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Strong coupling among external voltage, electrochemical potentials, concentrations of 

electronic and ionic species, and strains is a ubiquitous feature of solid state mixed ionic-

electronic conductors (MIECs), the materials of choice in devices ranging from 

electroresistive and memristive elements to ion batteries and fuel cells. Here, we analyze in 

detail the electromechanical coupling mechanisms and derive generalized bias-concentration-

strain equations for MIECs including effects of concentration-driven chemical expansion, 

deformation potential, and flexoelectric effect contributions. This analysis is extended 

towards the bias-induced strains in the uniform and scanning probe microscopy-like 

geometries. Notably, the contribution of the electron-phonon and flexoelectric coupling to the 

local surface displacement of the mixed ionic-electronic conductor caused by the electric field 

scanning probe microscope tip has not been considered previously. The developed 

thermodynamic approach allows evolving theoretical description of mechanical phenomena 

induced by the electric fields (electro-mechanical response) in solid state ionics towards 

analytical theory and phase-field modeling of the MIECs in different geometries and under 

varying electrical, chemical, and mechanical boundary conditions.  
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1. Introduction 

 Development of strains is a phenomenon ubiquitous in solid-state electrochemical 

devices including batteries [1, 2], fuel cells [3, 4] and electroresistive and memristive 

electronics. For example, strain is one of the dominant factors contributing to the mechanical 

instability of solid oxide fuel cells and Li-ion battery anodes such as intra-particle cracking 

and delamination of electrodes [5, 6]. The difference in boundary conditions (clamped or 

unclamped material) can significantly shift the electrochemical potentials of reacting species 

and electrons [7] and affect charge-discharge hysteresis and hence efficiency of materials and 

devices. On the other hand, electrochemically generated strains can be utilized to build 

electromechanical devices such as artificial muscles [8] and actuators [9], or diagnostic tool 

for electrochemical systems at both the macroscopic [10] and nanometer scales [11]. 

Electrochemical Strain Microscopy [11, 12] uses the periodic nanoscale electrochemical 

strains generated by a biased scanning probe of microscope to detect Li-ion diffusion in 

cathode [13] and anode materials [14] at the 10-100 nanometer scale. Based on the previous 

imaging and spectroscopy results in ferroelectric materials [15, 16, 17] it is possible to 

perform electrochemical strain microscopy measurements at the level of several nanometers, 

opening the pathway for probing structure-electrochemical property relationships at a single 

structural defect.  

 A common source for strain in electrochemically active materials is the compositional 

dependence of lattice parameters, as discussed in detail by Larche and Cahn [18]. This is the 

case for many ionic and mixed ionic-electronic conductors such as ceria [19], cobaltites [20, 

21, 22, 23], nikelates [24] and manganites [25]. Similarly, insertion and extraction of Li-ions in 

Li-battery electrodes produce large volume changes [26, 27]. Most of the previous theoretical 

studies of strain effects in diffusional [28, 29] and electrochemical systems consider this 

compositional lattice expansion as the only source of strain. This assumption is reasonable if 

the electronic conductivity of a material is sufficiently high to avoid significant potential 

drops (equivalent to the presence of support electrolyte in liquid electrochemistry [30, 31]), 

obviating electromigration transport and providing local electroneutrality. 

 However, the situation can differ significantly for the case of materials with finite 

electronic conductivity, in which both concentration fields and electrostatic field are non-

uniform within the material. Electrostatic fields in the material give rise to strains due to 
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electrostriction [32, 33, 34, 35] and space-charge [36] effects. Secondly, the changes in the 

redox state of Jahn-Teller (JT) active cations can give rise to additional strain coupling 

mechanisms through the deformation potential [37, 38, 39, 40, 41, 42]. As an example, in 

perovskites these effects can be understood as a consequence of the changes in favored 

oxygen octahedral geometry as a function of oxidation state of the central cation. Similarly to 

the fact that change in the d-orbital population changes octahedral shape and gives rise to JT 

effect, the strain deforming octahedral will shift the electrochemical potential of the central 

atom. These effects will be particularly pronounced on the nanometer scale as relevant to 

scanning probe microscopy imaging [43] and nanoparticle/nanowire materials, in which the 

conditions of local electroneutrality are violated on the length scales of corresponding 

screening lengths and large (compared to macroscopic systems) strains can be supported.  

Inhomogeneous electric fields, which are inevitably present in systems with 

inhomogeneous space charge (e.g. in the vicinity of the tip-surface junction), induces elastic 

strains linearly proportional to the field gradient due to the flexoelectric coupling; vice versa 

inhomogeneous elastic stress causes electric polarization. The existence of such effect was 

pointed out by Mashkevich and Tolpygo [44] and Kogan [45]. A comprehensive theory of the 

flexoelectric effect was offered by Tagantsev [46, 47, 48], experimental measurements of 

flexoelectric tensor components in bulk crystals were for perovskites carried out by Ma and 

Cross [49, 50, 51, 52, 53] and Zubko et al. [54]. Further theoretical developments of the 

flexoelectric response of different nanostructures were made by Catalan et al [55, 56], 

Majdoub et al. [57], Kalinin and Meunier [58], Eliseev et al [59], and Sharma et al [60, 61]. 

