall.23 Table 2 displays the corresponding results found for the Reuss bound (R),
Hashin-Shtrikman lower bound (HS−), self-consistent estimate (SC), Voigt-Reuss-Hill estimate (VRH), geometric
mean estimate (GM), Hashin-Strikman upper bound (HS+), and Voigt upper bound (V). The geometric mean (GM)
estimate for bulk and shear moduli is given by

KGM ≡ (KRKV )
1/2 and GGM ≡ (GRGV ).

1/2 (3)

A graphical representation of these same results is presented in Figure 1.
Table 3 lists the elastic constant values used for the second example. These simulation results are from Pessoa et

al.24 and Ardila et al.25 Table 4 displays the corresponding results again, as in Table 2. A graphical representation of
the same results is also presented in Figure 2.
When considering the graphical results in Figures 1 and 2, note that the VRH arithmetic mean always lies exactly

at the center of Voigt-Reuss (VR) bounding box. Although it appears to be true that the self-consistent results lie at
the center of the Hashin-Shitrikman bounding box for hexagonal systems, we know (from other work) that this is not
always true for arbitrary anisotropic symmetry. Also note that the HS bounding box is NOT centered within the VR
bounding box. The geometric mean (GM) estimate is expected to lie close to, but somewhat lower than and to the left
of, the VRH estimate in such diagrams, since K2

V RH −K2
GM = (KV −KR)

2/4 and, similarly, for the corresponding
averages of shear modulus G.
While some bound optimization effort is generally required for orthorhombic-based polycrystals10, the formulas

for hexagonal-based polycrystals are quite straightforward9 to apply, and no additional effort is normally required to
obtain valid and useful results.
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All the formulas used in these examples are summarized in Appendix A.

IV. EFFECTS DUE TO RISING TEMPERATURE OR DECREASING CONFINING PRESSURE

To understand how the mechanical behavior of hcp solid He4 changes when the system temperature increses and/or
when confining pressure declines, we can treat certain elastic constants as variable and thereby use them as proxies
for the changing thermodynamic conditions. Shear modulus is expected to serve as a good proxy for these purposes,
since significant reduction of shear modulus results in an effective liquefaction of the medium. As discussed in the
Appendices A and B, there are effectively four (possibly) distinct elastic constants associated with shear modes of
the hexagonal system: C44 = C55, C66, G

v
eff , and Gr

eff . The formulas for Gv
eff and Gr

eff are (15) and (18), which
show that they are not likely to be strong functions of changing thermodynamic conditions. However. changes in
both C44 and C66 have similarly strong effects on the values of GV and GR in (14) and (17). Since the value of
C66 = (C11 − C12)/2 is clearly tightly coupled to two other elastic constants, we will use only C44 as our proxy for
changing thermodynamic conditions.
Examples of the results for effective C∗

11 and G∗ are displayed in the following two examples.

A. Examples based on measured elastic constant data for solid He4

The first set of examples (Figures 3 and 4) makes use of data from experimental results of Crepeau et al.23, Greywall
and Munarin24, and Greywall.25 Figure 3 shows polycrystal results for effective value C∗

11 = K∗ + 4G∗/3. Figure 4
shows polycrystal results for effective overall shear modulus value G∗.

B. Examples based on elastic constant values for solid He4 obtained using the SWF (shadow wave function)
formalism

The second set of examples (Figures 5 and 6) makes use of simulated data obtained by Pessoa et al.26 and Ardilla
et al.27 using the shadow wave function (SWF) formalism.28,29 Figure 5 shows polycrystal results for effective value
C∗

11 = K∗ + 4G∗/3. Figure 6 shows polycrystal results for effective overall shear modulus value G.∗

