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Abstract 

We report on the subwavelength imaging capabilities of a Phononic Crystal (PC) flat lens 

consisting of a triangular array of steel cylinders in methanol, all surrounded by water. The 

image resolution of the PC flat lens beats the Rayleigh diffraction limit because bound modes in 

the lens can be excited by evanescent waves emitted by the source. These are modes that only 

propagate in the direction parallel to the water/lens interface. These modes resonantly amplify 

evanescent waves that contribute to the reconstruction of an image. By employing the Finite 

Difference Time Domain (FDTD) method and ultrasonic experiments, we also explore the effect 

on the image resolution and focal point on various structural and operational parameters such as 

source frequency, geometry of the lens, source position and time. The mechanisms by which 

these factors affect resolution are discussed in terms of the competition between the contribution 

of propagative modes to focusing and the ability of the source to excite bound modes of the PC 

lens.  

 

PACS numbers:  43.35.+d, 63.20.-e 
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I. Introduction 

Subwavelength resolution imaging has been a topic of considerable interest over the past 

decade. This effect is based on the ability of a system to transmit and focus the entire spatial 

Fourier spectrum from a source, including components which are non-propagative. It was first 

demonstrated by Pendry et al. [1] that focusing of electromagnetic waves could be achieved 

using a flat lens, in which incident waves undergo negative refraction. The concept of negative 

refraction also applies to acoustic waves [2], enabling the development of negative index 

materials. Negative refraction can arise from one of two mechanisms. Systems can either consist 

of locally resonant structures which exhibit a negative effective mass and negative bulk modulus 

[2,3], or by a Phononic Crystal (PC), consisting of a periodic array of inclusions in a physically 

dissimilar matrix [4-9]. In the latter case, Bragg scattering leads to dispersive behavior with some 

pass bands exhibiting a negative group velocity. Bands with a negative group velocity lead to 

negative refraction. By employing PC flat lenses to focus acoustic waves, subwavelength 

imaging has been very recently demonstrated both experimentally and theoretically by 

Sukhovich et al. [8,9]. The authors reported subwavelength imaging of acoustic waves using a 

structure consisting of a triangular lattice of steel cylinders in methanol, all surrounded by water. 

In Ref. [9], PC lens super-resolution (resolution better than the diffraction limit of half the 

wavelength) was observed for the first time. Following this report, subwavelength imaging of 

acoustic waves has also been shown to be possible using a square lattice of inclusions on which a 

surface modulation is introduced [10], a steel slab with a periodic array of slits [11], and an 

acoustic hyperlens made from brass fins [12]. In these demonstrations, the mechanism by which 

this phenomenon occurs has been attributed to amplification of evanescent modes through bound 

surface or slab modes of the system. This allows for evanescent components to contribute to the 
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reconstruction of the image. In studying the resolution of photonic crystals, Luo et al. [13] 

developed an estimate for the maximum resolution achievable for a photonic crystal superlens.  

In this paper we report a thorough study of the operational and geometrical factors 

affecting subwavelength imaging by a phononic crystal flat lens. We examine the relationship 

between geometrical factors and the band structure of the lens, with special attention paid to 

bound modes that lead to super-resolution. The paper is organized in the following manner: 

section II provides a full description of the PC system as well as the computational and 

experimental methods used in calculations. We then provide, in section III, an analytic 

interpretation of imaging with a homogeneous superlens system using a Green’s function 

formalism that serves as a guide to understand the contributions of propagative and bound modes 

to the reconstruction of images. We then modify Luo’s method [13] in order to predict the 

resolution limit of a general flat lens in section IV. We apply this method to our PC and obtain a 

maximum resolution very close to that reported in section II.  In section V, we demonstrate and 

analyze various operational and geometrical factors affecting the resolution of the PC flat lens as 

well as the focus location. These results are found to be in very good agreement with 

complementary experimental results.  Finally, conclusions are drawn in section VI regarding the 

relationship between geometry, nature of excitations, operating frequency, and resolution in PC 

flat lenses. 

II. Phononic Crystal Superlens  

A.  Finite Difference Time Domain simulation method 

The system studied is similar to that of Sukhovich et al. [9]. It consists of a PC slab 

immersed on all sides in water (Fig. 1(a)). The PC is made of a triangular array of cylindrical 

steel inclusions in methanol. The radius of the inclusions is r = 0.51 mm with a lattice parameter 
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of a = 1.27 mm. As explained in Ref. [8], methanol was selected as the fluid medium 

surrounding the steel rods in the PC so that, at a frequency in the second band, the size of the 

circular equifrequency contours of the crystal could be tuned to match the equifrequency 

contours of water outside the crystal.  Thus, one of the important conditions for good focusing 

could be achieved with this combination of materials.  Indeed, any liquid with a sound velocity 

that is small enough relative to water would have sufficed, with methanol being a convenient 

choice not only because it is a low-loss fluid with a low velocity (approximately two thirds the 

velocity in water) but also because it is readily available.  