 In this paper, we develop the equilibrium strain-concentration-bias equations for 

electrochemically active materials that account both for chemical expansivity, deformation 

potential and flexoelectric effects. The relevant comparison here is the Ginzburg-Landau type 

theories for ferroelectric materials that are broadly available for ferroelectrics and allow 

domain structures [63], domain dynamics [62], behavior in non-uniform systems (e.g. strained 

films and multilayers [63]) and the effects of individual and multiple defects to be explored 

[64]. Once available for electrochemical systems, similar advances based on phase-field type 

models could be achieved [65], [66], [67, 68]. 
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2. Generalized concentration-strain-bias constitutive relation 

 Here, we analyze the coupling between electrochemical potential and strain in mixed 

ionic-electronic conductors (MIEC). We consider the flexoelectric effect, deformation 

potential, quasi-Fermi levels shift by electron-phonon coupling and Vegard expansion of the 

lattice caused by mobile donor (and/or acceptors) as the primary contributing mechanisms.  

 

2.1. Flexoelectric effect contribution into electrostatic potential and elastic stress 

 For centrosymmetric crystals (considered hereinafter) the direct flexoelectric effect 

gives the equation of state for dielectric polarization ( )riP  [46, 47]: 

jij
j

kl
kliji E

x
uP χε+

∂
∂γ= 0 ,                                                      (1) 

which includes the “flexoelectric” polarization ljkijkl xu ∂∂γ  induced by inhomogeneous 

strain ( )riju  gradient, lij xu ∂∂  [47, 53, 54], and dielectric response ( ) jijij Eδ−εε0 , where 0ε  

is universal vacuum dielectric constant, ( )ijijij δ−ε=χ  is the lattice susceptibility tensor, ijε  

is the lattice permittivity tensor. iE  is the electric field. The flexoelectric strain tensor ijklγ  has 

been measured experimentally for several substances and it was found to vary by several 

orders of magnitude from 10-11C/m to 10-6C/m [69]. Hereinafter we use the Einstein 

summation convention for all repeating indexes. 

 Direct substitution of the polarization (1) into Maxwell equation ( ) fρ=ε+ EP 0div  

along with definition ( ) ( ) kk xE ∂ϕ∂−= rr  leads to the Poisson-type equation with 

flexoelectric term for the electric potential ( )rϕ  of MIEC: 

( ) ( ) ( ) ( ) ( )( ) ( )
lk

ij
ijkldaC

ji
ij xx

u
NNnpq

xx ∂∂

∂
γ++−−−=

∂∂
ϕ∂

εε +− r
rrrr

r 22

0             (2) 

Here q is the absolute value of electron charge, ( )rCn  is the concentration of electrons in the 

conduction band, ( )rp  is the concentration of holes in the valence band, ( )r+
dN  is the 

concentration of mobile ionized donors, and ( )r−
aN  is the concentration of mobile ionized 

acceptors in the MIEC.  
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 The converse flexoelectric effect contributes into the Hook’s law relating the strain 

( )rklu  and stress tensor ( )rklσ  [70]:  

( ) ( ) ( )
l

k
ijklklijklij x

P
fuc

∂
∂

+=σ
r

rr .                                        (3a) 

here ijklc  is the tensor of elastic stiffness, flexoelectric stress tensor 0
1 εχγ= −

mlijmkijklf . 

Hereinafter we neglect the quadratic contribution of the flexoelectric effect and using Eq.(1) 

rewrite Eq. (3a) as [71]: 

( ) ( ) ( )
m

k
ijmkklijklij x

E
uc

∂
∂

γ+=σ
r

rr .                                           (3b) 

The substitution of the polarization from Eq.(1) into Eq.(3b) leads to the relations: 

( ) ( ) ( )
lk

ijklklijklij xx
uc

∂∂
ϕ∂γ−=σ rrr

2

,                                    (4a) 

( ) ( ) ( )
lk

mnklijmnklijklij xx
ssu

∂∂
ϕ∂

γ+σ=
r

rr
2

.                            (4b) 

Where 
( )

lk
ijkl xx ∂∂

ϕ∂
γ

r2

 is the linear contribution of the flexoelectric effect, ijkls  is the tensor of 

elastic compliances. 

