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A Keldysh-contour effective field theory is derived for magnetic vortices in the presence of current
flow. The effect of adiabatic and non-adiabatic spin transfer torques on vortex motion is highlighted.
Similarities to and differences from the superconducting case are presented and explained. Current
flow across a magnetically ordered state is shown to lead to a defect-unbinding phase transition
which is intrinsically nonequilibrium in the sense of not being driven by a variation in effective
temperature. The dependence of the density of vortices on the current density is determined.
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I. INTRODUCTION

The nonequilibrium physics of strongly interacting quantum systems is a topic of fundamental theoretical impor-
tance. A question of particular current interest is the behavior of quantum critical systems under nonequilibrium
conditions. Examples include phase transitions induced at temperature T=0 in the presence of a nonequilibrium
drive1–6 as well as quantum coarsening and quench problems of a system prepared or maintained in a far-from equi-
librium state.7–11 In many of the cases of nonequilibrium quantum criticality studied to date, the dominant physics is
that the nonequilibrium drive acts to produce a noise term (typically delta-correlated at long scales) in the equation
of motion for the critical fluctuations.1 This noise term increases fluctuations and destroys order, similarly to temper-
ature. Differences from equilibrium physics of course appear, for example as violations of the fluctuation-dissipation
theorem8,12 or as subleading corrections to scaling.5,13 Other situations can occur too. For example, Dalle Torre et

al showed that in some circumstances departure from equilibrium can lead to a noise with long ranged correlations,
which leads to larger differences from equilibrium physics.6 In some models, excitations propagate ballistically so the
concept of effective temperature does not apply and nonequilibrium phase transitions arise for different reasons.2,9,14

In this paper we investigate an alternative route to nonequilibrium quantum criticality. We show that in continuous-
symmetry magnets an applied current can lead to a current-driven defect unbinding. This has no equilibrium analogue
and therefore constitutes an intrinsically nonequilibrium phase transition, quantum in the sense that it is driven at
T=0. Of course, even at T=0 a driving field will introduce a noise, but analogously to the nonequilibrium classical
phase transitions occurring e.g. in sheared liquids,15 the noise is not the crucial parameter. The mechanism we discuss
is generic, applying (with some difference of details) for any combination of dimensionality and order parameter
symmetry for which topological defects can be defined. For definiteness we present specific results in the case of a
quasi two-dimensional XY magnet, for which the defects involved are vortices. In this respect our work complements
the treatment of current-driven quantum criticality in our previous papers1,13 which treated Ising and Heisenberg
symmetries and found that the transition was driven by a current-induced noise.
That an applied current can lead to a force on a magnetic defect was previously known.16–18 The transition we find

is analogous to defect-unbinding transitions driven by supercurrent flow in superfluids.19,20 The new contributions of
this paper include a derivation from microscopics which is somewhat different from (although basically in agreement
with) previous work,21–25 a discussion of the mapping between the superconducting and magnetic situations, some
additional insights into the relative importance of the different mechanisms by which Galilean invariance is broken
and explicit results for the defect creation rates.
Our approach is to write a general interacting fermion model in the presence of a nonequilibrium drive as a

Keldysh-contour path integral, introduce magnetic degrees of freedom via a Hubbard-Stratonovich transformation of
the fermion-fermion interactions and by integrating out the fermions obtain a nonequilibrium spin model. We use
a method presented by Schulz26 to introduce rotational degrees of freedom and use an expansion in gradients and
quantum fluctuations to obtain an action in terms of rotational spin excitations.The mean field approximation to
this action is the Landau-Lifshitz-Gilbert equations. By representing magnetic configurations in terms of topological
(vortex) coordinates18 we obtain an action for the topological excitations, which is then analyzed via quantum critical
and instanton methods.
The rest of this paper is organized as follows. Section II outlines the approach we use, Sections III and IV present

a derivation of the basic dynamical effects, Section V summarizes the resulting action in spin coordinates, Section VI
derives the action for topological defects, Section VII describes the current-driven vortex unbinding transition and
Section VIII is a summary and conclusion.
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II. FORMALISM

A. Overview

We are interested in the effect of current drive on the nucleation and motion of topological defects in the magneti-
zation field of a metallic ferromagnet. Although our formalism can be applied to the case of any topological defect,
we present explict results for vortices: the topological defects in a two dimensional easy-plane magnet. Because
topological defects are large scale structures in the spin field, they obey equations of motion which may be deduced
from semiclassical arguments based on the Landau-Lifshitz-Gilbert equation.16,17,22 Denoting the position of defect i

by ~Xi and the sign of its vorticity by η = ±1, we may represent its equation of motion as

ηCJ0ẑ × ~̇Xi + IDD0
~̇Xi = ηCẑ × ~J + ID ~D +

∑

j

~Fij + ~ζi (1)

with ~Fij the force due to the intervortex interaction (including both spin-wave-mediated and dipolar terms). The

terms ~J and ~D arise due to current flow, while J0 and D0 representing the effects of spin conserving and non-
conserving processes on the temporal dynamics. ID and C are constants and ζi is a fluctuating field which on scales
longer than the mean free path may be taken to be delta correlated, with

〈

ζai (t)ζ
b
j (t

′〉 = 2IDNxxT ∗δijδ
abδ(t− t′) (2)

Here Nxx is related to the many-body density of states and T ∗ is an effective temperature arising from the departures
from equilibrium.
In this paper we employ a Keldysh-contour based nonequilibrium approach to calculate the coefficients in Eq. (1)

in terms of the underlying properties of the electrons (in particular the transport and spin relaxation times) and
the applied current, determining the relative magnitudes of the different terms and explicating the similarities and
differences between topological defects in superconductors and in magnets.
The formalism is based on a phase angle representation convenient for carrying out a gradient expansion. It enables

a quantitative understanding of the origin of the breaking of Galilean invariance, of the roles of spin conserving and
non-conserving scattering mechanisms, and of the variations of parameters as the magnetic critical point is approached.
We show that in the generic situation when the spin non-conserving scattering is small compared to the spin conserving
scattering, then the vortex Hall angle is typically near to 90◦ (in contrast to the result for superconductors), but the
drag contribution to the force on a vortex is much larger than the transverse (‘Magnus’) force contribution (also
different from the usual case of vortices in superconductors). These results, in combination with the effects of the
long-ranged dipole interaction, lead to quantitative differences in the current-induced nucleation of vortices.