V. DISCUSSION OF RESULTS

A. A restatement and evaluation of the methods developed

Voigt and Reuss bounds are determined by simple formulas depending only on the stiffness (Cij) or compliance (Sij)
matrix elements of the anisotropic rock crystals. These easy-to-compute Voigt (13)-(14) and Reuss (16)-(17) bounds
on both bulk (K) and shear (G) moduli can be viewed as establishing a rectangle in the two-dimensional space (K,G)
(see Figures 1 and 4), since — if the point (KR, GR) falls at the lower left-hand corner of a rectangle — then the point
(KV , GV ) lies at (and defines) the upper right-hand corner of this rectangle. All the modulus values of interest in
this paper must always fall inside this rectangle. In particular, the self-consistent estimator (KSC , GSC) = (K∗, G∗)
falls somewhere in the middle. But in general (i.e., for arbitrary crystal symmetries) it seldom lies exactly at the
center of this rectangle. However, we find for these hexagonal-symmetry-based polycrystals that the SC estimates do
in fact tend to lie at the center of the rectangle formed by the Hashin-Shtrikman bounds. This rectangle is itself offset
slightly from the center of the of Voigt-Reuss bounding rectangle. So the self-consistent values are not identical to
the Voigt-Reuss-Hill arithmetic average, or to the comparable Voigt-Reuss geometric mean (GM) as shown in these
same Figures. But at least for the cases considered here, the SC estimates fall essentially precisely in the middle of
the Hashin-Shtrikman bounding box, which is a convenient simplification – and one known not to hold in general
(specifically, it is definitely NOT true for general polycrystals formed from crystals having orthorhombic symmetry).
Furthermore, the center point of the VR rectangle is exactly the Hill estimator (GV RH ,KV RH) based on the

arithmetic means of the shear and bulk moduli, in all cases for any symmetry. But this point is only a rather crude
estimate of the points of most interest – both of these Hill averages GV RH and KV RH , being typically too high in
value (especially for the bulk modulus as seen in the present examples).
The next easiest point to compute is actually the self-consistent estimator (K∗, G∗). This point will also always

fall within the Hashin-Shtrikman rectangle, which itself always falls within the Voigt-Reuss rectangle. But again,
the HS rectangle does not necessarily fall exactly in the middle of the VR rectangle, and probably only does so
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when the crystals involved are nearly isotropic (for example, cubic symmetry is a case where such behavior might be
observed). Virtually the same equations that determine these self-consistent estimators, also determine the Hashin-
Strikman bounds on K and G. However, these equations for the HS-bounds actually may also be used to determine
many effective constant estimates, depending on exactly what algorithm is used to explore the values within the
Voigt-Reuss rectangle as already defined.

VI. SUMMARY AND CONCLUSIONS

Hexagonal symmetry for crystals forming solid He polycrystals lead to formulas that are particularly simple to
compute. This fact makes the current results quite straightforward to analyze compared to the effort that might be
required for systems (such as orthorhombic ones) having lower symmetry.
The analysis methods employed are also fairly well-known, since the main ideas used are based on the early work

of Hashin and Shtrikman,1 Peselnick and Meister,2 Hill,15 Gubernatis and Krumhansl,7 Willis,8 Watt and Peselnick,3

Watt,4 and others including Berryman,9,10 and additional references in these last two papers.
Figures 2 and 3 for the first data set, and Figures 5 and 6 for the second data set illustrate the use of the methods

presented here for hcp solid He4 polycrystals as the shear constant C44 = C55 → 0. This exercise provides a different
and convenient means of estimating overall behavior of these systems as they soften due to changes in temperature
(i.e., increases) or pressure (i.e., decreases).
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Appendix A: Simplified results needed for elastic materials having hexagonal symmetry

In earlier work the author has discussed the Peselnick and Meister2 and the Watt and Peselnick3 bounds for
hexagonal, trigonal, tetragonal, and cubic symmetries. Note that some of these simplifications are important to apply
to the hexagonal class of elastic symmetry under consideration here.
Parameters needed to optimize Hashin-Shtrikman bounds can be taken to be K± and G±, where the ± symbols

designate the best comparison material values respectively for the upper bounds (+) and lower bounds (−), with
the K± being bulk moduli and G± being shear moduli of the comparison materials needed in the Hashin-Shtrikman
approach. Normally K+ and G+ are used together, and K− and G− are used together, without mixing of the
subscripts in the same formulas. An exception is the limit of the self-consistent estimates in which case only one set
of constants applies, and we typically label the starting values as K0 and G0, and the final results as K∗ and G∗,
although KSC and GSC or some variant thereof may also be used by some authors. The HS bounds themselves will
be labelled K±

HS and G±

HS , although other labels are sometimes also used to give credit to the workers who obtained
bounding results for specific crystal symmetries.
Formulas for the Hashin-Shtrikman bounds in the notation of Peselnick and Meister2 take the form:

K±

PM = K± +
KV −K±

1 + 2β±(G± −Gv
eff )

(4)

and

G±

PM = G± +
B±

2

1 + 2β±B
±

2

. (5)

The Hashin-Shtrikman bounds themselves are then given exactly by K±

HS ≡ K±

PM and G±

HS ≡ G±

PM . Here KV is the
Voigt average of bulk modulus, and the remaining constants are defined carefully in Appendix B. Definitions of Gv

eff
depend specifically on the crystal symmetry, and examples will be provided later in this Appendix.
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It is worthwhile noting that two additional quantities that essentially always play a role in the HS bounds and also
in the self-consistency conditions are the quantities 4G±/3 and the combinations:

ζ± ≡ G±(9K± + 8G±)

6(K± + 2G±)
. (6)

These quantities have been shown by Hill,16 Willis,8 and others (including Olson and Avellaneda17) to be important
factors specifically for comparison materials having spherical shapes. Such spherical shapes are the ones typically
assumed, whether explicited or implicitly, in such work on polycrystals. The source of these contributions can
probably be most easily understood by considering Eshelby’s work30 on elasticity of composites containing ellipsoids.
In such cases, it is again exactly such factors that play the same type of role in the formulas for effective elastic
constants.8,16 If the comparison materials have other shapes, then other combinations30,31 of constants can come into
play, but the spherical shapes have been the only ones usually considered for studies to date involving polycrystals of
randomly oriented anisotropic components.
Parameters α± and β± that appear repeatedly in the PMW (Peselnick-Meister-Watt) works2−4 can be related to

the Eshelby30 results by rewriting them in the form:

− 1

α±

= K± + 4G±/3 (7)

and

− 1

2β±

= G± + ζ±. (8)

Another combination of these two that also frequently appears in the formulas is

γ± =
α± − 3β±

9
. (9)

The reason for pointing out this similarity across the different applications is that the resulting rather complicated
formulas often collapse in unexpectedly simple ways if we look for formulas of the right type. For example, the
Hashin-Shtrikman bounds for bulk modulus found by PMW can be rewritten as:

K±

PM =
KV (G

r
eff + ζ±)

Gv
eff + ζ±

, (10)

which is valid for hexagonal (as well as tetragonal and trigonal — not otherwise considered here) crystal structures.
The quantitiesGv

eff (Gr
eff ) are the uniaxial shear energies per unit volume for a unit applied shear strain (shear stress),

whose main compressive strain (stress) is applied to the grains along their axes of symmetry [also see Berryman9 for
more discussion]. (Note that cubic symmetry is special in this regard, since it has a well-defined bulk modulus – so
neither bounds nor estimates are required for bulk modulus in this case.) Similarly, if we add ζ± to both sides of (5),
then we find that this result can be simplified to read:

1

G±

PM + ζ±
=

1−B±

2 /(G± + ζ±)

G± + ζ±
, (11)

which is valid for the same three crystal symmetries. After determination of the B±

2 factors, these results imply for
hexagonal crystals that

1

G±

hex + ζ±
=

1

5

[

1− α±(KV −K±)

Gv
eff + ζ± + α±

2β±
(KV −K±)

+
2

C44 + ζ±
+

2

C66 + ζ±

]

, (12)

where Gv
eff = (C11 + C33 − 2C13 − C66)/3.

APPENDIX B: Voigt and Reuss bounds and a product formula for elastic systems having hexagonal
symmetry

For hexagonal symmetry, the nonzero stiffness constants are: C11, C12, C13 = C23, C33, C44 = C55, and C66 =
(C11 − C12)/2.
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The Voigt average for the effective bulk modulus of polycrystal systems composed of hexagonal crystals is well-known
to be

KV = [2(C11 + C12) + 4C13 + C33] /9. (13)

Similarly, for the effective shear modulus we have

GV =
1

5
(Gv

eff + 2C44 + 2C66) , (14)

where the new term appearing here is essentially defined by (14) [in terms of the traditional Voigt formula] and given
explicitly by

Gv
eff = (C11 + C33 − 2C13 − C66)/3. (15)

The quantity Gv
eff is the energy per unit volume in a grain when a pure uniaxial shear strain of unit magnitude [i.e.,