 

2.2. Vegard expansion of the lattice caused by mobile donor and acceptors 

 Effect of the stoichiometry on the local strain is the linear dependence of lattice 

constants on the chemical composition of solid solution (Vegard law of chemical expansion 

[18, 72]). In accordance with the Vegard law the local stress ijσ  and strains iju  produced by 

the mobile ions (donors or acceptors) migration and diffusion are related as [1, 29]: 

( ) ( )( ) ( )( )−−++ −β−−β−=σ 00 aa
a
ijdd

d
ijklijklij NNNNuc rrr ,                               (5a) 

( ) ( )( ) ( )( )−−++ −β+−β+σ= 00
~~

aa
a
ijdd

d
ijklijklij NNNNsu rrr ,                               (5b) 

where ( )r+
dN  is the instant concentration of mobile ionized donors, ( )r−

aN  is the instant 

concentration of mobile ionized acceptors, +
0dN  and −

0aN  are their stoichiometric equilibrium 

concentrations, da
ij

,β  and da
klijkl

da
ij s ,,~ β=β  are the Vegard expansion tensors for acceptors 

(donors). 
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 The structure of Vegard expansion tensor is controlled by the symmetry (crystalline or 

Curie group symmetry) of the material; for isotropic or cubic media it is diagonal and reduces 

to scalar: jk
dada

jk δβ=β ,,  (hereinafter jkδ  is the Kroneker-delta symbol). Experimental methods 

for ijβ  determination are relatively well established. For instance, one could either directly 

study the strain of a given sample with the changes of stoichiometry (see e.g. [23, 24, 25]) or 

consider the set of several samples with slightly different composition (solid solution). 

 Note, that the Vegard strain caused by mobile donors and acceptors leads to the shift 

of their chemical potential levels proportional to the convolution ( )rjk
a
jkuβ  or ( )rjk

a
jk σβ~  (see 

e.g. Ref.[1]) and their equilibrium concentrations in the Boltzmann-Planck-Nernst 

approximation: 

( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ−β
≈ ++

Tk
qu

NN
B

jk
d
jk

dd

rr
r exp0 ,                             (6a) 

( ) ( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ+β
≈ −−

Tk
qu

NN
B

jk
a
jk

aa

rr
r exp0 .                            (6b) 

Where kB=1.3807×10−23 J/K, T is the absolute temperature. 

 Consequently, the Eqs. (5) and (6) can be interpreted as the direct and converse 

Vegard effect: ions concentration variation induces stress/strain (the direct Vegard effect), 

where the strain/stress produces the concentration changes (the converse Vegard effect). 

 

2.3. Electron-phonon coupling contribution in elastic subsystem  

 In deformation potential theory [37-42], the strain induced conduction (valence) band 

edge shift is proportional to the strain in the linear approximation, namely: 

( )( ) ( ) ( )rr ij
C
ijCijC uEuE Ξ+= 0 ,         ( )( ) ( ) ( )rr ij

V
ijVijV uEuE Ξ−= 0 .             (7) 

where CE  and VE  are the energetic position of the bottom of conduction band and the top of 

the valence band respectively [73], VC
ij

,Ξ  is a tensor deformation potential of electrons in the 

conduction (C) and valence bands (V) [40]. The properties of deformation potential tensor 
VC

ij
,Ξ  are determined by the crystalline symmetry of the material and the positions of the 

bottom of conduction band and the top of the valence band in the Brillouin zone [37-42].  
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 Neglecting the strain-induced changes in the density of states (DOS) in the energy 

bands, one can express the impact on the strain of the equilibrium concentration of the 

electrons in the conduction and holes in the valence bands in terms of this ways introduced 

deformation potential [74, 75]: 

( ) ( ) ( ) ( )

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ+Ξ−
≈

εε
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ−−Ξ++ε
+= ∫

∞

∞−

−

Tk
qu

n

dg
Tk

qEuE
n

B

ij
C
ij

C

C
B

Fij
C
ijC

C

rr

rr
r

exp

exp1

0

1

,        (8a) 

( ) ( ) ( ) ( )

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ−Ξ−
≈

εε
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ϕ−−Ξ−+ε
−+= ∫

∞

∞−

−

Tk
qu

p

dg
Tk

qEuE
p

B

ij
V
ij

V
B

Fij
V
ijV

rr

rr
r

exp

exp1

0

1

,     (8b) 

where kB=1.3807×10−23 J/K, T is the absolute temperature FE  is the Fermi level; q is the 

absolute value of electron charge. Functions ( )xgm  with the script VCm ,=  are the densities 

of states (DOS). [76] 

 Approximate equalities in Eq.(8) correspond to the Boltzmann-Planck-Nernst 

approximation that is widely used for MIECs (see e.g. Riess et al papers [77, 78, 79]). In this 

approximation, in the absence of external potential and strains the equilibrium concentrations 

of the electrons in conduction band and holes in the valence band, 0Cn  and 0p , read 

( )∫
∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε−+−ε⋅ε=
Tk
EEgdn

B

FC
CC exp0  and ( )∫

∞

∞−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε+−
ε⋅ε=

Tk
EE

gdp
B

FV
V exp0 , respectively.  