A Finite Difference Time Domain (FDTD) simulation method is employed to analyze 

propagation of acoustic waves through the PC lenses and the subsequent focusing upon exit of 

the crystal.  The FDTD method is also used to calculate the band structure of the infinite PC and 

the finite PC lens systems. The FDTD method is based on a discretization of the equations of 

propagation of elastic waves in an inhomogeneous medium. Discretization of these equations is 

performed in the time and space domains on a square grid. It has been proven to be an efficient 

tool for calculating band structures as well as for studying wave propagation in PCs [14-17]. For 

further details on the description of this method, we refer the reader to Sigalas et al. [18], where 

the fully discretized equations are presented. All simulations used a spatial discretization of dx = 

dy = 2×10-5 m and a time step dt = 6.09×10-10 s to ensure convergence of results, as well as 

stability as imposed by the Courant condition. On all four sides of the simulation cell, Mur 

absorbing boundary conditions were used to avoid reflections [19]. We have verified that 

absorption conditions are not affected by the amount of water between the lens and the 

boundaries provided this distance is at least 2a. The material parameters used are ρ = 7890 
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kg/m3, ct = 3100 m/s and cl = 5800 m/s for steel, ρ = 790 kg/m3, ct = 0 m/s and cl = 1138 m/s for 

methanol, and ρ = 1000 kg/m3, ct = 0 m/s and cl = 1490 m/s for water. 

The FDTD band structure of the infinitely periodic PC in the principal symmetry 

directions of the Brillouin zone (BZ) is shown in Fig. 1(b). The inset depicts the triangular 

crystal structure geometry of the PC as well as the unit cell, in which the first Brillouin zone is 

shown. For this calculation, the structure is taken to be infinite in both directions by imposing 

periodic boundary conditions. The simulation time (t = 220 × dt) defines the error of the 

calculated frequencies to be 1/t = 1.6 kHz. Since we are considering the behavior of a PC flat 

lens immersed in water, we also illustrate in this figure the dispersion curve of water (dashed 

lines). This dispersion curve describes a cone in reciprocal space and intercepts the second pass 

band, in which the group velocity is negative, at the frequencies of 543.5 ±1.6 kHz and 544.0 

±1.6 kHz in the ΓM and ΓK directions respectively. This result shows that the equifrequency 

contour (EFC) of the PC is circular at this frequency (anisotropy is below one percent) and 

matches that of the water in agreement with Ref. [8]. This property means that in the case of a 

flat interface between water and the PC, all incident angles of waves originating from the water 

will undergo negative refraction at this frequency with an effective index of -1 upon propagation 

through the crystal.  The EFC matching frequency of 544 kHz is consistent with that reported in 

[9] within the numerical accuracy of the FDTD band structure calculation. All frequencies below 

544 kHz in the second band will exhibit the so-called all angle negative refraction (AANR).  

Figure 1(c) shows the band structure in the direction parallel to the face of the finite slab 

of PC in water consisting of 6 layers of rods. The inset depicts the supercell used in the FDTD 

calculations in which the material on the right represents water while the system on the left 

shows the PC consisting of a triangular lattice of steel cylinders immersed in methanol. The 
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system is taken to be infinitely long in the vertical direction by imposing periodic boundary 

conditions on both top and bottom boundaries, while the thickness is taken to be that of the 

supercell. It is important to note that for this reason there exists a greater number of bands in the 

finite-thickness crystal band structure than in the infinite crystal band structure. In Fig. 1(c), the 

straight line represents the dispersion curve of water. It is important to note that modes which fall 

above the water line are propagative modes in the water/lens system while those which fall 

below are the modes bound to the PC slab. These modes have evanescent character in the 

direction perpendicular to the face of the PC, and are propagative in the direction parallel to the 

water/lens interface. 

To study the focusing properties of the lens, we use a PC slab of 31 rods along its width 

and 6 rods along its thickness (i.e., a 6-layer crystal with 31 rods per layer). Following 

Sukhovich et al. [9], we use a line source (0.55 mm wide) running parallel to the principal axis 

of the steel cylinders with an operating frequency of ν = 530 kHz. The value of the operating 

frequency, found to give the best experimental resolution of the focal spot, will be discussed in 

the section V.A. FDTD mesh points belonging to the source emit a sinusoidal displacement at 

frequency ν, with components parallel and perpendicular to the surface of the lens.  We 

investigate the imaging property of the lens in the form of a contour map of the field of the time-

averaged absolute value of the pressure. Simulated results of the average of the absolute value of 

the pressure over one cycle are shown in Fig. 1(d), in which the source is located at a distance of 

0.1 mm from the surface of the center cylinder on the input (left) side of the crystal. This 

configuration will be referred to as the "Standard Configuration" in subsequent sections. It is 

important to note that the chosen source width is smaller than the wavelength in water at the 

operating frequency, making it suitable for the investigation of super resolution properties of the 
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PC system. It can be seen in Fig. 1(d) that an image exists on the right side of the crystal. This 

image is also accompanied by lobes of high pressure that decay rapidly with distance from the 

surface of the crystal. We define the resolution as the half-width of the pressure peak 

corresponding to the image. This value is determined by first locating the maximum amplitude of 

the image in the x1-x3 plane, as this corresponds to its center point, taking a vertical cut (parallel 

to the x1 axis) through this point, and then fitting the data by a sinc(2πx/Δ) function. The half 

width Δ/2 is taken to be the distance from the central peak to the first minimum. The resolution 

for this system is found to be 0.34λ, where λ = 2.81 mm is the sound wavelength in water at the 

operating frequency. This result was confirmed experimentally in [9] and is significantly less 

than the value of 0.5λ that corresponds to the Rayleigh diffraction limit, demonstrating that the 

PC flat lens achieves super-resolution.  

