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We study the continuous bandwidth-controlled Mott transition in the two-dimensional single-
band Hubbard model with a focus on the critical scaling behavior of charge and spin degrees of
freedom. Using plaquette cluster dynamical mean-field theory, we find charge and spin criticality
consistent with experimental results for organic conductors. In particular, the charge degree of
freedom calculated via the local density of states at the Fermi level shows a smoother transition
than expected for the Ising universality class and in single-site dynamical mean-field theory, revealing
the importance of short-ranged nonlocal correlations in two spatial dimensions. The spin criticality
obtained from the local spin susceptibility agrees quantitatively with nuclear magnetic resonance
measurements of the spin-lattice relaxation rate.
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I. INTRODUCTION

The Mott metal-insulator transition (MIT) is a paradigmatic example of a correlation-induced phase transition.1

Its physics is generically contained in the single-band Hubbard model, which is parametrized by the local Coulomb
repulsion U , the bare bandwidth W , and the average electron density n. Two MITs are distinguished: first, the
bandwidth-controlled Mott transition at fixed filling, where an insulator turns into a metal by increasing W/U ,
typically realized in experiments through chemical or hydrostatic pressure, and second the filling-controlled Mott
transition at fixed U/W , where the system becomes metallic upon adding electrons or holes. A paramagnetic Mott
transition is often superceded by antiferromagnetic ordering unless the system is frustrated or the temperature high
enough so that the bandwidth-controlled MIT proceeds from a paramagnetic metal to a paramagnetic insulator.
Typically, the paramagnetic MIT is a discontinuous first-order transition at low temperatures with a continuous
critical end point.

The scaling behavior at the critical end point, or in short Mott criticality, for the bandwidth-controlled MIT has
been probed experimentally for the charge degree of freedom via the dc conductivity, e.g. for (V1−xCrx)2O3

2 or the
quasi-two-dimensional κ-(ET)2Cu[N(CN)2]Cl (abbreviated as κ-Cl).3,4 The latter belongs to a class of layered organic
charge transfer salts,5,6 which are both low-dimensional and geometrically frustrated, such that magnetic order is
suppressed at the temperature of the critical end point of the Mott transition. These organic salts therefore allow to
follow the first-order MIT to its second order critical end point in the absence of magnetic long-range order. Only
recently Mott criticality was also investigated for the spin degree of freedom by nuclear magnetic resonance (NMR)
measurements under pressure.7 The focus of the latter study was on the critical scaling behavior upon varying pressure
at fixed temperature, which is described by a critical exponent δ. Here we present a theoretical modeling of the spin
and charge Mott criticality and determine δ. The spin criticality will be investigated via the local spin susceptibility,
which is related directly to the NMR spin-lattice relaxation rate 1/T1. For the charge criticality we focus on the local
density of states at the Fermi energy.

Experimentally Mott criticality is probed by the scaling behavior of a selected quantity σ (e.g., the conductivity) as
a function of external parameters such as the temperature T or the pressure p near the critical end point. Specifically
one observes scaling with respect to the reduced parameters tred = (T − Tc)/Tc and pred = (p − pc)/pc, where the
index c denotes the values at the critical end point. Criticality is then classified by the set of exponents β, γ, and δ
via

σ(tred, pred = 0)− σc ∝ |tred|
β ,

∂σ(tred, pred)

∂pred

∣

∣

∣

pred=0
∝ |tred|

−γ ,

σ(tred = 0, pred)− σc ∝ |pred|
1/δ, (1)

where σc = σ(tred = 0, pred = 0). The critical exponents obey the scaling law γ = δ (β − 1).8

The Mott transition has been proposed to be in the Ising universality class9–12 based on the assumption that the
double occupancy may serve as a fingerprint observable for the MIT, which plays a similar role as the order parameter
in a thermodynamic phase transition to a broken symmetry state. The universality class of a second-order phase
transition is determined by the symmetry of the order parameter and the spatial dimension; the scalar character of
the double occupancy would imply the Ising universality class.8 Conductivity measurements for (V1−xCrx)2O3 indeed
confirm critical behavior compatible with 3D Ising universality (β ≈ 0.33, γ ≈ 1.2, δ ≈ 4.8),2,8 but the situation for
the two-dimensional κ-Cl has remained controversial.