 One readily shows that a converse effect to that discussed above (i.e. the stress/strain 

produced by the carrier redistribution), conditioned by the deformation potential, should exist, 

namely: 

( ) ( ) ( )( ) ( )( )00 ppnnuc V
ijCC

C
ijklijklij −Ξ+−Ξ+=σ rrrr ,                        (9a) 

( ) ( ) ( )( ) ( )( )00
~~ ppnnsu V

ijCC
C
ijklijklij −Ξ−−Ξ−σ= rrrr .                      (9b) 

The deformation potential tensors in Eq.(9a) and (9b) are related as VC
klijkl

VC
ij s ,,~ Ξ=Ξ .  



 9

 Let us demonstrate the validity of Eq.(9a) for the electrons in the conductive band, 

obeying the classical statistics. We start from the expression for the free energy density of 

electrons in conductive band [74]: 

( )( ) ( )[ ]∑
α

ααααα −+ε+= fffTkuEf
VV

F
BijC ln

1
.                              (10a) 

The summation In Eq. (10a) is performed over the many states in the conduction band 

denoted by the summation index "α". Here  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−−ε+
−= α

α Tk
qEuE

f
B

FijCexp                                    (10b) 

is the probability of the occupation of the α-th state in the band by an electron, the summation 

is performed over conduction band, and V is the system volume. Alternatively, ∑
α

αf  can be 

expressed in terms of the density of the electrons, Cn , and the density of state, CN , in the 

conductive band: 

∑
α

α ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ−−
−≡=

Tk
qEE

Nf
V

n
B

FC
CC exp

1
,                         (10c) 

Comparing (10b) and (10c) one immediately get that  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ε
−= α

α TkN
n

f
BC

C exp .                                          (10d) 

Using (10d) and (10c), the free energy density (10a) can be expressed in term of its 

independent variables iju , Cn , and T :  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= 1ln

C

C
BCC N

n
TkEn

V
F

.                                          (10e) 

By definition 

( ) C
ijC

ij

C

C

B
C

C
ijC

ij

C

C

B
ijC

ij
C

nTij
ij n

u
N

N
Tknn

u
N

N
TkuE

u
n

V
F

u
C

Ξ≈
∂
∂−Ξ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂−

∂
∂=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂=σ

,

.        (11) 

Thus, neglecting the strain dependence of the density of states CN  in Eq.(11), and keeping in 

mind that we are interested in the strain difference between the initial state of the system and 

that with a changed electron density, we arrive at the second r.h.s. term from Eq.(9a). The 
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calculations for the stress induced by the variation of the holes density are similar. The impact 

of the last term, 
ij

C

C

B
C u

N
N

Tkn
∂
∂ , appeared small for semiconductors, since the strain dependence 

of the effective mass is typically much smaller than the band gap dependence determined by 

deformation potential (see e.g. Ref. [80]).  

 

3. Elastic fields: flexoelectric, Vegard and electron-phonon contributions  

The total stress contains flexoelectric contribution in accordance with Eq.(4), Vegard 

contribution in accordance with Eq.(5) and electron-phonon contribution in accordance with 

Eq.(9). Thus, the strain and stress tensors are related as:  

( ) ( )
( )( ) ( )( )

( )( ) ( )( ) lk
ijkl

dd
d
ijaa

a
ij

V
ijCC

C
ij

klijklij xxNNNN

ppnn
uc

∂∂
ϕ∂γ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−β−−β−

+−Ξ+−Ξ
+=σ

++−−

2

00

00

rr

rr
rr .     (12a) 

The strain tensor can be expressed via the stress tensor (10) as: 

( ) ( )
( )( ) ( )( )

( )( ) ( )( )
( )

lk
ijklV

ijCC
C
ij

dd
d
ijaa

a
ij

klijklij xxppnn

NNNN
su

∂∂
ϕ∂

γ+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−Ξ−−Ξ−

−β+−β
+σ=

++−−
r

rr

rr
rr

2

00

00 ~
~~

~~
.               (12b) 

 The inverse effects tensors and flexoelectric coefficients in Eq.(11b) are introduced as 

mnklijmnijkl
da

klijkl
da

ij
VC

klijkl
VC

ij sss γ=γβ=βΞ=Ξ ~,~,~ ,,,, .                                   (13a) 

 Note, that Eqs.(12) require the reference lattice determination. The reference lattice is 

regarded strain-free for the case of zero electric potential: 0=ϕ  and therefore 

( ) ( ) ( ) ( ) ++−− ==== 0000 ,,, ddaaCC NNNNppnn rrrr . 

 Considering the case of isotropic media, for which ij
VCVC

ij δΞ=Ξ ,, , ij
dada

ij δβ=β ,,  and 

( )jkiljlikSklijDijkl δδ+δδγ+δδγ=γ , in Voigt notations Eq (13a) can be simplified as  

( ) ( )
( ) .~,~,2~~~

,2~,2~

44444412111212111212121111112233

1211
,,

1211
,,

ssssss

ssss ij
dada

ijij
VCVC

ij

γ=γ+γ+γ=γγ+γ=γ=γ=γ

δ+β=βδ+Ξ=Ξ
          (13b) 

 Note that the group of k at the Γ point in the Brillouin zone is isomorphic to the point 

group of the lattice so the Γ point has full crystal symmetry. The Γ point symmetry 

determines the deformation potential tensor [40]. Thus non-diagonal components of 

deformation potential tensor as well as of the Vegard strain tensor are possible only for 

monoclinic and triclinic symmetry materials (since these tensors are symmetric polar ones, 
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their symmetry properties are the same as for e.g. dielectric susceptibility tensors, see e.g. 