B. Experimental setup 

Complementary experimental results are presented in this paper using the same 

measurement scheme as in Ref. [9]. The 2D PC used was made of 1.02-mm-diameter stainless 

steel rods arranged in a triangular lattice with lattice parameter of a = 1.27 mm. The surface of 

the crystal was covered by a very thin (0.01 mm) plastic film and the crystal was filled with 

methanol. A rectangular lens was constructed from 6 layers of rods, with 60 rods per layer, 

stacked in the ΓM direction of the BZ, i.e., with the base of the triangular cell parallel to the 

surface. The experiments were conducted in a water tank. The ultrasound source was a narrow 

subwavelength piezoelectric strip, 0.55 mm wide and 35 mm long, oriented with its long axis 

parallel to the steel rods; it was therefore an excellent approximation to a 2D point source. The 

spatiotemporal distribution of the acoustic field on the output side of the lens was detected with a 

miniature 0.40-mm-diameter hydrophone mounted on a motorized stage, which allowed the field 
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to be scanned in a rectangular grid pattern. This setup ensures that the widths of the source and 

detector are smaller than the wavelength in water (λ = 2.81 mm) at the frequency of operation 

(530 kHz). The lateral resolution of the focal spot is measured from the measured pressure field 

using the same method as described for FDTD results.  

 

III. Origin of Super Resolution  

To illustrate the phenomenon of focusing by a flat lens as well as of super-resolution, we 

propose to describe them, in the case of a doubly negative material, using a Green’s function 

formalism [20]. Green’s functions are particularly well adapted to the problem of imaging a 

point source, as they represent the response (here acoustic) of a medium, possibly 

inhomogeneous, to a point source stimulus. We consider a continuum model of a lens made of a 

negative index material infinite slab (medium 1) immersed in a fluid (medium 2) (Fig. 2). For a 

homogeneous flat lens, the acoustic Green's function can be expressed as a two-dimensional 

spatial Fourier transform in the plane parallel to the water/lens interface:  
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Here, the subscripts 1 and 2 correspond to the two media and ρ denotes the density, c the phase 

velocity of sound and α = -ik3, k3 is the component of the wave vector perpendicular to the 

interface between medium 1 and medium 2. For the sake of analytical simplicity, Eq. (2) was 

obtained by treating both media as fluids, which is correct for medium 2 and reasonable for 

medium 1 since the matrix of the PC is fluid. We also note that the zeros of the denominator in 

Eq. (2) correspond to all propagating and bound modes of the system. Medium 2 is taken to 

exhibit a positive index of refraction with 
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The condition in the first line of Eq. (3) describes evanescent waves (pure imaginary k3) while 

the second condition describes propagating waves. By contrast, medium 1 consists of a negative 

index material with:  
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The choice of a negative sign in the case of propagating waves in Eq. (4) ensures causality as 

pointed out by Veselago [21]. Indeed, negative index materials take advantage of a negative 

group velocity at the operating frequency, i.e. group velocity and wavevector point in opposite 

directions. Thus, energy is transmitted forward by waves having a negative k3. Consider that the 

point source operates at an angular frequency ω such that the equifrequency contours of the two 
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media are equal in size (i.e. AANR is satisfied).  Then, the phase velocities of both media take 

the value, c1 = c2 = c. Therefore, Eq. (1) can be rewritten as the sum of the integral over all 

propagating modes and all evanescent modes, giving following expression: 
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The introduction of a cut-off km will be discussed in Sec. IV. To gain insight, we can further 

simplify the model with some loss of generality by assuming that ρ1 = -ρ2 = -ρ ≤ 0. The negative 

sign of the density is due to the fact that medium 1 is a doubly negative material which means 

that both bulk modulus and density are negative. Through this simplification, one is able to 

obtain the Green's function for the composite medium of Fig. 2 in the form  
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If we assume that all evanescent modes contribute to the formation of the image (i.e. km → ∞) 

and consider the response of this system to a point-source located on the left side of medium 1 at 

a position, 2/3 dsx −−=′ , where s is the distance from the source to the lens input surface, Eq. (5) 

can be integrated using the following formula [22]:
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The resulting real-space Green’s function takes the form  
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This expression is that of a spherical wave originating at the point ix . It represents a perfectly 

reconstructed image of the point source. The homogeneity of medium 1 allowed integration of 

all evanescent contributions in the derivation of Eq. (8) and is the crucial point that leads to 

perfect reconstruction. Denoting the distance of the image from the lens output surface by i, the 

relationship between i and s is simply given by i = d – s.   