B. Basic Assumptions

We consider a system of interacting fermions and make the Fermi liquid assumption that the dynamical effects of
the electron-electron interaction may be neglected at the scales of interest here. The system is then characterized by a
band structure, which we represent via a hopping matrix ti−j connecting unit cells i and j, and a local magnetization

~m(r, t) = n̂(~r, t)m(~r, t) (3)

of direction n̂ and magnitude m.
The physics also involves a self energy Σ which encodes the effects of scattering processes. We will distinguish

two sources of scattering: spin conserving processes corresponding e.g. to scattering off of spin-independent random
potentials and spin non-conserving processes:

Σtot = Σcons +ΣN−C (4)

We will assume that the spin non-conserving processes arise from electron exchange with a spin-unpolarized reservoir
which does not change when a current is applied to the system.13 Thus ΣN−C is proportional to the unit matrix in
spin space and is independent of applied current. Because for example the density of states may be spin dependent
Σcons may have structure in spin space. For simplicity we will assume that the magnetization varies sufficiently slowly
in space that the electrons always relax to the local magnetization; in this case Σcons is the sum of a term proportional
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to the unit matrix and a term proportional to ~m · ~σ with, in particular, no terms proportional to gradients of ~m.
Where an explicit model is necessary we will take Σcons to arise from randomly placed point-like impurities.
We suppose that the system is driven out of equilibrium by an externally imposed current which is weak enough to

be described by linear response theory. Since we are interested in length scales long compared to the spin relaxation
length, any spin polarized current injected at the boundary will quickly relax. The relevant currents are thus induced

by applying an electric field, ~E. In the presence of a non-vanishing magnetization the resistivity ρ will be a matrix

in spin space so the current density ~J = ρ−1 ~E will have both a charge and a spin component. Our assumption
that electrons are relaxed to the local magnetization direction means that the spin direction is aligned to the local
magnetization so that in the basis aligned with the local magnetization ρ has components ρσ which may differ for up
and down spins and (denoting the Cartesian component of a vector by a roman symbol)

J
a = Ja

0 1+ Ja
M n̂ · ~σ (5)

In the Keldysh two contour Greens function method the current flowing between sites i and j is determined by the
Keldysh component GK of the electron Greens function via

J
a
ij = −iGK(i, j; t, t)Ja

ji (6)

with current operator

~Ji−j = −iti−j (~ri − ~rj) (7)

Here (~ri − ~rj) is the vector connecting sites i and j and in momentum space ~J = ∂εk/∂~k ≡ ~vk
The retarded and advanced components of the Greens function and self energy change only to second order in de-

partures from equilibrium, so within the linear response approximation, departures from equilibrium may be described
by nonequilibrium terms in the Keldysh components of the electron Greens function G and self energy Σ. Thus we
have e.g. G

K → G
K
eq + G

K
neq, with G

K
neq calculated to linear order in the applied field. The nonequilibrium terms

are discussed in detail in section IV; here we note simply that in a simple electronically three dimensional model with
k2/2m dispersion, magnetization aligned along the spin-z axis and relatively weak scattering, the formalism leads to
the familiar Drude formula

ρσ =
mΓtot

σ

nσ
(8)

with Γtot
σ the possibly spin-dependent scattering rate obtained from ImΣtot(ω = 0) and nσ the total number of

electrons with spin aligned (or anti-aligned) to the local magnetic field.
Also, as discussed in Ref. 13 an applied electric field leads to a noise term corresponding to an effective temperature

Teff = eEl∗ (9)

related to the voltage dropped over an appropriate length scale l∗. The differences in physics between the model
considered here and the model studied in Ref. 13 will lead to a different expression for l∗.

C. Nonequilibrium terms in Greens function

In this subsection we sketch a derivation of the nonequilibrium terms in the electron Greens function and self energy.
The treatment follows Ref. 13. Noting that the retarded and advance self energies are unchanged to linear order in
applied fields, we parametrize the change in the Keldysh components of G,Σ via a distribution function h related to
the Greens function via G

K = G
Rh− hGA and similarly for Σ. We then follow the usual steps to obtain a quantum

kinetic equation for h. In writing the kinetic equation we make use of our assumption that the electron distribution
relaxes to the local magnetization so that we have one kinetic equation for each spin direction. We further observe that
in the model considered here, impurity scattering may relax the momentum dependence of the distribution function
but not the energy dependence. We write h = heq + hσ

A + hσ
S with heq(x) = 1− 2Θ(−x) and nonequilibrium parts hA

odd and hS even under k ↔ −k. Separating the even and odd parts of the kinetic equation we obtain (not denoting
the spin direction explicitly)

∂hS

∂x

(

~E · ~v
)

+ 2ΓtothA = −2δ(x)
(

~E · ~v
)

(10)
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and

∂hA

∂x
~E · ~v + 2ΓN−ChS = 0 (11)

Solving and restoring spin indices explicitly we find

hσ
A = −

~E · ~v
Γσ
tot





√

ΓN−CΓσ
tot

∣

∣

∣

~E · ~v
∣

∣

∣

Exp



−2 |x|
√

ΓN−CΓσ
tot

∣

∣

∣

~E · ~v
∣

∣

∣







 (12)

and

hσ
S = −2sgn(x)

2
Exp



−2 |x|
√

ΓN−CΓσ
tot

∣

∣

∣

~E · ~v
∣

∣

∣



 (13)

These expressions differ from those obtained in Ref. 13 because in that work Γtot = ΓN−C .
For small E the term in parentheses in Eq. (12) is just an integral representation of the delta function δ(x). To an

accuracy sufficient for the leading terms in the semiclassical expansion (Sec. III), Eq. (12) implies

G
K
neq(i, l, ω) = 2iGR(i − j, 0) ~Jj−k · ~Eδ(ω)GA(k − l, 0) (14)

and

Σ
K
neq = 2i ~Jj−k · ~Eδ(ω) (15)

For small E, hS is just two powers of E times an integral representation of the derivative of the delta function so
terms involving hS would seem to give only contributions of higher order in E. But as shown in Ref. 13 and discussed
in more detail below, the singularity in the T=0 equilibrium distribution function means that the hS terms give a
contribution of order |E| to the noise. This issue will be further discussed in Section IV.

D. Path Integral Representation

We write the model as a path integral on the Keldysh two-time contour.1,27 For conducting systems which have
magnetic ground states we expect that part of the interaction term may be decoupled by a Hubbard-Stratonovich
transformation26 while the remainder can be treated by Fermi liquid theory. The important part of the Hubbard-
Stratonovich field is a vector in spin space ~m(r, t) · ~σ which represents the local magnetization.
After integrating out the fermions we may express the model as a path integral

Z =

∫

D~meiSF [{m(r,t)}]+iSint[{m(r,t)}] (16)

In Eq. (16) we consider time as running along the full Keldysh contour (including forward and backward-moving parts
and with ’Keldysh’ time ordering assumed). The term Sint[{~m(r, t)}] includes other terms in the energetics of the
local spin polarization, including the terms arising from the Hubbard-Stratonovich transformation and the magnetic
dipole energy. SF , the logarithm of the fermion determinant, is

SF = −iT r ln
[

G
−1
0 −mn̂i(t) · ~στ3 − τ3Σtotτ3

]

(17)

SF depends on G
−1
0 , which is a matrix in space, time and Keldysh contour indices and expresses the effects of band

structure and of Fermi liquid renormalizations. The matrix ~τ acts in Keldysh space.
Following Schulz26 we now rotate the spin quantization axis at each space-Keldysh time point so that it is parallel

to n̂. The set of space-time rotation matrices which do this are Rn̂ defined so that R†
n̂
n̂ ·~σRn̂ = σz. Writing the spin

orientation vector n̂(~r, t) = cosθẑ + sinθû with û a vector in the x− y plane, it is convenient to represent R in terms

of Ω̂ defined by

Ω̂ =

(

cos
θ

2
ẑ+ sin

θ

2
û

)

(18)
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as

R = Ω̂z1+ iẑ × Ω̂ · σ (19)

We obtain

SF = −iT r ln
[

R
†
n̂
G

−1
0 Rn̂ −mσz −R

†
n̂
τ3Σtotτ3Rn̂

]

(20)