The critical exponents of the 2D Ising model are β = 1/8, γ = 7/4, and δ = 15.13 Conductivity measurements
under pressure performed on κ-Cl challenge the prediction of Ising universality, since the observed exponents are β
≈ 1, γ ≈ 1, and δ ≈ 2. Imada et al. argued that the observed deviation from Ising universality is a manifestation
of unconventional quantum criticality specific to a two-dimensional system.14,15 A different scenario was proposed by
Papanikolaou et al. who claimed that the conductivity can have a different critical behavior than the order parameter
of the transition.12

In NMR experiments under pressure on κ-Cl Kagawa et al. observed that the critical enhancement of the conduc-
tivity upon passing through the critical end point is accompanied by a critical suppression of spin fluctuations;7 the
latter was inferred from a decrease of the nuclear spin-lattice relaxation rate T−1

1 . Identical critical exponents δ were
determined for the conductivity and the spin relaxation 1/(T1T ) within experimental accuracy.
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II. MODEL AND METHODS

Here we aim at a microscopic description of Mott criticality in organic conductors by studying the two-dimensional
one-band Hubbard model on an anisotropic triangular lattice with the Hamiltonian

H =
∑

k,σ

(ǫk − µ)c†
k,σck,σ + U

∑

i

ni,↑ni,↓, (2)

where c†
k,σ (c

k,σ) creates (annihilates) an electron in a Bloch state with lattice momentum k. ni,σ is the local density
operator for site i and spin σ = ↑, ↓, U > 0 is the local Coulomb repulsion strength, and µ is the chemical potential.
The electronic dispersion is given by

ǫk = −2t (cos kx + cos ky)− 2tdiag cos(kx + ky). (3)

Following Ref. 16 we choose for κ-Cl a diagonal hopping tdiag = 0.44t and fix the filling at n = 1 in a grand-canonical
calculation.
We obtain an approximate solution of the Hubbard model by using cluster dynamical mean-field theory (CDMFT)

on a 2 × 2 plaquette. The CDMFT self-consistency equations17,18 are

G(iωn) =
∑

k̃

(

(iωn + µ)1−Σ(iωn)− t(k̃)
)−1

, (4)

G
−1
0 (iωn) = G

−1(iωn)−Σ(iωn). (5)

For the Nc = 2 × 2 plaquette CDMFT, the hopping matrix t(k̃) is defined via its matrix elements tij(k̃) =

N−1
c

∑

k
ei(k+k̃)·(Xi−Xj) ǫ

k+k̃
, where Xi and Xj are the position vectors of cluster sites i and j, k̃ is in the re-

duced Brillouin zone, and the cluster momenta take the values k = (0, 0), (π, 0), (0, π), and (π, π). All quantities,
i.e. t, the coarse-grained cluster Green function G, the Weiss field G0, and the cluster self-energy Σ are Nc × Nc

matrices, and 1 is the unit matrix. In the following we consider only paramagnetic solutions and the spin index is
therefore suppressed.
The self-consistency cycle is closed by solving the impurity problem, i.e. by calculating a new cluster Green function

matrix Gij(τ) = −〈Tτ ci(τ)c
†
j(0)〉Seff

for a given self-energy and the corresponding Weiss field. Here Seff denotes the
effective action of the auxiliary Anderson impurity model, which is solved by numerically exact continuous-time
quantum Monte Carlo (QMC) simulations based on the expansion of Seff in the impurity-bath hybridization.19–21 In
contrast to single-site DMFT,22–24 CDMFT takes short-ranged nonlocal correlations within the cluster into account.
These nonlocal correlations are particularly important for two-dimensional systems.25–35

We employ the following strategy for obtaining information on the critical behavior at the continuous Mott tran-

sition: First, we calculate the double occupancy D = N−1
c

∑Nc

i=1〈ni↑ni↓〉 as a function of U for a fixed ratio t/T and
search for hysteresis, i.e. whether there is a finite U region in which both a metallic and a Mott-insulating solution
of the self-consistent CDMFT equations exist depending on the initial guess for the self-energy. If hysteresis occurs,
the temperature T is increased, otherwise T is decreased. This procedure is repeated until the boundary between
hysteretic and non-hysteretic behavior is determined accurately. The critical inverse temperature for the continuous
Mott transition is denoted as (t/T )c; the critical end point is determined by the two parameters (U/T )c and (t/T )c.
Spin and charge criticality are subsequently measured and quantified by

σch = Gloc(1/(2T )), (6)

σsp = lim
ω→0

Im χloc(ω)

ω
, (7)

which are both functions of the reduced variables tred and pred.