This discussion, based on the assumption of a doubly negative homogeneous media, 

cannot apply to flat lenses composed of inhomogeneous periodic materials such as PCs. Indeed, 

in PCs, the mechanism leading to negative refraction is based on the Bragg scattering of waves 

in a crystalline structure whose constant is of the same order of magnitude as the wavelength. 

However, the fact that enhancement of resolution can occur due to the integration of evanescent 

components in Eq. (8) is still valid.  

IV. Limit of Resolution 

Superlensing requires amplification of the evanescent modes from the source during 

transmission through the lens [1]. In the case of photonic crystals, Luo et al. [13] have shown 

theoretically that coupling evanescent waves to a bound mode of the photonic crystal lens is a 

suitable mechanism to realize this amplification. In their scheme, the energy from non-

propagative components of the light emitted by the source excites the bound mode of the slab in 

a resonant manner, which may take a certain time to reach the steady state regime depending on 

the k// component of the incident mode. The re-emitted evanescent waves can contribute to the 

image since their amplitude is restored through transmission. By this mechanism one can 

virtually build an image up to an arbitrary resolution provided all evanescent modes are 

amplified and a sufficient time is available to reach the steady state regime for all evanescent 

modes.  However, in a real situation the first condition is not realized so the authors introduced a 
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cut-off for k//, which led to a method to calculate the maximum resolution for a photonic crystal 

flat lens. In this section, we consider a similar method in order to estimate the ultimate resolution 

one can achieve with our acoustic lens system.  

First, it is apparent in the field pattern of Fig. 1(d) that super-resolution is associated with 

the intense excitation of acoustic modes bound to the lens (see Sec V.C.). Theses modes, near the 

operating frequency, are bulk modes of the finite slab, not surface modes that decay rapidly 

inside the slab.  

The discussion in section III assumed a homogeneous negative index material and cannot 

be applied to PCs, which are inhomogeneous periodic materials. When considering PC flat 

lenses, it is not possible to enable all evanescent modes from the source to contribute to the 

reconstruction of the image. The upper bound of the integration is determined by the largest 

wave vector km parallel to the lens surface that is compatible with the periodicity of the PC in 

that same direction and that can be excited by the sound source. 

Therefore, to find the resolution limit, we must determine the maximum magnitude of the 

transverse wave vector of an incident evanescent wave that can excite a bound mode in the slab. 

This cut-off km is introduced as the upper bound of the second term of Eq. (5), which accounts 

for the reconstruction from evanescent components. In Fig. 3, the dispersion curves of the slab 

immersed in water are shown in the direction parallel to the lens surface. The dashed diagonal 

lines are the dispersion curves of acoustic waves in water and the dotted horizontal line 

represents the operating frequency. At this frequency, the wave vector components of the 

incident wave with k// < ω/c can propagate in the crystal; they will form an image according to 

classical geometric acoustics. Components with k// > ω/c will couple to the bound modes of the 

slab provided that these bound modes dispersion curves are in the vicinity of the operating 
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frequency. In this way, the existence of many modes of the slab with nearly flat dispersion 

curves in the vicinity of the operating frequency is favorable for achieving super resolution, as 

mentioned in Ref. 13. One might imagine that evanescent waves with transverse wave vector of 

any magnitude above ω/c could couple with bound modes. However, the modes that propagate 

through the thickness of the lens must resemble those of the infinite periodic PC. The symmetry 

of the waves inside the lens must therefore comply with the triangular symmetry of the PC. More 

precisely, the modes of the crystal are periodic in k-space with a period equal to the width of the 

first 2D triangular Brillouin zone. This is the reason why the x-axis of Fig. 3 has been extended 

up to the K point of the hexagonal lattice reciprocal space. If an incident wave has a wave vector 

above the first Brillouin zone boundary, then it will couple to a mode having a wave vector that 

can be written as '
/ / / /k k G= +  where G  is a reciprocal lattice vector and 'k lies in the first 

Brillouin zone. In our case, since the first Brillouin zone of a triangular lattice extends from 

a34π−  to a34π  in the ΓK direction (parallel to the lens surface), the information carried by 

incident evanescent waves with transverse wave vector components, 

a
kk m 3

4|||| //
π=> ,         (9) 

is lost and will not contribute to the formation of the image.  

Then, as suggested by Luo et al., the width of the image can be estimated by assuming 

that there is complete transmission from the source to the image for k// ≤ km  and zero 

transmission for k// > km. This leads to a transverse image profile given by a sinc function with 

width mk/2π=Δ , defined as the distance between first zeros of the sinc function.   With this 

definition, one finds that the best possible image resolution is 
4

3
2

a=Δ . Applying this estimate to 

our PC with a = 1.27 mm, and a wavelength in water at 530 kHz of 2.81 mm, the minimum 
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feature size that would be resolvable with this system is 0.34λ. This estimate matches our results 

very well for the best resolution found in our system (0.34λ) presented in Sec. II, and with 

experiment (0.37λ).  