Ref. [81]).  

 Estimation of the deformation potential tensor trace performed in the Tomas-Fermi 

approximation [37] yields the magnitude of β ~ 1 eV and β~  ~ 10-30 m3 for Li-containing 

ionics [23, 25, 82]. Unfortunately, the Tomas-Fermi approximation can significantly 

underestimate the deformation tensor value for many materials up to the order of magnitude 

[37, 73]. Experimental values are not available, albeit are probably accessible for density-

functional type modelling. In comparison, for Si- or Ge-based semiconductors experimental 

values are Ξ~ ~5 − 10 eV and Ξ~ ~(1 − 5) 10-30m3 [40, 83]. Using the values and typical range 

of concentration variations, namely:(a) 1% deviation from stoichiometric concentration 1028 

m-3 for ions gives ( )( ) 26
0 10~−− − aa NN r  m-3; (b) 10 − 100% deviation of electrons and holes 

concentration in the regions of the depletion/accumulation regions is about 

( )( ) 27
0 10~rpp − m-3, we estimate that the contributions of Vegard effect ( )( )−− −β 0

~
aa

a
ij NN r  

and deformation potential ( )( )rppV
ij −Ξ 0

~  in Eq.(11) are comparable for ionics. 

 

4. The strain-voltage response in decoupling approximation 

 Here, we illustrate the contribution of ions and electrons migration in the applied 

electric field to the strain response of the MIEC surface. It is seen from Eqs.(12) that the 

Vegard expansion, deformation potential, and flexoelectric effect couple the stress field with 

the carriers distribution, requiring the solution of fully coupled problem. However, in the most 

cases the changes of band structure due to the external pressure is rather weak (e.g., for Ge 

band gap changes only on about 1% for rather high strain of about 10-3 [38]). Hence, when 

calculating the space charges distributions the stress contribution can be neglected in the first 

approximation. Then the ionic and electrostatic field distributions are substituted in Eqs.(12) 

to yield mechanical responses.  

 

4.1. Electrochemical Strain Microscopy of the MIEC 

 Both ionic and electronic contributions to the local strain can be measured and 

distinguished by the Electrochemical Strain Microscopy (ESM) [11, 12, 13, 14, 84]. For the 

ionically blocking tip electrode, the electron transfer between the tip and the surface and non-
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uniform electrostatic field result in the redistribution of mobile ions and electrons within the 

solid, but no electrochemical process at the interface occurs [12]. The schematic of the system 

is shown in Fig. 1a.  

 Lame-type equation for the mechanical displacement ui can be obtained from the 

equation of mechanical equilibrium 0)( =∂σ∂ iij xr , where the stress tensor )(rijσ  is given 

by Eq.(11a), namely:  

( )( ) ( )( )
( )( ) ( )( )⎟⎟

⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−Ξ+−Ξ+
∂∂
ϕ∂γ−

−β−−β−

∂
∂−=

∂∂
∂

++−−

00

2

002

ppnn
xx

NNNN

xxx
uc

V
ijCC

C
ij

lk
ijkl

dd
d
ijaa

a
ij

jlj

k
ijkl rr

rr
      (14) 

Mechanical boundary conditions [85] corresponding to the ESM experiments [11] are defined 

on the mechanically free interface, z = 0, where the normal stress i3σ  is absent, and on 

clamped interface z = h, where the displacement ui is fixed: 

( ) 00,,3 ==σ zyxi ,          ( ) 0,, == hzyxui .                        (15) 

Hereinafter we define 321 ,, xzxyxx =≡≡  as well as associate the indexes 

zyx =≡≡ 3,2,1  for vectors and tensor components. 

 
 

z 

SPM probe tip 

h

u3(a) (b) 

Thick rigid planar 
electrode/substrate 

h

Thin electrode 

Thick rigid planar 
electrode/substrate

⇒

 
Fig. 1. Schematics of ESM measurements with a flattened scanning probe microscope (SPM) 

tip (a) is approximated by the (b) strain response of the 1D-system, where u3 is the surface 

displacement for fixed back interface. Voltage V0 is applied to the top electrode, h is the 

thickness of MIEC film. 
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 The tip-bias-induced displacement of the MIEC surface at the point x3=0, i.e. surface 

displacement at the tip-surface junction detected by SPM electronics, for elastically isotropic 

semi-space can be calculated in decoupling approximation [12], using the appropriate 

tensorial Green function for elastic semi-space (listed in e.g. Ref.[86]) or thin film (derived in 

Refs.[87, 88]). Decoupling approximation regards the flexoelectric effect and strain 

contribution small enough not to perturb the electrostatic potential and carrier distributions in 

the first approximation. Thus below we determine the electric potential from the Eq.(2) with 

carriers distribution (6) and (8) without strain terms and then substitute the potential and 

carriers distribution into Eq.(14). 