The spin rotations correspond to an SU(2) gauge transformation of the theory. If all of the terms in the underlying
Hamiltonian are invariant under rotations of spin in the system of interest then the trace must be independent of
the choice of spin quantization axis, corresponding to a gauge invariance of the model. Terms such as the local
magnetization mn̂ · ~σ or sources (not explicitly written here) will break the SU(2) invariance and lead to dependence
on the spin directions. The reservoir which provides spin relaxation also breaks the SU(2) gauge invariance because
as we have defined it the rotation does not act on these degrees of freedom. Thus for example a time dependent
spin rotation corresponds to a spin-dependent phase difference between system and reservoir, which could drive spin
currents between the system of interest and the reservoir. A similar situation obtains in the theory of dissipative
effects in superconductors.19,28

From Eq. (20), using R
†
n̂
Rn̂ = 1, and defining the rotated frame Greens function G via G

−1 =
(

G
−1
0 −mσz − τ3Στ3

)

we obtain

SF = −iT r ln
[

G
−1 + δH− δΣ

]

(21)

Here

δH = R
†
n̂
G

−1
0 Rn̂ −G

−1
0 (22)

and

δΣ = R
†
n̂
τ3Στ3Rn̂ − τ3Στ3 (23)

Assuming the magnetization varies slowly in space and expanding to second order in rotations gives

S = S0 + S1 + S2 (24)

with

S0 = −iT rln
[

G
−1
]

+ Sint (25)

S1 = −iT r [G (δH− δΣ)] (26)

S2 =
i

2
Tr [G (δH− δΣ)G (δH− δΣ)] (27)

At this point we write G,Σ → Geq + Gneq,Σeq + Σneq and retain terms up to first order in departures from
equilibrium. Considering first the equilibrium terms we observe that our assumptions of non-magnetic scattering,
slow variation of the magnetization and relaxation of quasiparticle distribution to the local magnetization imply that
only the terms ΣN−C arising from spin non-conserving quantities contribute to δΣeq:

δΣeq = δΣeq
N−C = R

†
n̂
τ3Σ

eq
N−Cτ3Rn̂ − τ3Σ

eq
N−Cτ3 (28)

Thus for the equilibrium terms we have

δSeq = Seq
1 + Seq

2 (29)

with

Seq
1 = −iT r

[

Geq

(

δH− δΣeq
N−C

)]

(30)

Seq
2 =

i

2
Tr

[

Geq

(

δH− δΣeq
N−C

)

×Geq

(

δH− δΣeq
N−C

)

]

(31)
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Here Seq
1 will be seen to give the basic Berry phase magnetization dynamics while Seq

2 gives the spin stiffness.
Turning now to the nonequilibrium terms, we work to leading order in both departures from equilibrium and

rotations, neglecting the unimportant change in spin stiffness due to current flow. We obtain

Sneq
1 = −iT r

[

Gneq

(

δH− δΣeq
N−C

)]

+ iT r [GeqδΣneq] (32)

The rest of this paper is based on an evaluation of Eqs. (25), (30), (31), (32) in the presence of spin textures and
externally imposed currents and in the limit of slow variation of spin direction. We perform an expansion in the
amplitude of the quantum components of the rotation matrices. The leading terms in the semiclassical expansion
give rise to the classical equations of motion for spin fluctuations and topological defects in the presence of an applied
current. The next-to-leading terms lead to a current-induced effective temperature.

III. DRIVE AND DYNAMICS

A. Overview

In this section we present the leading terms in a semiclassical expansion. These terms give rise to the classical
equations of motion for spin fluctuations and topological defects in the presence of an applied current. They are
most easily obtained by going to the Larkin basis in contour space,27 introducing classical (C) and quantum (Q)
combinations of the time-ordered R2 and anti-time ordered R1 Keldysh contour fields via

RC =
1

2
(R2 +R1) (33)

RQ =
1

2
(R2 −R1) (34)

and expanding to leading order in RQ. We evaluate the terms in order.

B. S
eq

1

We first consider the terms involving δH . Expanding and taking the trace over contour indices gives

Seq,G0

1 = −iT r
[

G
K(1− 2)R†

C(2)G
A,−1
0 (2− 1)RQ(1)

+ G
K(1− 2)R†

Q(2)G
R,−1
0 (2− 1)RC(1)

]

(35)

where the trace is over space, time and spin degrees of freedom.

Now GR,−1
0 (~r1− ~r2; t1− t2) = δ(t1− t2)

(

i
−→
∂ t − tij

)

and GA,−1
0 (~r1− ~r2; t1− t2) =

(

−i←−∂ t − tij

)

δ(t1− t2) are short

ranged in space and time so we may perform a gradient expansion of Eq. (35). Because R†
Q(1)RC(1)+R

†
C(1)RQ(1) =

(R†
2(1)R2(1)−R

†
1(1)R1(1))/2 vanishes, the leading terms are the first derivatives. The space derivative term vanishes

because in equilibrium GK is an even function of its space arguments. Thus we obtain

Seq,G0
1 = −iT r

[

G
K
0

(

{

−i∂tR†
C

}

RQ +R
†
Q

{

i∂tRC

}

)]

(36)

−iGK
0 ≡ −iGK(i, i; t, t) = ρ + mσz with ρ a scalar related to the charge density and m the magnitude of the

magnetization on site i at time t. ẑ is the (arbitrarily chosen) spin quantization axis.
We next consider the term in Seq

1 arising from the equilibrium self energy. Expressing the result in the Larkin basis,
taking the trace and retaining only the terms with one quantum field gives (here we leave the trace over spin, space
and time labels implicit, denote spin matrix structure in bold and collapse the space and time indices):

SΣ
1,eq = iT r

[

G
R(1 − 2)R†

C(2)Σ
K
N−C(2− 1)RQ(1) +G

K(1 − 2)R†
C(2)Σ

A
N−C(2 − 1)RQ(1)

+ G
A(1− 2)R†

Q(2)Σ
K
N−C(2− 1)RC(1) +G

K(1− 2)R†
Q(2)Σ

R
N−C(2 − 1)RC(1)

]

(37)
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Our assumption of spin-independent reservoirs means that ΣR,A,K are scalars in spin space so may be factored out,
leaving

SΣ
1,eq = iDCQ(1− 2)R†

C(2)RQ(1) + (Q↔ C) (38)

Here,

DCQ = G
R(1− 2)ΣK

N−C(2− 1) +G
K(1− 2)ΣA

N−C(2− 1) (39)

and

DQC = G
A(1− 2)ΣK

N−C(2 − 1) +G
K(1− 2)ΣR

N−C(2− 1) (40)

Since GR/A and Σ
R/A
N−C are short ranged in space and time we can make a gradient expansion of the product of

rotation matrices, writingR†
C(2) = R

†
C(1)+(2−1)∂R†

C(1)+O(1−2)2 andRC(1) = RC(2)+(1−2)∂R†
C(2)+O(1−2)2.