(e11, e22, e33) = (1, 1,−2)/
√
6], whose main compressive strain is applied to the grain along its axis of symmetry.9

The Reuss average for bulk modulus is determined by 1/KR = 2(S11 + S12) + 4S13 + S33, where the Sij ’s are
compliances determined by taking the inverse of the stiffness matrix Cij . The Reuss average can also be written as

1

KR − C13

=
1

C11 − C66 − C13

+
1

C33 − C13

(16)

in terms of stiffness coefficients. The corresponding Reuss average for shear is

GR =

[

1

5

(

1

Gr
eff

+
2

C44

+
2

C66

)]−1

, (17)

which again may be taken as the definition of Gr
eff – i.e., the energy per unit volume in a grain when a pure uniaxial

shear stress of unit magnitude [i.e., (σ11, σ22, σ33) = (1, 1,−2)/
√
6], whose main compressive pressure is applied to a

grain along its axis of symmetry.
We use the following product formula as the formal definition of Gr

eff . For each grain having hexagonal symmetry,
two product formulas hold (see Ref. 9):

3KRG
v
eff = 3KVG

r
eff = ω+ω−/2 = C33(C11 − C66)− C2

13. (18)

The symbols ω± stand for the quasi-compressional and quasi-uniaxial-shear eigenvalues for the crystalline grains.
Thus, Gr

eff = KRG
v
eff/KV – which is a general formula that holds not only for hexagonal systems, but also for

trigonal and tetragonal symmetries. We can therefore treat (14) and (17) [or their equivalents for other symmetries]
as the fundamental defining equations for effective shear moduli Gv

eff and Gr
eff

APPENDIX C: Peselnick-Meister-Watt Bounds for Hexagonal Symmetry

Hashin-Shtrikman-style bounds1 on the bulk and shear moduli of isotropic random polycrystals composed of hexag-
onal grains have been derived by Peselnick and Meister,2 with later corrections by Watt and Peselnick.3 Notation
used is very similar to that in the original Hashin-Shtrikman paper on random polycrystals of grains having cubic
symmetry.1 We will use a slightly modified notation here, taking into account the product formulas (see Eq. (18) in
Appendix B) in order to simplify the statement of the results. Derivations are found in the references, and therefore
not repeated here.
Parameters needed to optimize the Hashin-Shtrikman bounds are K± and G±, which have the significance of being

the bulk and shear moduli of two (±) isotropic comparison materials. G+,K+ are the values used in the formulas for
the upper bounds, and G−,K− for the lower bounds. Formulas for the bounds are:

K±

PM = K± +
KV −K±

1 + 2β±(G± −Gv
eff)

, (19)

and

G±

PM = G± +
B±

2

1 + 2β±B
±

2

, (20)
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where

α± =
−1

K± + 4G±/3
, β± =

2α±

15
−

1

5G±

, γ± =
1

9
(α± − 3β±). (21)

The form of B±

2 depends on the crystal symmetry.
For the case of hexagonal symmetry under consideration, we have

B±

2 =
1

5

[Gv
eff −G±

D±

+
2(C44 −G±)

1− 2β±(C44 −G±)
+

2(C66 −G±)

1− 2β±(C66 −G±)

]

, (22)

with

D± = 1− β±(C11 + C12 + C33 − 3K± − 2G±)− 9γ±(KV −K±). (23)

Using the product formulas, (23) can be simplified to

D± = 1− 2β±(G
v
eff −G±)− α±(KV −K±). (24)

The comparison materials have definite values assigned to both K± and G±. We have the general form:

K± =
KV (G

r
eff −G±)

(Gv
eff −G±)

. (25)

The range of values of G± for hexagonal symmetry is given by

0 ≤ G− ≤ min(C44, G
r
eff , C66) (26)

for the K− formula. And, similarly, the K+ formula for hexagonal symmetry is determined by

max(C44, G
v
eff , C66) ≤ G+ ≤ ∞. (27)