The local Green function Gloc(τ) = N−1
c

∑Nc

i=1〈ci(τ)c
†
i 〉 measured at imaginary time τ = 1/(2T ) approximates

TA(ω = 0) and thus gives an estimate for the local density of states at the Fermi energy without necessitating an
analytical continuation procedure for the imaginary-time data.36,37 Therefore σch serves as one possible measure for
the criticality of the charge degree of freedom. The spin excitation spectrum is reflected in the local dynamical
spin susceptibility χloc(ω), which is calculated by a QMC measurement of the imaginary time correlation function

χloc(τ) = N−1
c

∑Nc

i=1〈Si,z(τ)Si,z(0)〉 and the analytic continuation of its Matsubara transform to real frequencies.
Here we use the maximum entropy method38 for the bosonic kernel according to

χloc(τ) =

∫

dω

π

e−τω

1− e−ω/T
Im χloc(ω). (8)
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In the Mott insulator Im χloc(ω)/ω is sharply peaked at ω = 0. This behavior prohibits a reliable determination of
σsp in the insulator from our numerical data. We therefore restrict the analysis of spin criticality to the metallic side
of the transition.

FIG. 1. Schematic path through the continuous Mott transition at fixed temperature. We assume that the pressure-controlled
transition in Ref. 7 corresponds approximately to the bandwidth-controlled transition in the Hubbard model. The hopping
amplitude t (bandwidth W ∝ t) is varied (blue arrow) while the local Coulomb repulsion U , the relative anisotropic diagonal
hopping tdiag/t and the temperature T are kept fixed in our calculations. The indicated values of (T/U)c and (t/T )c are the
critical values found for tdiag/t = 0.44.

In order to model the bandwidth-controlled Mott transition by tuning the pressure, some further assumptions
are necessary: We assume that varying t/U amounts to varying pressure, and that T/U is kept fixed at constant
temperature. In essence this implies that the value of U is fixed independent of external conditions in the experiment.
This is motivated by the fact that the Hubbard interaction is strictly local. Moreover we make the approximation
that tdiag/t = 0.44 remains fixed at the value taken from a fit to the band structure16 even when pressure is applied.
Fig. 1 summarizes our strategy for modeling the continuous Mott transition across the critical end point.

III. RESULTS

The basis for the discussion of the critical behavior are the data displayed in Fig. 2. Both charge and spin
degrees of freedom show critical behavior with an infinite slope at the continuous transition, which is identified at
(t/T )c = 7.68, independently for charge and spin. The theoretical results resemble the experimental data for the
criticality of the conductivity and the NMR spin-lattice relaxation rate 1/T1 in Ref. 7 qualitatively. The increase of
Gloc(1/(2T )) indicates that the low-energy spectral weight increases upon passing from the insulator to the metal. This
behavior reflects the closing and the filling of the charge gap with low-energy states at finite temperatures. Similarly,
the measured conductivity will increase in the metal. In contrast, the spin susceptibility behaves oppositely; it is
suppressed with increasing “pressure” on the metallic side of the continuous MIT and enhanced in the insulator, as
measured by 1/(T1T ).
This qualitative behavior of the spin susceptibility finds a natural interpretation in terms of the probabilities of

relevant plaquette eigenstates in the ensemble.31 The enhancement of spin fluctuations in the insulator is thereby
traced to the predominant occupation of the plaquette with a four-electron singlet state37 with zero total momentum
and zero total spin S = 0. The second-most probable states are the three triplet states with spin S = 1. Since the
singlet state has a high occupation probability in the insulator, spin flip (∆ S = 1) excitations to the triplet states
are more likely and lead to the large susceptibility in the insulator.
The lower panel of Fig. 2 shows the critical scaling behavior in a double-logarithmic plot of σch and σsp relative

to their values at the critical point as a function of |t/T − (t/T )c|/(t/T )c. From linear fits to the double-logarithmic
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plot we extract the critical exponents according to Eq. (1). Error bars are estimated from the linear regression fit to
the data in the double-logarithmic scale. For the charge criticality the exponent 1/δ = 0.58 ± 0.06 is obtained on the
insulating and 1/δ = 0.61 ± 0.05 on the metallic side of the transition. The critical behavior with an infinite slope
of the density of states at the Fermi energy is apparent and resembles the measured dc conductivity.4 The virtue
of a direct quantitative comparison is, however, uncertain because the conductivity and the density of states at the
Fermi energy may follow different scaling laws.12 For the spin criticality, instead, a comparison is meaningful and
the quantitative agreement with experiment is remarkable, with an exponent 0.48 ± 0.03 consistent within error bars
with the experimentally determined 1/δ ≈ 0.5.7

TABLE I. Summary of critical exponent δ for various models and experiments.