We then change labels (1↔ 2) in the second term and obtain

∫

d2
[

DCQ(1− 2)R†
C(1)RQ(1)

+DQC(1− 2)R†
Q(1)RC(1)

]

(41)

Since
∫

d2DCQ(1 − 2) =
∫

d2DQC(1 − 2), the leading term vanishes while the even parity of the equilibrium state
means the first space derivative vanishes. So the leading term is the first time derivative and incorporating the i into
the coefficients we obtain

SΣ
1,eq = Tr

[

D
′

CQ∂tR
†
C(1)RQ(1) +D

′

QCR
†
Q(1)∂tRc(1)

]

(42)

with

D
′

CQ = i

∫

d2(t2 − t1)DCQ(~r1 − ~r2, t1 − t2) (43)

D
′

QC = i

∫

d2(t1 − t2)DQC(~r1 − ~r2, t1 − t2) (44)

The coefficients are most conveniently evaluated in Fourier space as D
′

CQ = ∂DCQ(Ω)/∂Ω|Ω=0 and D
′

QC =

−∂DQC(Ω)/∂Ω|Ω=0. Introducing

G
′

=
1

2

(

G
A(1− 2) +G

R(1− 2)
)

(45)

A =
1

2i

(

G
A(1− 2)−G

R(1− 2)
)

(46)

Σ
′

N−C =
1

2

(

ΣA
N−C(1− 2) + ΣR

N−C(1− 2)
)

(47)

ΓN−C =
1

2i

(

ΣA
N−C(1− 2)− ΣR

N−C(1− 2)
)

(48)

and noting that in equilibrium we have GK(k, ω) = −2iA(k, ω)h(ω) and ΣK
N−C(k, ω) = −2iΓN−C(k, ω)h(ω) with h

the equilibrium distribution function we find

DCQ(Ω) = D1(Ω)− iD2(Ω) (49)

DQC(Ω) = −D1(Ω)− iD2(Ω) (50)

with the real functions D1 and D2 given by

D1(Ω) = 2

∫

(dkdω)A(k, ω +Ω)ΓN−C(k, ω)

× (h(ω +Ω)− h(ω)) (51)
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and

D2(Ω) = 2

∫

(dkdω)
[

G
′

(k, ω +Ω)ΓN−C(k, ω)h(ω)

+A(k, ω +Ω)Σ
′

N−C(k, ω)h(ω +Ω)
]

(52)

Thus, DCQ(Ω = 0) = DQC(Ω = 0) as noted above. We therefore obtain

SΣ
1,eq =

∑

i

∫

dt

Dberry

(

−i∂tR†
C(i, t)RQ(i, t) +R

†
Q(i, t)i∂tRC(i, t)

)

+Ddiss

(

∂tR
†
C(i, t)RQ(i, t) +R

†
Q(i, t)∂tRC(i, t)

)

(53)

with

Ddiss =
∂D1

∂Ω
=

2

π

∫

(dk)A(k, ω = 0)ΓN−C(k, ω = 0) (54)

and, using the Kramers-Kronig relation and shifting ω → ω − Ω appropriately,

Dberry = −2
∫

(dωdx)(dk)

A(k, x)ΓN−C(k, ω) (h(ω)− h(x))

(ω − x)2
(55)

The Dberry term appears as a renormalization of Eq. (36) while the Ddiss term parametrizes effects of dissipation. In
the rotated basis both terms are diagonal matrices in spin space and are explicitly proportional to the spin relaxation
rate ΓN−C . Additional terms would appear if the reservoir was magnetic.
We have written Eq. (54) for the general case. Our specific results are presented for a momentum-independent spin

relaxation rate. For this case the ΓN−C may be removed from the integral and we identify
∫

(dk)A(k, ω = 0) as the
spin-dependent Fermi level density of states Nσ. In a simple model with k2/2m dispersion, Nσ = mkF,σ/(2π

2). Thus
we estimate that the diagonal matrix elements Dσ are

Dσ
diss =

3

π

nσΓN−C

EF,σ
(56)

with EF,σ = k2F,σ/2m the Fermi energy for spin direction σ.

C. S
eq

2

Expanding Seq
2 , Eq. (31), gives the standard spin-stiffness terms, renormalized weakly by the coupling to the

reservoir. These may be written (reverting here to the physical spin coordinates)

Sstiffness = iρS

∫

dxdt n̂q · ~∇2
n̂cl,⊥(x, t) (57)

where n̂cl,⊥(x, t) is the classical component of n̂ perpendicular to the local magnetization direction and ρS is the spin
stiffness, proportional to the local magnetization.

D. Nonequilibrium terms

We first consider the first term in Eq. (32). Expanding as in the previous section we find terms of the form of
Eq. (35) but with G

K replaced by the nonequilibrium Keldysh function and terms of the form of Eq. (37) with the
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GR,A terms removed and the GK replaced by the nonequilibrium Keldysh function. The terms of the form of Eq. (35)
are

Sneq,G0

2 = −iT r
[

G
K
neq(1− 2)R†

C(2)G
A,−1
0 (2− 1)RQ(1)

+ G
K
neq(1 − 2)R†

Q(2)G
R,−1
0 (2− 1)RC(1)

]

(58)

Since the nonequilibrium G
K
neq is an odd function of its space coordinates but an even function of time the only

non-vanishing contribution comes from the hopping terms in δH. We obtain

Sneq,G0

2 = iT r

[

G
K
neq(i, j; t)tj−i

×
(

R
†
C(j, t)RQ(i, t) +R

†
Q(j, t)RC(i, t)

)

]

(59)

Writing R
†
C(j) = (~rj − ~ri)

a∇a
R

†
C(i) and RC(i) = (~ri − ~rj)

a∇a
RC(j), changing i to j in the second term and using

Eqs. (6), (7) we obtain

Sneq,G0

2 = −iT r
[

J
a
(

∇a
R

†
C(i, t)RQ(i, t)

−R†
Q(i, t)∇a

RC(i, t)
)

]

(60)

We next consider the terms arising from Σeq. These are of the form of Eq. (37) but with the functions DQC/CQ

replaced by

ECQ = G
K
neq(1− 2)ΣA

N−C(2− 1) (61)

and

EQC = G
K
neq(1− 2)ΣR

N−C(2− 1) (62)

Making the gradient expansion as above gives

Tr
[

E
a
CQ∇a

R
†
C(1)RQ(1) +E

a
QCR

†
Q(1)∇a

Rc(1)
]

(63)

with

E
a
CQ = i

∫

d2(~r2 − ~r1)
a
ECQ(~r1 − ~r2, t1 − t2) (64)

E
′

QC = i

∫

d2(~r1 − ~r2)
a
EQC(~r1 − ~r2, t1 − t2) (65)

In the limit of momentum-independent (space local) spin relaxation rates which we consider here these terms vanish,
but in general there will be a contribution proportional to ∂kΣN−C .
In the second term in Eq. (32), use of the steps leading to Eq. (37) along with the fact that Σneq has only a Keldysh

component and is proportional to the unit tensor in spin space gives (leaving the sum over coordinates implicit)

SΣ
1,neq = iFCQ(1− 2)R†

C(2)RQ(1)

+ iFQC(1− 2)R†
Q(2)RC(1) (66)

with

FCQ = G
R(1− 2)ΣK

neq(2− 1) (67)

and

FQC = G
A(1 − 2)ΣK

neq(2− 1) (68)
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Again making the gradient expansion and incorporating the i into the coefficients we find

δSΣ
1,neq,Σ = F

a
CQ∇a

R
†
C(1)RQ(1) + F

a
QCR

†
Q(1)∇a

RC(1) (69)

The explicit form of ΣK
neq (Eq. (15)) gives, in a mixed position-frequency representation