V. Effects of operational and geometrical factors  

In this section, we explore the effects of several factors on the image resolution of the PC 

flat lens.  These factors include operational factors such as the source frequency and the position 

of the source and geometrical factors such as width and thickness of the lens. By exploring 

modifications to the system, we aim to shed light on the parameters that have the greatest impact 

on the imaging capabilities of the PC lens and understand their effects as they deviate from the 

best operating conditions. 

A. Operating frequency 

In section II, the operating frequency of the source was chosen to be 530 kHz, as in Ref. 

[9]. Here we focus on the effects of tuning the operating frequency in the 510 to 560 kHz range, 

while all other factors are kept the same as described in section II. The lateral image resolution 

and distance of the focus from the exit surface of the lens obtained from the FDTD simulation 

and from experiments are plotted in Fig. 4. Experimental and simulation results are in reasonable 

agreement from 523 to 560 kHz. The experimental values are slightly higher than the computed 

values, with a difference not exceeding 0.05λ. Experiments exhibit an optimum resolution 

(0.37λ) at 530 kHz. As the frequency increases, the image width increases up to the Rayleigh 

value (0.5λ).  There is very good overall agreement in the observed values of the resolution and 

in the change in focal distance with frequency.  However, in the experiments, the images are 

found to form nearer the crystal than in these simulations, likely reflecting the difference in the 

frequencies at which perfect equifrequency contour matching is found (544 kHz in the current 
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simulations, and 550 kHz in the experiments). Indeed, if one compares the experimental and 

simulated results, for both the resolution and image distance, at frequencies that differ from the 

corresponding EFC matching frequencies by the same amounts, the agreement is remarkably 

close.   

We now propose an interpretation of these results based on both matching of the AANR 

condition and excitation of bound modes of the PC. The scheme in figure 5 depicts the EFC in 

water and in the PC for different frequencies as circles of different diameters. First, we observe 

that if the frequency of the source is tuned lower than 544 kHz, super resolution is achieved with 

a resolution below 0.39λ (see also Fig. 4).  Since the operating frequency is lower than 544 kHz, 

the equifrequency contour of water is a smaller circle than the EFC inside the crystal [see Fig. 

1(b)]. Thus, all components of the incident wavevectors corresponding to propagating modes can 

be negatively refracted by the crystal, i.e., the AANR condition is satisfied. However, the 

mismatch of the equifrequency contours diameters leads to a negative effective index of 

refraction with magnitude greater than one, causing the different components from the source to 

focus at different places. On another hand, operating frequencies well below 544 kHz are close 

to the flat bands of bound modes in the PC slab, allowing for efficient excitation by the 

evanescent waves from the source (Fig. 3). These modes are depicted as a grey region on the 

EFC of the slab in Fig. 5. Thus, the gain from the amplification of evanescent modes is retained 

and super-resolution is achieved. This excitation of bound modes of the PC lens at frequencies 

well below 544 kHz is consistent with the intense pressure field observed inside the PC in Fig. 

4(b). At the frequency of 544 kHz the EFC of water and the PC have the same diameter resulting 

in an effective index of -1. This condition implies a perfect focusing of all propagating 

components of the source into a single focal point. However Fig. 3 shows that the flat bands of 
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bound modes of the lens are now well below the operating frequency, which means that coupling 

with these modes and amplification of the evanescent waves during transmission is now 

inefficient. The experimental optimum of the lateral resolution at 530 kHz occurs between the 

bound mode frequencies (∼510 kHz) and the perfect matching of the equifrequency contours 

(544 kHz). These results confirm the importance of the design of the PC super-lens with respect 

to two conditions. First, one has to meet the AANR condition, which requires that the PC be a 

negative refraction medium with a circular EFC matching the EFC of the outside medium 

(water). Second, bound modes must exist in the PC whose frequencies are close to the operating 

frequency so that amplification of evanescent components may occur. The optimum frequency is 

found as the best compromise between those two parameters.  

Finally, if we consider an operating frequency above 544 kHz, the EFC of water has now 

a greater diameter than the EFC of the PC, resulting in an effective index with magnitude lower 

than unity. In that case, the AANR condition is not matched and a part of the propagating 

components experience total reflection at the water/lens interface. The resolution still worsens 

and reaches 0.5λ at 555 kHz.  Fig. 4(c) shows the pressure field at 550 kHz. The poor excitation 

of the PC confirms the fact that bound modes cannot be excited because their frequency is too 

low compared to the excitation frequency. In terms of the image distance, according to acoustic 

ray tracing, the focal point changes as a function of the acoustical index mismatch. Here, since 

the magnitude of the effective acoustic index of the PC decreases as the frequency increases, the 

image appears farther from the lens exit surface for higher frequencies. This trend, confirmed by 

experiments as well as simulations [see Fig. 4(a)] shows the high sensitivity of the image 

location to changes in frequency. Here, tuning the frequency from 523 to 555 kHz shifts the 

image from 2.6 to 5.75 mm.    
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B. Location of the source in the direction parallel to the lens 

Here, we consider the effects of the position of the source with respect to the PC surface. 