 Note, that decoupling approximation introduced earlier for PFM [89, 90], are 

sufficiently rigorous for materials with low electromechanical coupling coefficients, i.e. for 

all non-piezoelectrics considered in the paper. The accuracy of the decoupling approximation 

is proportional to the square of the electromechanical coupling coefficients, which generally 

does not exceed 10-2 for non-ferroelectrics. 

 

4.2. Strain response of the surface layers 

 The schematic of the capacitor-like structure that models a disc-like SPM tip is 

illustrated in Fig. 1b. We consider a MIEC film of thickness, h, sandwiched between the 

planar electrodes. For the strain measurements, the top electrode is considered to be 

mechanically free (e.g. ultra-thin, or liquid, or soft polymer), so that its motion does not affect 

significantly the mechanical displacement of the MIEC film surface. Voltage V0 is applied to 

the top electrode, the bottom electrode is earthed:  

( ) ( ) 0,0 =ϕ≈=ϕ hconstVz .                                               (16) 

The voltage drop between the top and bottom electrode causes the 1D-redistribution of the 

carrier concentration in z-direction. 

 Using Eq.(1) from Ref.[11], equilibrium mechanical displacement of the MIEC 

surface caused by the flexoelectric, electronic and ionic contributions can be calculated as:  
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Note that the contribution of the electron-phonon coupling (first two terms in Eq.(17)) as well 

as the flexoelectric effect (the last term) into the local surface displacement can be 

comparable with the first terms originated from the chemical expansion. Moreover, using the 

order of magnitude estimate of γ~1 10−10 C/m, the flexoelectric contribution to the PFM signal 

is about 12 pm/V.  

 Using the decoupling approximation in the 1D-Poisson equation, 

( ) ( )++−− −+−+−+−−=
ϕ

εε 00002

2

330 ddaaCC NNNNnnppq
dz

d r
, i.e. neglecting here the 

flexoelectric term 
2

2

33 dz

ud ij
ijγ , and regarding that ( ) 00000 =−++− +−

daC NNnp  due to the 

electroneutrality in the bulk MIEC, Eq.(17) can be simplified as 
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It is seen from Eq.(18) that the MIEC surface displacement is proportional to the total charge 

of each species. Thus only the injected charges control the displacement. Note, that the 

relation between the total charge and electrostatic potential on the semiconductor surface are 

well established [74]. 

 In Eq.(18) we introduced the designations for the flexo-electro-chemical coupling 

constants as 

( )
3301211
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ss
s

ss
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where the first terms originated from the deformation potential or Vegard tensors, while the 

last ones originated from the flexoelectric coupling.  

 Flexoelectric effect contribution into the coupling constants λ and μ from Eqs.(19)-

(20) is estimated in the Table 1. It is seen from the Table 1 that the flexoelectric contribution 

ranges from 0.1 to 10 eV for crystalline dielectrics, that is comparable to or much higher than 

the chemical expansion and deformation potential contributions, which are ~0.5 − 5 eV for 

ionics. For incipient (SrTiO3) and normal (Pb(Zr,Ti)O3 and BaTiO3) ferroelectrics the 

flexoelectric effect contribution is much higher than the other ones.  

 

Table 1. Flexoelectric effect contribution into the coupling constants λ and μ 

Material Flexo-
electric 
tensor γ 
(nC/m) 

ε  
(at 300 

K) 

Flexoelectric coupling 
constant (eV) 

3301211

1212
33

2
εε⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛

+
γ

−γ
q

ss
s

 

Flexoelectric coupling 
constant (m3) 

3301211

1212
33

~2~
εε⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛

+
γ

−γ
q

ss
s

 

Ref. 

crystalline 
dielectrics, 
elastomers 

~0.01−0.1 ~10 ~0.1−1 ~(0.1−1) 10-30 [91] 

single 
crystal 
SrTiO3 

γ3333= − 9, 
γ1122= 4, 
γ1212= 3 

300 −2 −1.7 10-30 [54] 

ceramic  
PZT-5H 

γ1122= 500 2200 ~30 ~5 10-29 [51] 

ceramic  
BaTiO3 

γ1122= 104 
(with domain 
walls) 

2000 ~500 ~ 10-27 [52] 

single 
crystal 
BaTiO3 

γ3333= − 0.37 
ab initio at 
0 K 

200 ~0.5 ~ 10-29 [92] 

 