F
a
CQ =

i

π

∑

j

G
R(i− j, ω = 0))tj−i~r

a
ji

(

~rji · ~E
)

(70)

F
a
QC =

i

π

∑

j

G
A(i− j, ω = 0))tj−i~r

a
ij

(

~rji · ~E
)

(71)

Here ~rij is the vector connecting site i to site j and in the QC term we have ~rbij not ~rbji because we put the gradient
on the RC . In Fourier space we have

F
a
CQ =

i

π

∫

(dk)GR(k, ω = 0)
∂2εk

∂ka∂kb
Eb (72)

F
a
QC = − i

π

∫

(dk)GA(k, ω = 0)
∂2εk

∂ka∂kb
Eb (73)

Our final expression therefore is

SΣ
1,neq =

∑

i

∫

dt

iFa
J

(

−∇a
R

†
C(i, t)RQ(i, t) +R

†
Q(i, t)∇a

RC(i, t)
)

+F
a
diss

(

∇a
R

†
C(i, t)RQ(i, t) +R

†
Q(i, t)∇RC(i, t)

)

(74)

with the F diagonal matrices in spin space with up and down spin components (here we use the resistivity to express
the electric field in terms of the current)

F a
J,σ = − 1

π

∫

(dk)ReGR
σ (k, ω = 0)

∂2εk
∂ka∂kb

ρσJ
b
σ (75)

F a
diss,σ =

1

π

∫

(dk)Aσ(k, ω = 0)
∂2εk

∂ka∂kb
ρσJ

b
σ (76)

It will be useful for our further discussion to estimate the magnitudes of F a in a simple model with k2/2m dispersion.
In this case ∂2εk/∂ka∂kb = δab/m and the estimates that led to Eq. (56) along with Eq. (8) give

F a
diss,σ =

3Γtot
σ

2πEF,σ
Ja (77)

IV. SECOND ORDER IN QUANTUM FIELDS: NOISE TERMS

Expanding the action to second order in quantum fields yields terms which stabilize the integral over quantum fields
and, among other effects, introduce an effective temperature into the problem. A general analysis of these terms is
somewhat involved; we focus here on obtaining the qualitative behavior at T=0 and to leading order in the gradient
expansion. In this case the equilibrium terms do not contribute and expanding Eq. (32) to second order in RQ yields

Snoise = iT r
[

G
K
eqR

†
QΣ

K
neqRQ +G

K
neqR

†
QΣ

K
eqRQ

]

(78)

For simplicity we assume that the spin-nonconserving scattering rate is small compared to the total scattering rate,
so that the first term is dominant. We then obtain

Snoise = iT ∗
∑

i

∫

dtT r
[

NR
†
Q(i, t)Γ

tot
RQ(i, t)

]

(79)
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N is a diagonal matrix with entries Nσ = 2
π

∫

(dk)|cosφk|Aσ(k, ω=0), φk is the angle between ~vk and ~E, Γ is a diagonal

matrix with entries
√

Γtot
σ Γtot with

Γtot =
Γtot
↑ + Γtot

↓
2

(80)

and the effective temperature is

T ∗ =
| ~E||~vF |

√

ΓN−CΓtot
(81)

As in Ref. 13, the effective temperature is given by the voltage drop over the distance traveled between inelastic
scattering events.

V. SUMMARY OF ACTION

Collecting all of the terms we obtain an action in terms of the classical and quantum rotation fields of the form

SF

[

{R†,R}
]

= SB + Sdiss + Sstiffness + Snoise (82)

with

SB =
∑

µ

Tr
[

Bµ

{

R
†
Q (i∂µRC)−

(

i∂µR
†
C

)

RQ

}]

, (83)

Sdiss =
∑

µ

Tr
[

Dµ

{

R
†
Q (∂µRC) +

(

∂µR
†
C

)

RQ

}]

(84)

Sstiffness is given by Eq. (57) and Snoise by Eq. (79). Here µ=0 denotes the time direction and µ=a a space direction.
We have

B0 = mσz +Dberry (85)

Ba = J
a + F

a
J (86)

D0 = Ddiss (87)

Da = F
a
diss (88)

Bold-face coefficients denote matrices in spin space; the spin structure arises from spin dependence of the density of
states and scattering rate in the presence of a non-vanishing local magnetization.
We now use Eq. (18) to express Eq. (84) in terms of the classical and quantum components of the unit vectors Ω̂.

We have

RQ = Ω̂z
Q1+ iẑ × Ω̂⊥

Q · ~σ (89)

and

∂µRC =
∂RC

∂Ωb
∂µΩ̂

b (90)

The action is thus of the form

SF = Ωa
QJ

ab
µ ∂µΩ

b
C +Ωa

QD
ab
µ ∂µΩ

b
C

+iT ∗Ωa
QN

abΩb
Q + Sstiffness (91)

with

Jab
µ = iT r

[

Bµ

(

∂R†
C

∂Ω̂a

∂RC

∂Ω̂b
− ∂R†

C

∂Ω̂b

∂RC

∂Ω̂a

)]

(92)
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Dab
µ = Tr

[

Dµ

(

∂R†
C

∂Ω̂a

∂RC

∂Ω̂b
+

∂R†
C

∂Ω̂b

∂RC

∂Ω̂a

)]

(93)

and

Nzz = 2
N↑Γtot

↑ +N↓Γtot
↓

2
(94)

Nxx = Nyy = 2
N↑Γtot

↓ +N↓Γtot
↑

2
(95)

Evaluating the derivatives explicitly and noting that Jab and Dab have terms ∼ 1 and ∼ σz we find

Jxy
µ = −Jyx

µ = 2Jµ (96)

with all other elements of Jµ=0, while

Dab
µ = Dµδ

ab (97)

We thus have

SB + Sdiss = Ω̂Q ·
(

−ẑ × (Jµ∂µ) Ω̂C + (Dµ∂µ) Ω̂C

)

(98)

with µ = 0, a labeling space-time components and

J0 = m+ 2Tr [σzDberry] (99)

Ja = 2Tr [σz (J
a + F

a
J )] (100)

D0 = 2Tr [Ddiss] (101)

Da = 2Tr [Fa
diss] (102)

The estimates provided above imply

J0 ∼ m (103)

~J ∼ ~JM ∼ m~J (104)

D0 ∼
ΓN−C

EF
(105)

~D ∼ Γtot

EF

~J (106)

The coefficient of ΩQ in Eq. (98) gives the classical equation of motion for an isolated spin in the presence of
dissipation and current drive. It is consistent with previous derivations based on the phenomenological Landau-
Lifshitz-Gilbert equation,16,17,22 and with microscopic derivations of the Landau-Lifshitz equations in the presence of
current.23,25 Here the terms proportional to J are non-dissipative terms giving rise to the adiabatic spin torque and
arising from the usual Berry phase, as modified by an applied current,18,21,29 while the terms involving D arise from
dissipative processes and give rise to the nonadiabatic spin torque.22

The Galilean transformation

~r → ~r − ~ust (107)

with

~us =
~J
J0

(108)

shifts to a frame co-moving with the spin current. In this reference frame the spatial derivative terms in SB vanish.
The coefficient of the spatial derivative in the combination of Sdiss becomes

D0 (~un − ~us) (109)
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with normal velocity

~un =
~D
D0

(110)

In a Galilean invariant theory this combination vanishes. The easiest way to achieve Galilean invariance is to remove
the scattering, so Dµ=0, however one may also imagine a situation in which ~un = ~us. However, the estimates given
above show that in the general case, in the co-moving frame the coefficient of the spatial derivative in the D term is
of order of the difference between the transport and spin relaxation rates (measured relative to the Fermi energy)

ΓN−C − Γtot

EF

~J (111)

Because we generically expect a spin relaxation rate much less than the transport relaxation rate, Galilean invariance
is strongly broken in general.