In order for super resolution to take place, evanescent wave components emitted from the source 

must couple to bound slab modes in the PC, resulting in amplification and re-emission to form an 

image. Thus, the PC must lie in the near field of the point source. In these conditions the distance 

from source to lens and the period of the PC (lattice constant) are comparable in magnitude, so 

that the local structure of the PC bound modes near the crystal surface affects the focusing 

process. To gain further understanding of this process we simulated the case of a source facing 

the gap midway between two cylinders of the PC, all other parameters being kept the same as the 

Standard Configuration. In this case, the resolution falls to 0.54 λ . Similar results were found in 

the experiments.  For example, moving the source parallel to the surface from the position 

opposite a cylinder (best resolution) by only a quarter of its diameter caused the image resolution 

to degrade from 0.37λ  to 0.47λ.  In another experiment, moving the source to a position midway 

between the cylinders caused the image width to increase by 55%, similar to the degradation in 

image quality found in the simulations. Although the AANR condition is satisfied, the bound 

modes are not excited when the source is facing the gap between the cylinders. This result can be 

understood by noting that the source is now located at a maximum of the pressure field of the 

bound modes (i.e. a minimum of the displacement field since pressure is proportional to the 

gradient of displacement). Indeed, when super resolution is achieved, the amplitude of the bound 

modes dominates the pressure field because of resonant amplification. For that reason, looking at 

Fig. 1(d) gives an idea of the pressure field and indirectly the displacement field of these modes.  

The pressure exhibits lobes of maximum amplitude between cylinders and consequently the 

displacement amplitude would show maxima in front of each cylinder and nodes between them. 
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Placing the source at any of the nodes of the displacement field prevents evanescent waves from 

coupling efficiently with the bound modes. 

C. Distance from the source to the lens 

We now consider the effects of changing the distance from the source to the lens in the 

direction normal to the lens surface, along x3. One expects two different effects. First, if the lens 

is placed far enough beyond the near field of the source, super resolution should no longer be 

observed. Second, according to both acoustic ray tracing and the Green’s functions model 

presented in Sec. III, the distance i of the image from the lens output surface should decrease as 

the distance of the source s from the lens input surface is increased, being given when the 

equifrequency contours are perfectly matched by i = d – s.  In Fig. 6(a), the lateral resolution and 

distance of the image are plotted as a function of the source distance. The dashed horizontal lines 

represent the Rayleigh diffraction limit (0.5λ) and the estimated maximum resolution limit 

(0.34λ) calculated in Sec. IV.  

Figures 6(b) and (c) show the time-averaged absolute pressure field in the standard PC 

system for distances of 1 and 3 mm from the source to the lens surface. One can see in Fig. 6(b) 

that the bound modes are clearly excited when the source is in close proximity to the face of the 

lens, corresponding to a high pressure field across the entire length of the PC. At this range of 

distances, the resolution is close to the maximum limit calculated before.  One should also note 

that the bound modes have large amplitude near the lens surface, which is in accordance with the 

resonant character of the amplification of evanescent modes. Figure 6(c) shows that as the 

distance between the source and the face of the lens is increased, excitation of the bound modes 

is less and less effective and the resolution decreases.  For this range of image distances, the 

resolution remains smaller than the Rayleigh diffraction limit. The fact that this limit is not 
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reached is related to the close distances which are considered here, which range from λ/28 to 

1.4λ. Thus, the lens is always in the near field of the source for the studied range. One expects 

that for larger distances the resolution will reach the Rayleigh diffraction limit, accompanied by 

loss of super-resolution. However for a source placed farther than d, acoustic rays tracing 

predicts that no focusing occurs and the image takes on a virtual character. We have tested this 

point and indeed for a source placed far from the lens we find a diverging beam on the opposite 

side of the lens. Thus, to observe the complete loss of super-resolution would require a 

significantly thicker lens and a larger source distance, conditions that were not possible with our 

computation capabilities. In Sec. III, a Green’s function model was used to show that if all 

evanescent and propagative modes are contributing then the image is perfectly reconstructed as a 

point source at a distance sd −  from the exit face of the lens. This is the exact position that 

geometric rays tracing predicts if the two media have opposite refraction indices. This linear 

behavior would also be expected if there was an impedance mismatch between the lens and the 

embedding medium or if the media had uniaxial anisotropy in the x3 direction [3]. To verify the 

relationship between source and focal distances we plot the distance of the image from the lens 

exit surface as a function of source distance from the incident surface (see Fig. 6(a)). The 

simulation results fit a linear relation with a slope of -0.82. However, the intercept of this curve, 

differs from the predicted value of d = 6.52 mm (the thickness of the lens).  We have shown in 

Sec. V.A that the position of the image is very sensitive to the frequency because the operating 

frequency defines the effective index of the PC. If n is the effective index of the PC relative to 

water, then the focus position for a source placed very close to the lens is d/|n|. Since the 

operating frequency is 530 kHz, i.e. not exactly the frequency for which n = -1, the magnitude of 

the refractive index is greater than 1. Thus, the fact that the intercept on Fig. 6(a) is lower than 
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the lens thickness d could be explained in terms of refractive index mismatch between the two 

media. We find n = 1.07 for the operating frequency. However, this value alone is insufficient to 

explain completely the discrepancy. This discrepancy is therefore most probably due to the fact 

that the lens is made from a PC and is therefore not a homogeneous negative medium as assumed 

in Green’s function-based model. Indeed, the need for considering a homogeneous medium with 

an effective thickness has arisen in the case of homogenization of a metamaterial slab [23].  