 For numerical estimations, we consider the situation when the MIEC film with mobile 

acceptors and holes is at the thermodynamic equilibrium (i.e. all currents are absent). The 

analytical solution for acceptors and holes redistribution in a thick MIEC film and its surface 

displacement are derived in Appendix A assuming that film thickness SRh >> , where the 

screening radius 
2

0

033

2 qp
Tk

R B
S

εε
= .  
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 Substitution of the total charge of each species in Eq.(18) in the limit SRh >>  gives 

the estimations for the MIEC surface displacement. Note, that for the ionically blocking 

planar top and substrate electrodes the identity ( )( ) 0, 0
0

=− −−∫ aa

h

NtzNdz  is valid [77, 78, 79, 

93], since the total amount of ionized acceptors is conserved. Thus only the electron 

subsystem contributes to the surface displacement (18) for the ion-blocking electrodes as:  

( ) S
B

a
BV Rh

Tk
qV

N
q
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Vu >>⎟

⎟
⎠
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⎞
⎜⎜
⎝

⎛
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εε
γ−Ξλ≈ − ,

2
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2~,~)( 0
02

033
03 ,             (21a) 

( ) TkqVRh
Tk

qV
N

q
Tk

Vu BS
B

a
BV <<>>

εε
γ−Ξλ≈ −

0
0

02
033

03 ,,
2

~,~)( .         (21b) 

It follows from Eq.(21b) that in the linear approximation the electronic surface displacement 

is proportional to the applied voltage 0V , stoichiometric acceptor concentration −
0aN , tensorial 

deformation potential V
iiΞ~ , and flexoelectric effect iijjγ~  via the coupling constant ( )γΞλ ~,~V . 

 Correspondingly, even though strain contribution can be neglected when considering 

the chemical potentials and carrier distribution for a film with ion-blocking interfaces, we 

could not neglect deformation potential and flexoelectric effect influence on elastic 

subsystem, since it is the only source of strain in the case. The measurements of the MIEC 

surface displacement placed between thin ionically blocking planar electrodes can be 

performed by the interferometer. 

 For ionically conducting electrode(s) substitution of the total charge of each species in 

Eq.(18), yield the mixed ionic-electronic strain-voltage response as: 
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Equation (22) is derived for thick films, SRh >> . It is seen from Eq.(22) that in the linear 

approximation the mixed ionic-electronic surface displacement is proportional to the applied 

voltage 0V , acceptors stoichiometry concentration −
0aN , deformation tensors V

iiΞ~ , Vegard 
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expansion tensors a
iiβ~  , and flexoelectric coefficients iijjγ~  via the coupling constants ( )γ−Ξλ ~,~V  

and ( )γβμ ~,~a . 

 Note, that realistic ESM tip is nano- or submicro-sized. Therefore the possibility of the 

ions motion in lateral direction rather leads to the condition of ion-conducting tip electrode 

than ion-blocking. 

 Electronic strain-voltage response )( 03 Vu  of the MIEC film placed between ionically-

blocking electrodes as calculated from Eq.(21) is shown in Figs. 2a,b. The electronic strain-

voltage response demonstrate strong asymmetry (“diode-type rectification”) with the change 

of electric voltage polarity: for positive 00 >V  strong saturation occurs at very small response 

values, while for negative 00 <V  the response rapidly increases linearly and reaches 

noticeable values )( 03 Vu ~1-10 nm at ~0V 1 V. Probably, non-linear behavior should be 

reached for negative voltages in practice since the hole statistics eventually becomes 

degenerated in the case of strong depletion/accumulation of carriers near the MIEC surface; 

but the effect of carrier degeneration is beyond the approximation (21). The origin of the 

strong voltage asymmetry, shown in Figs.2a,b, is the conservation of the full amount of 

mobile ionized acceptors, which are negatively charged. At negative applied voltage both 

external negative charges ( eQ− ) accommodated at the SPM tip and negatively charged 

acceptors ( aQ− ) accommodate positively charged holes, which total charge is aep QQQ +~ . 

At positive applied voltage external positive charges ( eQ+ ) accommodated at the SPM tip 

attract the mobile acceptors and repulse the holes, which total charge in the case is 

eap QQQ −~ . For the ion-blocking electrodes, the strain response is proportional to the total 

charge of holes pQ  in accordance with Eq.(21). Thus the oversimplified speculations explain 

that the response asymmetry for the considered case of MIEC film with mobile acceptors and 

holes is at the thermodynamic equilibrium. The response absolute value )( 03 Vu  decreases as 

the ions concentration decrease (follow arrow direction for the typical values of mobile 

acceptor concentration −
0aN =1023 − 1026 m-3 in the Figs. 2a,b). 

 Mixed ionic-electronic strain-voltage response )( 03 Vu  of the MIEC film placed 

between the electrodes, one or both of which is ionically-conducting, was calculated from 
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Eq.(22) and are shown in Figs. 2c,d. In logarithmic voltage scale the asymmetry appearing 

with the change of electric voltage polarity is rather weak (see Fig. 2c). However, it becomes 

obvious on the linear scale even for medium applied voltages 55.0 0 ≤≤ TkqV B  (see 

Fig. 2d). The asymmetry effect in Figs. 2c,d. originates from the fact that we put 

( ) ( )γβμ=γ−Ξλ ~,~1.0~,~ aV  in our calculations, since the typical electronic contribution V
iiΞ~ ~10-

31m3 is an order of magnitude smaller than the ionic, a
iiβ

~
~10-30m3. For the case 

( ) ( )γβμ=γ−Ξλ ~,~~,~ aV  the asymmetry is absent as follows from Eq.(22).  