VI. EQUATION OF MOTION FOR A TOPOLOGICAL DEFECT

A. Overview

To obtain the equation of motion of a vortex we imagine that spin wave excitations can be integrated out so that

the spin orientation n is determined by topological defects at positions ~Xj(t). We further suppose that the topological
defects move slowly enough that the spins are relaxed to the values appropriate to the instantaneous position of the
defects. We have (repeated indices summed)

Ω̂Q =
δΩ̂

δXa
C,j

Xa
Q,j (112)

Then we may rewrite Eq. (98) as

S =

∫

dt
∑

ia

Xa
Q,i(t)Fa

i (t) +
∑

ijab

Xa
Q,i(t)Labij (t)Ẋb

C,j(t)

+i
∑

ij

Xa
Q,i(t)Ξ

abXb
Q,j(t) (113)

Here the noise term

Ξab = T ∗ δΩ̂µ

δXa
C,i

Nµν δΩ̂ν

δXb
C,j

(114)

The generalized force F and Liouville operator L are formally given by

Fa
i (t) =

∫

(dr)ẑ · δΩ̂

δXa
C,i

×
(

~J · ~∇Ω̂
)

+
δΩ̂

δXa
C,i

·
(

~D · ~∇Ω̂
)

−
∑

j

∂U( ~XC,i − ~XC,j)

∂Xa
C,i

(115)

Labij (t) =
∫

(dr)J0 ẑ ·
δΩ̂

δXa
C,i

× δΩ̂

δXb
C,j

+D0
δΩ̂

δXa
C,i

· δΩ̂

δXb
C,j

(116)

Here Ω̂, ẑ denote unit vectors in spin space. They depend on all of the vortex positions, although this dependence

is not explicitly notated. The ~∇ are vectors in position space. Except for the terms in parentheses in Eq. (115) the

dot and cross product structure refers to the spin directions. ~J is the spin current produced by an applied electric
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field. The direction of current flow (indicated by the vector symbol) is along the applied electric field while the spin

direction is parallel to the local magnetization. ~D is also directed along the applied electric field. U is the interdefect
potential arising from the spin stiffness and dipolar forces.
The equation of motion for vortex i is obtained in the usual way27 by using a Lagrange multiplier to integrate out

the quantum fields, leading to

ηCJ0ẑ × ~̇X + IDD0
~̇Xi = ηCẑ × ~J + ID ~D +

∑

j

~Fij + ~ζi (117)

with ~Fij = −~∇ijU( ~Xi − ~Xj), η = ±1 the sign of the vorticity and ζi a fluctuating field which on scales longer than
the mean free path may be taken to be delta correlated, with

〈

ζai (t)ζ
b
j (t

′〉 = 2Ξab
ij δ(t− t′) (118)

Eq. (117) is consistent with derivations based on the phenomenological Landau-Lifshitz-Gilbert equation.16,17

In the remainder of this section we examine separately the drive terms (those arising due to the presence of an
imposed current and visible in the equation of motion for a single topological defect) and the intervortex interaction
terms.

B. Drive terms

We examine Eq. (116) for a two dimensional system containing a single vortex, at a position ~X(t) = X(t)~ex+Y (t)~ey.

In this case Ω→ Ω(~r − ~X(t)) so δΩ̂/δXa = −∇aΩ̂ and Eqs. (115), (116) involve two quantities:

IJ =

∫

d2rM(r)
(

∇xΩ̂x∇yΩ̂y −∇xΩ̂y∇yΩ̂x

)

(119)

IabD =

∫

d2r∇aΩ̂ · ∇bΩ̂ (120)

with M proportional to the magnetization a function to be discussed below. IJ and ID depend on the structure
of the vortex. We consider here an easy-plane system with spins lying preferentially in the x − y plane and choose
the origin of coordinates to be the position of the vortex. Far from the vortex,M is a constant proportional to the
local magnetization and the spin orientation vector is n̂x = cosηφ, n̂y = sinηφ and n̂z = 0, implying Ωz = 1√

2
and

(Ωx,Ωy) =
1√
2
(cosηφ, sinηφ). Within a distance ξ of the vortex the structure changes. The integral defining ID is

dominated by the far region. Substituting we have

IabD = πη2δabln
L

ξ
+ ... = IDδab (121)

with the ellipsis denoting terms of order 1. In a system with a single vortex the long distance cutoff is the system
size; in a system with equal densities of vortices and antivortices the cutoff is the mean intervortex spacing. This
logarithm has been previously noted.29

The noise term may be evaluated similarly. The leading behavior is also logarithmic and arises from the case where
i and j refer to the same vortex; we estimate Ξab

ij = Ξaδabij with

Ξa = IDNaaT ∗ (122)

and Ξz of order unity. Here T ∗ is given in Eq. (81). Note that in a fully polarized (half-metallic) magnet, Nxx = 0
and the dissipation vanishes in this approximation (higher order processes will lead to a non-zero, but much smaller,
noise).
Turning now to IJ we see that the contributions from the far region vanish so IJ is determined by the properties

of the vortex core, which depends upon details. Two simplifying limits are possible. In the extreme soft spin, high
anisotropy limit, the core is defined by a vanishing of the local magnetization amplitude (represented here byM→ 0)
while the spin vector remains in the easy plane. In this case IJ=0. On the other hand, in the hard spin, weak
anisotropy limit the spin amplitude remains constant, and the spin direction rotates out of the plane, becoming
parallel (or anti-parallel) to z. In a general situation both effects occur, with the relative importance controlled by
the ratio of the magnetic anisotropy energy to the amplitude energy.

Going to polar (r − φ) coordinates we have Ω̂x = sin θ(r)
2 cosηφ and Ω̂y = sin θ(r)

2 sinηφ so
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IJ =

∫

d2rM(r)

{(

dθ

2dr
cos

θ

2
cos2ηφ+

η

r
sin

θ

2
sin2ηφ)

)(

dθ

2dr
cos

θ

2
sin2ηφ +

η

r
sin

θ

2
cos2ηφ)

)

−
(

dθ

2dr
cos

θ

2
cosηφsinηφ− η

r
sin

θ

2
cosφsinηφ)

)(

dθ

2dr
cos

θ

2
cosηφsinηφ− η

r
sin

θ

2
cosηφsinηφ)

)}

(123)

The terms which survive are

IJ = η

∫

d2rM(r)
dθ

4rdr
sinθ =

πη

2

∫

drM(r)
dcosθ

dr
(124)

At r =∞ cosθ = 0 and at r = 0 cosθ = ±1 according as the spin rotates parallel or antiparallel to the z axis. Thus if
M is constant IJ is a topological invariant, proportional to the vorticity and to the sign of the rotation, but variation
of the magnetization amplitude near the core means the amplitude is non-universal. In the extreme hard axis limit
the spin remains in-plane over the whole region whereM 6= 0 and IJ vanishes. In general we can write