When the values of C44, G
r
eff , G

v
eff , and C66 are known, as they always are if all the crystal elastic constants are

known, it is then straightforward to determine the K± values.
For example, note that, when G− = 0, K− = KR, because KR = KV G

r
eff/G

v
eff from the product formulas9. When

G+ → ∞, K+ → KV . Watt and Peselnick3 performed searches in the appropriate parameter ranges as determined by
(26) and (27). They found consistently that the optimum choices of the parameters were very close to the upper limits
for the case of G−, and also close to the lower limits for the case of G+. The overall algorithm for determining the
bounds can be greatly simplified if we are willing to accept slightly suboptimal values of the bounds (the results are
still bounds, but not quite as tight as they could be). This approach is easily implemented in code by choosing to use
the upper limits for G− and the lower limits for G+ themselves as our practical estimates of these bounding values.
This approach is the one taken previously by the author.9 For data with normal ranges of measurement uncertainty,
this method is both appropriate, very practical, and the one used in all our examples here.
Peselnick and Meister2 had originally obtained all the results for hexagonal symmetry, except for one additional

condition that permits C44 to be replaced in some circumstances by Gr
eff . This new condition was the one added later

by Watt and Peselnick.3
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Table 1. Elastic stiffness constants Cij for hcp solid He4. Crystal data from Crepeau et al.23, Greywall and
Munarin24 and Greywall25. [Note that C11 = C12+2C66 for hexagonal symmetry.] All constants are in units of MPa.

Solid He4

C11 C12 C13 C33 C44 C66

40.5 21.3 10.5 55.4 12.4 9.6
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Table 2. Various estimates of the effective elastic stiffness constants of bulk modulus K and shear modulus G for
polycrystalline hcp solid He4. as computed using crystal data from Crepeau et al.23, Greywall and Munarin24, and
Greywall25. Labels indicate Reuss average (R), Hashin-Shtrikman lower bound (HS−), self-consistent estimate (SC),

Hashin-Shtrikman upper bound (HS+), Voigt-Reuss-Hill arithmetic average (VRH), geometric mean (GM), and
Voigt average (V). All constants are in units of MPa.

Solid He4

KR 24.527 GR 12.59

K−

HS 24.537 G−

HS 13.08

KSC 24.540 GSC 13.21

KV RH 24.541 GV RH 13.19

KGM 24.541 GGM 13.18

K+
HS 24.543 G+

HS 13.34

KV 24.556 GV 13.79
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Table 3. Elastic stiffness constants Cij for hcp solid He4, as computed using the shadow wave function (SWF)
formalism as quoted by Pessoa et al.26 and Ardilla et al.27 [Note that C11 = C12 + 2C66 for hexagonal symmetry.]

All constants are in units of MPa. Quoted errors are ±0.8 MPa.

Solid He4

C11 C12 C13 C33 C44 C66

60.8 34.4 14.4 77.9 17.1 13.2
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Table 4. Various estimates of the effective elastic stiffness constants of bulk mludlus K and shear modulus G for
polycrystalline hcp solid He4. as computed using the shadow wave function (SWF) formalism as quoted by Pessoa et

al.26 and Ardilla et al.27 Labels indicate Reuss average (R), Hashin-Shtrikman lower bound (HS−) self-consistent
estimate (SC), Hashin-Shtrikman upper bound (HS+), Voigt-Reuss-Hill arithmetic average (VRH), geometric mean

(GM), and Voigt average (V). All constants are in units of MPa.

Solid He4

KR 36.201 GR 17.03

K−

HS 36.205 G−

HS 17.45

KSC 36.206 GSC 17.94

KV RH 36.206 GV RH 17.98

KGM 36.206 GGM 17.95

K+
HS 36.207 G+

HS 18.14

KV 36.211 GV 18.93
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FIG. 1: Bulk and shear modulus bounds and estimates using solid He4 crystal data from Crepeau et al.,23 Greywall and
Munarin,24 and Greywall.25
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FIG. 2: Bulk and shear modulus bounds and estimates using solid He4 simulation data from Pessoa et al.26 and Ardila et al.27
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FIG. 3: Polycrystal effective C∗

11 = K∗+4G∗/3 for crystal data from Crepeau et al.,23 Greywall and Munarin,24 and Greywall.25
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FIG. 4: Polycrystal effective shear modulus G∗ for crystal data from Crepeau et al.,23 Greywall and Munarin,24 and Greywall.25
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FIG. 5: Polycrystal effective C∗

11 = K∗ + 4G∗/3 for simulation data from Pessoa et al.24 and Ardila et al.25
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FIG. 6: Polycrystal effective shear modulus G∗ for simulation data from Pessoa et al.24 and Ardila et al.25