D. Geometry of the PC lens 

In addition to the operating factors discussed in the previous sections, it is also of interest 

to examine the effects of the thickness and width of the PC lens. The width of the lens is 

measured along x1 by the number of rod inclusions in each layer parallel to the surface. We 

simulated lenses of 15, 31 and 61 rods per layer in crystals with our standard thickness of 6 

layers, all other parameters being constant. We found that the behavior of the lens with 61 rods 

per layer does not differ from that of the standard case.  More specifically, the position of the 

image and resolution as a function of the position of the source (Fig. 6(a)) gave the same results. 

By contrast, the results for the narrower lens (i.e. 15 rods per layer) were significantly different. 

We attribute this observation to the lens’s small aspect ratio (2.5), which was too small to avoid 

significant distortions.  For lenses wider than 31 rods, the aspect ratio is greater than 5 and does 

not affect the results.   

The thickness of the lens was varied by changing the number of layers of cylindrical 

inclusions (columns in diagram of Fig. 1(a)). We simulated lenses having a thickness of 4, 5, 6, 7 

and 8 layers for the case with a width of 31 rods per layer. The distance from the source to the 

surface was maintained at 0.1 mm as in the Standard Configuration. Figure 7(a) summarizes the 

results for the resolution and image distance. We note that for all lenses the resolution does not 
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change to within the range of measurement error.  This fact indicates that, in these cases, 

excitation of the bound modes is achieved as suggested by the intense pressure fields observed 

inside the PC lenses (Fig. 7(b) and (c)). This was confirmed by conducting a series of band 

structure calculations in the direction of k// for each lens thickness (Fig. 8). The PC lenses exhibit 

bound modes whatever the thickness studied. The frequencies of the bound modes that are 

responsible for super-resolution do not vary significantly as the thickness changes. There is a 

slight shift in frequency near the Γ point but no significant shift away from our operating 

frequency at the X point. To further elucidate this point, we consider as a toy model the Lamb 

modes in an infinitely long plate with finite thickness. For such a plate it is found that the 

behavior of the frequency of the Lamb modes as a function of thickness is dominated by the 

magnitude of the wave vector for the lower order modes [24]. This is in agreement with observed 

behavior of our band structure calculations for different thicknesses of the PC. The number of 

bound modes increases as expected with the number of layers of inclusions. 

The distance of the image from the crystal surface increases linearly with the thickness of 

the lens. However, the fitted value of this slope is not one, as expected in the case of a 

homogeneous negative medium, but 0.83. We have seen earlier in Section V.D. that a lens made 

of an effective homogeneous medium may not have the thickness of the actual phononic lens. 

The discrepancy between the slope of 0.83 compared to one indicates the thickness mismatch 

between effective homogeneous slabs and phononic crystal slabs [23].  

E. Resolution as a function of time 

As mentioned in Sec. IV, the lens requires sufficient time to establish a steady state 

image. To investigate the temporal evolution of the image we measured the lateral resolution 

obtained at various delays after the start of the simulation. Figure 9(a) shows the resolution as a 



 
 

23 
 

function of time for the Standard Configuration. The half-width of the image appears to decrease 

exponentially from values above the Rayleigh limit at short times to super-resolution after long 

times. In this same figure we also plot an estimate of the resolution considering only propagating 

modes and ray tracing arguments for a homogeneous flat lens with perfect equifrequency contour 

matching to the surrounding medium. The half-width of the image in this case is simply given by 

2
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k t d
ct

π λΔ
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where t is time and c is the speed of sound in water. This relation is plotted as a solid line in the 

figure. This line suggests that it takes approximately 20 μs to achieve 90% of the Rayleigh 

diffraction limit. The simulated data indicates that more time is needed to achieve super-

resolution. One needs approximately 60 μs to achieve 90% of the ultimate resolution. The 

additional time is necessary to excite the lens bound modes. This is clearly seen in Fig. 9(b) and 

(c) where the bound modes propagate along the length of the lens until complete excitation is 

achieved. 