IJ = ηC (125)

with C of order 1 carrying the sign of the spin orientation in the vortex core and the magnitude factors associated
with the variation ofM near the core.
Thus we finally obtain for the action

S = i

∫

dt
∑

i

T ∗NxxID ~XQi · ~XQi

+
∑

i

ID ~XQi ·
(

~D −D0
~̇XCi

)

+ ~XQi ·
(

ηCẑ ×
(

~J − J0 ~̇XCi

))

−
∑

i

~XQi ·
∑

j

∂U( ~XC,i − ~XC,j)

∂ ~XC,i

(126)

With the help of Eq. (108) we identify

~FM = ηCJ0ẑ ×
(

~us − ~̇X
)

(127)

as the Magnus force acting on a vortex. We see that it has a sign determined by the combination of the vorticity and
the constant C which describes the out of plane direction of spin rotation in the vortex core. Comparison to the usual
theory of neutral superfluids (see e.g. Eq. (2.1) of Ref. 19) allows us to identify J0 with the combination 2πρS/m
(essentially 2π times the density of superfluid particles). On the other hand, to make contact with results obtained

for superconductors it is more useful to identify ~J = J0~us with the supercurrent and to note that the combination

J0 ~̇XC gives rise to the vortex Hall angle, which in superconductors is typically of order Tc/EF and is in most cases
negligible.
Proceeding similarly and using Eq. (110) we see that

~FD = IDD0

(

~un − ~̇X
)

(128)

represents the physics of dissipation. A very similar term occurs in superconductors and in the theory of neutral
superfluid films (see e.g. Eq. (2.2) of Ref. 19), although in this case physics not relevant here produces an additional

term proportional to ẑ × (~un − ~̇X).

In neutral superfluids and superconductors, ~un − ~̇X represents the velocity of the vortex relative to the source of
dissipation (the substrate, in the neutral superfluid case, or the normal-fluid excitations in a two-fluid model of the
superconducting case). The relative magnitudes of us and un is an important issue in the theory of superfluids shaken
by motion of their container, but except perhaps in the ultra-clean limit un may be neglected in superconductors.
However, in the magnetic case our estimates indicate that us/un ∼ ΓN−C/Γ

tot is typically much less than unity.
The relative magnitudes of the dissipative (IDD0) and non-dissipative (J0) terms sets the vortex Hall angle. In

typical superconducting films the dissipative terms are dominant, but in the magnetic situation of relevance here the
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order of magnitude of the dissipative coefficient is set by the spin relaxation rate ΓN−C which is likely to be small
relative to the other terms in the vortex equation of motion.

For a single vortex (so ~F=0) and in the absence of noise we may write the solution of Eq. (117) explicitly as

d ~X

dt
=

(

ηCJ0IDD0

(IDD0)
2 + (ηCJ0)2

)

ẑ × (~us − ~un)

−
(

(IDD0)
2

(IDD0)
2
+ (ηCJ0)2

)

(~us − ~un) + ~us (129)

We observe that if either the spin relaxation rate (and hence D0) vanishes or if ~us = ~un, Eq. (129) implies, Ẋ = ~us,
so that the vortex simply drifts with the applied current. Thus in order to get motion transverse to current flow one
needs both non-zero spin relaxation and a breaking of Galilean invariance ~us 6= ~un. In our model both of these effects
arise from the presence of the spin reservoir.
Eq. (129) is very similar to the equation of motion for a vortex in a neutral superfluid given in Eq. (2.3) in Ref 19

which we rewrite below,

d~R

dt
=

2πn~ρ0s/m

(

B

((2π~/m)ρ0s −B′)2 +B2

)

ẑ × (~vn − ~vs)

+C (~vn − ~vs) + ~vs (130)

Here ~vs is the superfluid velocity, while ~vn is the velocity of an underlying substrate which is also responsible for
the dissipation and n = ±1 denotes the vorticity. B is a drag coefficient arising from coupling of the superfluid to
the substrate, and B′ is a drag coefficient arising from coupling of ripplon excitations to the curl of the superfluid
velocity which does not appear in the case considered here. When B′ = 0, the coefficient C defined in Ref. 19 equals
B2/((2π~/m)ρ0s)

2 + B2). Identifying B with IDD0 and (2π~/m)ρ0s with CJ0 we see that the expressions become
identical.
The important term for our subsequent considerations is the first one on the rhs of Eq. (129), which shows that

vortices have a component of motion which is transverse to an applied current with sign determined by the combination
ηC. The estimates presented in the previous section show that D0 is of the order of the ratio of the spin relaxation
rate ΓN−C to the fermi energy EF while D is of the order of the ratio of the total scattering rate Γtot to the fermi

energy. J0 is proportional to the magnetization while the spin current ~J is proportional to m times the total current
~J . Thus the transverse component XT of vortex motion is roughly

ẊT ∼ −
(

ηCẑ × ~J
) mID

Γtot

EF
(

ID
ΓN−C

EF

)2

+ (ηmC)2
(131)

Except very near to a magnetic transition or in the case of very strong spin relaxation the first term in the
denominator is negligible and we have

ẊT ∼ −
(

ηCẑ × ~J
)

(

IDΓtot

mη2C2
)

(132)

C. Interdefect Interaction

The force Fij between two vortices at positions Xi and Xj is given by

Fij = −
∂U( ~XC,i − ~XC,j)

∂Xa
C,i

(133)

It has contributions from the dipole force and from the usual spin stiffness terms. Writing U = USS + Udip, the
interaction arising from the spin stiffness is

USS =
πρS
2

ln

∣

∣

∣

∣

∣

~X12

d

∣

∣

∣

∣

∣

(134)
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with ρS the spin stiffness per unit area.
In magnetic systems, unlike in superconductors, the dipole interaction may also be important. For a general spin

configuration the dipolar energy may be written as

Udip = (gµB)
2

∫

d3xd3x′ ~∇ · ~m(x)~∇ · ~m(x′)

|~x− ~x′| (135)

with g the electron g-factor. Specializing to a two dimensional film of thickness d and considering the case of a vortex

and an antivortex separated by the vector ~X12 we obtain30

Udip = η1η2Edip(X̂12 · m̂)
X12

d
(136)

Here the dependence of X follows by power counting and Edip = (gµB)
2d3Cdipole(X̂12 · m̂) is the dipolar energy

associated with magnetization in a volume set by the film thickness d, multiplied by a coefficient which depends on
the relative orientation of the vortex/antivortex separation and the magnetization. We have evaluated the constant
Cdipole numerically, finding Cdipole ≈ 110 for a vortex/antivortex pair separated along the direction defined by the
magnetization and Cdipole ≈ 35 for a vortex/antivortex pair separated perpendicular to the direction defined by the
magnetization.