Model δ Ref.
Ising (D = ∞) 3 [8]
Ising (D = 3) 4.8 [8]
Ising (D = 2) 15 [13]

Hubbard (single-site DMFT) 3 [10]
Hubbard (2× 2 CDMFT)

σch (ins.) 1.72 ± 0.17
σch (met.) 1.64 ± 0.13
σsp (met.) 2.08 ± 0.10
Experiment δ

(V1−xCrx)2O3 ≈ 5 [2]
κ-Cl

conductivity ≈ 2 [7]
NMR 1/(T1T ) ≈ 2 [7]

Table I summarizes the values of the critical exponent δ > 1 for various theoretical models and for several experiments
probing the continuous Mott transition. Note that δ → 1 corresponds to a smooth transition with a vanishing
discontinuity in the first derivative of σch, while δ → ∞ describes a discontinuous transition with a discontinuity in
σch itself.

IV. DISCUSSION

Our results for plaquette CDMFT are consistent with the experimental data for κ-Cl both for the charge and the
spin degree of freedom. In particular, the critical exponent δ is much smaller than expected for the Ising universality
class in two dimensions (δ = 15) and also smaller than in single-site DMFT (δ = 3). The difference between single-site
DMFT and four-site cluster DMFT is indeed striking. The latter includes nonlocal correlations and thereby allows
for a coarse momentum-space differentiation. Hence, electrons in parts of the Brillouin zone become localized already
in the metallic phase. In contrast to single-site DMFT, where the Mott transition occurs simultaneously by a loss of
quasiparticle integrity along the whole Fermi surface, the Fermi surface itself may disintegrate and ultimately vanish
at the Mott transition within cluster DMFT.29 Therefore, only a smaller fraction of electrons indeed exhibits critical
behavior, which is why the transition is smoother (translating into a smaller value of δ) than in single-site DMFT. We
point out that the explanation of the observed criticality in terms of momentum- space differentiation was proposed
in Ref. 39, in which the critical behavior is suggested to be a finite-temperature manifestation of a marginal quantum
critical point.
Regarding the discrepancy between 2x2 CDMFT and single-site DMFT results, we remark that convergence with

cluster size may not have been reached, and quantitative corrections to our results may be expected on larger clusters.
We stress, however, that both quantities on which we focused in this work are local quantities, which should depend
less strongly on the cluster size than nonlocal quantities which probe spatial ordering correlations such as, for example,
order parameter susceptibilities or ordering temperatures. A quantitative scaling analysis as a function of cluster size
is computationally demanding and beyond the scope of the present study. Resolving this issue would be an interesting
subject for future research.
We acknowledge discussions with Fumitaka Kagawa, Kazushi Kanoda, Rafael Fernandes, and Masatoshi Imada.

M.S. and A.P.K. are supported by the DFG through TRR 80. M.S. acknowledges support by the Studienstiftung des
Deutschen Volkes, E.G. by NSF-DMR-1006282, and P.W. by SNF grant PP001-118866. Computer simulations were
performed on HLRB II at LRZ Garching using a code based on the ALPS libraries.40
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FIG. 2. Critical behavior at the continuous bandwidth-controlled Mott transition (vertical dashed line, (T/t)c = 7.68). Upper
panel: Evolution of (σch − σc,ch)/σc,ch and (σsp − σc,sp)/σc,sp upon increasing t/T . The solid curves are fits to the critical
scaling behavior for the exponent δ according to Eq. (1). Lower panel: Double-logarithmic plot of the same data measured
from the critical end point of the Mott transition. Solid lines show the scaling fits (the same fits as in the upper panel). Error
bars are estimated from the linear regression fit to the data in the double-logarithmic scale.
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