VI. Conclusions 

As a follow-up to a recent report demonstrating experimentally and theoretically 

subwavelength imaging in a phononic crystal flat lens [9], we have provided a thorough analysis 

of the physical requirements for achieving superlensing. For this, we employed a combination of 

analytical and numerical methods, supported by experimental results. We described analytically 

the resolution of an image formed from negatively refracting material using a Green’s function 

formalism, providing an expression for a perfectly reconstructed image. We have shown that 

perfect reconstruction requires that all propagative and evanescent components of the source 

contribute to the formation of the image. Using the FDTD method we showed that for a 
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phononic crystal, the evanescent components of a source can be amplified by excitation of bound 

modes of the flat lens. We have extended the work of Luo et al. [13] on photonic crystal 

superlensing to predict the ultimate resolution of acoustical superlenses composed of triangular 

arrays of cylindrical inclusions in a matrix. The predicted resolution is limited by the symmetry 

of the crystal and is in excellent accord with the ultimate resolution calculated with FDTD, as 

well as with the reported experimental value [9]. Our discussion of subwavelength imaging was 

further extended by exploring the effects on super resolution of geometrical and operational 

factors, such as source position, frequency, PC dimensions and propagation time. More 

specifically, these effects were analyzed in the context of the interplay between AANR and 

sufficient coupling of evanescent source components to bound modes of the crystal. Because of 

its relevance to experiments, further analysis of subwavelength imaging in a phononic crystal flat 

lens is planned to thoroughly evaluate the detrimental effects of positional randomness of the 

steel rods,  as well as other imperfections, on both the focal point and resolution. Indeed, since 

negative refraction relies on multiple scattering, it is expected to be highly sensitive to the 

regularity of the PC, as suggested by previous numerical and experimental results [9]. In 

summary, the work reported in this paper provides a detailed analysis of the physical principles 

underlying subwavelength imaging using phononic crystals, and will serve as a guide for the 

design of new phononic crystal lenses with optimum resolution capabilities.   
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FIGURE CAPTIONS 

 
Figure 1: (color online). (a) The “Standard Configuration” Phononic Crystal system consisting 

of a triangular lattice of steel cylinders (light grey) in a methanol matrix (dark grey), all 

surrounded by water (white). The short thick line located close to the center of the left side of the 

crystal represents the sound source. (b) FDTD dispersion curves of the infinite crystal (solid 

lines). The dashed line represents the dispersion curve in water. The intersection of the water 

cone with a negative group velocity band determines the frequency that results in a negative 

effective index of -1 for the PC. The inset shows the triangular crystal lattice of the PC with the 

corresponding unit cell and the contour of the first Brillouin zone. (c) FDTD band structure in 

the ΓX direction (parallel to the surface) for a finite 6-layer crystal. Modes above water line 

correspond to propagating modes, while those which fall below are modes bound to the PC slab, 

which exhibit evanescent character. The inset depicts the supercell used in the calculation. (d) 

FDTD calculation of the average of the absolute value of the pressure over one period. On the 

exiting (right) side of the PC, an image is formed in the center accompanied by pressure lobes 

that decrease in magnitude as the distance from the surface of the crystal increases.  

Figure 2: Schematic representation of a flat lens consisting of a homogeneous composite 

medium (medium 1) immersed in water (medium 2). 

Figure 3: Determination of the maximum wavevector contributing to the super-resolution. The 

FDTD band structure of the finite slab is plotted in the direction parallel to the lens surface for 

the range of wave vectors extending up to the edge of the Brillouin zone of the hexagonal lattice 

of the PC. Dashed lines represent dispersion relations of water. Modes which fall above these 

lines can propagate in water while those which fall below exhibit evanescent character. The 
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dotted line depicts the operating frequency of the source. On the bottom axis, the X point of the 

(1D) surface Brillouin zone is indicated.  

Figure 4: (color online). Effects of the operating frequency. (a) Lateral resolution and distance 

of the image as a function of the operating frequency. Results from experiments (triangles) are 

compared to FDTD simulation (circles). Pressure fields at 520 kHz (b) and 550 kHz (c).  

Figure 5: Schematic representation of the transmission through the PC lens based on the 

equifrequency contours shapes. The equifrequency contour of the PC lens is represented as a 

circle inside the first Brillouin zone of the hexagonal infinite crystal. The grey areas illustrate the 

existence of bound modes with frequency very close to the operating frequency.  

Figure 6: (color online). Effects of the source distance. (a) Plot of the resolution and image 

distance as a function of the source distance. As the distance increases, excitation of the modes 

bound to the PC is less efficient, resulting in a loss of resolution. (b) Contour maps of the time-

averaged absolute value of the pressure with the source positionned 1 mm (b) and 3 mm (c) away 

from the incident face of the PC lens. 

Figure 7: (color online).  Effects of the number of layers. (a) Lateral resolution and distance of 

the image as a function of the number of layers. Pressure fields are drawn for the 4 layers (b) and 

8 layers (c) lenses. 

Figure 8: FDTD band structure calculations in the direction parallel to the face of the PC for 

lenses with 5, 6, 7 and 8 layers. Whatever the numbers of layers, bound modes (flat curves) are 

always present at the zone edge with frequencies very close to the operating frequency of 530 

kHz. 
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Figure 9: (color online). (a) Time evolution of the lateral resolution of the image in the Standard 

Configuration. The dashed line is an exponential fit to the data points, determined from FDTD 

simulations. The solid line is the lateral resolution of the half-width (Δp/2) as a function of time, 

as estimated using a simple ray tracing model involving only propagating modes (see text). 

Pressure fields after 24 μs (b) and 46 μs (c) of propagation.  
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