VII. CURRENT-DRIVEN VORTEX UNBINDING TRANSITION

The previous section showed that vortices of opposite vorticity tend to be driven apart by an applied spin current
but are pulled together by the intervortex force. The competition between these two effects leads to a current driven
vortex unbinding transition. To investigate this possibility in more detail we consider the equation of motion of a
single vortex-antivortex pair, obtained from the solutions of Eq. (117) for two vortices of opposite vorticity (more
precisely opposite sign of ηC, and in what follows we take |η| = 1). We find that the equation for intervortex distance
~X12 can be written

~̇X12 = A
(

~F − ~E
)

+ ~ζ (137)

with

A =
2IDD0

(IDD0)2 + (CJ0)2
(138)

The force term coupling the two vortices is given by Eq. (133). The current-induced force acting to separate the
two vortices is

~E = Cẑ ×
(

~J − J0D0

~D
)

(139)

We observe again that the net force vanishes if the Galilean-invariance condition J0D = D0J is satisfied.
ζ is a noise field with correlations now given by

〈

ζai (t)ζ
b
j (t

′〉 = 2ATeffδijδ
abδ(t− t′) (140)

with

Teff =
NxxT ∗

D0
(141)

Eqs. (137), (136) show that if the applied current is large enough that

δE =
C
D0

(−J0D + D0J )−
Edip

d
> 0 (142)

then at sufficiently long distances it becomes energetically favorable to separate vortex/antivortex pairs.
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To calculate the probability of formation of vortex/antivortex pairs we follow Ref. 19 and recast Eq. (137) as a
Fokker-Planck equation for the probability P per unit area of finding a vortex-antivortex pair at separation r:

∂tP (~r, t) = −~∇ · ~JP (143)

Here, the probability current JP is given by

~JP = −ATeffe
− Ū

Teff ~∇P (~r, t)e
Ū

Teff (144)

and effective potential

Ū =

[

Edip
|~r|
d

+
πρS
2

ln
|~r|
d

]

− E x̂ · ~r (145)

In the limit of relatively weak applied currents, Eq. (143) may be analyzed by saddle-point method.19,31 We take
the electrical current to be applied in the y direction, so the vortex/antivortex pair separates along x and choose
x = y = 0 as the location of the saddle point in Ū with x→∞ corresponding to large vortex/antivortex separation.
We assume that the probability current density is only large near the saddle point of Ū and seek a steady-state solution
with Jy

P = 0. The pair creation rate per unit area R is then given in terms of the y integral of the x component of
the probability current as19,31

R =

∫

dyJx
P (x = 0, y) (146)

To determine R we observe that the condition that Jy
P = 0 is fulfilled if P has a y dependence which compensates

the y dependence of Ū , i.e.

P (~r, t)e
Ū

Teff = f(x, t) (147)

For x→∞ the density of vortex/antivortex pairs is very low, so f → 0, whereas for intervortex separations much
less than the saddle point value we expect the probability distribution to be the pseudoequilibrium one corresponding
to temperature Teff so f(x << 0)→ 1. The steady state condition is fulfilled if Jx

P depends only on y, i.e.

Jx
P = Φ(y) = −ATeffe

− Ū
Teff ∂xf(x) (148)

Multiplying both sides of Eq. (148) by e
− Ū

Teff , integrating over x using the boundary conditions on f and rearranging
then gives

Φ(y) =
ATeff

∫∞
xlow

dx′e
Ū(x

′
,y)

Teff

(149)

with xlow sufficient far from the saddle point that f ≈ 1.
To implement these formulae we now make the saddle point approximation explicit. The saddle point location rc is

~rc =
(πρS
2δE , 0

)

(150)

Near the saddle point we write

Ū(δx, δy)

Teff
= ū+

δy2

2y2c
− δx2

2x2
c

(151)

with

ū =
πρS
2Teff

ln
rc
d
− πρS

2Teff
(152)

y−2
c =

Edip

Teffdrc
+

πρS
2Teffr2c

(153)

x−2
c =

πρS
2Teffr2c

(154)



19

Thus Eq. (148) becomes

Jx
P (y) =

ATeff

xc

√
2π

e−ūe
− y2

2y2c (155)

so, performing the y integral and restoring units

R =
2IDNxxT ∗

(IDD0)2 + (CJ0)2
1

√

1 +
Edip

dδE

(

2eδEd
πρS

)D0
πρS

2NxxT∗

(156)

Because the vortex annihilation rate scales as the square of the vortex density and must balance the creation rate,
we obtain

nV ∼
(

2δEd
πρS

)D0
πρS

4NxxT∗

(157)

VIII. CONCLUSIONS

In this paper we have shown that an applied current can drive a nonequilibrium topological (defect-unbinding)
transition in a continuous-symmetry magnet. We derived the appropriate action from microscopics and presented
specific results for a quasi two-dimensional XY symmetry magnet, providing estimates for the relevant length and
current scales and characterizing the scaling of defect density as the current exceeds threshold. A qualitative result
is that, in the presence of the dipole interaction, the critical current depends strongly (by a factor of ∼ 3) on the
angle between the current and the magnetization. Our general formalism and qualitative conclusions however apply
to any combination of dimensionality and order parameter structure which supports topological defects. These results
complement the treatment of current-driven quantum criticality studied in Refs. 1,13 which considered transitions
dominated by current-induced local spin excitations in Ising and Heisenberg magnets.
The basic physics driving the transition, namely that an applied current produces a force which acts oppositely

on vortices of different chirality, is familiar from the theory of vortices in superconductivity19,20 and has been de-
rived17,18,29 from the Landau-Lifshitz-Gilbert equations which provide a phenomenological description of magneti-
zation dynamics in the presence of applied currents. We note here that the relevant quantity for vortices is the
combination of the chirality and the index giving the spin direction in the vortex core.
The new contributions of the present paper include a derivation of the Landau-Lifshitz-Gilbert equations from mi-

croscopics which is based on a theory of the rotational degrees of freedom, complementing previous derivations.21,23,25

We have also included the magnetic dipole energy, which is found to make a numerically large contribution. The
fact that the dipole interaction couples spin and space directions leads to the dependence of critical current on angle
between current and magnetization. We have distinguished the transport and spin relaxation scattering processes,
derived an expression (following Ref. 13) for the current-induced quasithermal noise, and explicated in detail the cor-
respondence between superconducting and magnetic vortices. The most important difference is that in the magnetic
case dissipative effects are in general expected to be weak so the vortex Hall angle is generically close to π/2.
An important question concerns the experimental observability of the transition we discuss. Current-induced vortex

motion has been observed.32–35 The relative magnitude of the adiabatic and non-adiabatic spin transfer torques has
been determined by studying displacement of vortices in permalloy discs.34 In Ref 32 the nucleation and annihilation of
magnetic vortices due to current induced spin transfer torque, an effect which has been theoretically predicted,17,18 was
observed in NiFe wires. Jonietz et al used neutron scattering to detect a current-induced shift in the skyrmion lattice
in the helimagnet MnSi. It was theoretically shown in Ref 36, and later experimentally confirmed33 that moving
vortices can produce a “ferro”-Josephson effect where a voltage drop can be induced in the direction transverse to the
motion of a vortex. The current induced vortex binding unbinding transition discussed in this paper should create a
similar additional voltage drop arising from the motion of free vortices. Thus the effects we predict are in principle
observable.
A crucial simplifying assumption made in this paper was that the vortex-induced length scales are long enough that

we may assume that the quasi-particle distribution relaxes to a steady state determined by the local magnetization.
It is quite likely that in many cases this locality assumption is violated, and that issues arise analogous to those
arising in the physics of vortex motion in clean superconductors. Investigating this issue is an important direction for
future research. Further important open questions concern the nucleation of vortices at sample boundaries, magnetic
domain walls, and near local inhomogeneities, and also the extension of our work to other cases such as monopoles in
three dimensional magnets.
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