 The voltage behavior (symmetry or weak asymmetry) of the curves for ionic exchange 

with ambient follows from the fact that the problem is actually identical to that of the charge 

accumulation at the interface of an intrinsic semiconductor [74]. 

 In dimensionless units the strain-voltage response depends on one parameter 

( )TkqV B0 , as anticipated from the diode-theory for the case SRh >>  (see Figs. 2b and d). 

 The crossover from the dominantly ionic ( ( ) ( )γβμ<<γ−Ξλ ~,~~,~ aV ) to electronic 

( ( ) ( )γβμ>>γ−Ξλ ~,~~,~ aV ) strain-voltage response is shown in Figs. 3. In the case 

( ) ( )γβμ=γ−Ξλ ~,~~,~ aV  the strain-voltage curve is symmetric. 
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Fig. 2. (a, b) Electronic strain-voltage response (absolute value SVR) )( 03 Vu  of the MIEC 

film placed between ionically-blocking electrodes. (c, d) Mixed ionic-electronic strain-voltage 

response )( 03 Vu  of the MIEC film placed between ionically-blocking top electrode and 

ionically-conducting bottom electrode calculated for different values of mobile acceptor 

concentration −
0aN =1023, 1024, 1025, 1026 m-3 (arrow near the curves), room temperature 

T=300 K, coupling constants ( ) =γ−Ξλ ~,~V 10-31m3 and ( ) =γβμ ~,~ a 10-30m3, MIEC film thickness 

SRh 100= . Plots (b, d) are in dimensionless units. 
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Figs. 3. The crossover between from the dominantly ionic to electronic strain-voltage 

response: ( ) ( ) =γβμγ−Ξλ ~,~~,~ aV 0.001, 0.01, 0.1, 1, 10, 100, 1000 (figures near the curves) 

Acceptor concentration −
0aN =1024 m-3, other parameters are the same as in Fig. 2. 

 

 

5. Summary 

 We derive the generalized form of the bias-strain-concentration equation describing 

the linear relation between the concentration of diffusing species, flexoelectric, and electronic 

effects in mixed ionic-electronic conductors. The estimates of the electronic and ionic 

contributions into the stain-voltage response of the mixed ionic-electronic conductors show 

that they are of the same order, and hence one could not neglect the electronic contribution 

into the surface displacement of the sample with ion-blocking interfaces (injection from the 

tip). To the best of our knowledge the contribution of the electron-phonon and flexoelectric 

coupling into the local surface displacement of the mixed ionic-electronic has not been 

previously discussed. Evolved approach can be extended to treat electrochemically induced 



 21

mechanical phenomena in solid state ionics towards analytical theory and phase-field 

modeling of mixed ionic-electronic conductors. 
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Appendix A. Equilibrium distribution of the potential and space charge in a semi-

infinite MIEC (decoupling approximation) 

Equilibrium state corresponds to the absence of ionic (acceptor, donor) and electronic (hole) 

currents. In the linear drift-diffusion model the acceptor aJ  and hole pJ  currents have the 

form 
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                                  (A.1) 

Hereinafter we regard that the diffusion coefficients paD ,  and mobilities pa,η  obey the Nerst-

Einstein relation ( )TkqDD Bnndd =η=η , where kB=1.3807×10−23 J/K, T is the absolute 

temperature.  

The solution of Eqs.(A.1) is  

( ) ( )
⎟⎟
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⎛ ϕ
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B

exp0                                  (A.2b) 
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Note, that solutions (A.2) coincide with Eqs.(6b) and (8b) as anticipated. Using the 

decoupling approximation (i.e. neglecting here the term 22
33 dzud ijijγ ), the boundary 

problem for electrostatic potential distribution in the following form: 

( ) ( ) ( )

( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
ϕ

−==∞→ϕ≈ϕ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ϕ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ϕ
−

εε
−=

ϕ

∞→

.0,0,0

,expexp

0

00
0

2

2

h
z

BB

dz
d

EhV

Tk
zq

N
Tk
zq

p
q

dz
zd

          (A.3) 

Rigorously speaking, the approximate equality ( ) 00 V≈ϕ  in the second line of Eq. (A.3) is 

correct only for the tip electrode-surface contact purely ohmic for holes (electrons) and in the 

thermodynamic equilibrium, when the gradient of the electrochemical potential level 

( ) ( )( )0ln pzpTkze Bp +ϕ≈ζ−  is zero ( 0=∂ζ∂ zp ) and the potential pζ  is equal to Fermi 

level at the interface (see e.g. eqs.(7-8) in Ref.[93]). In accordance with Refs.[93, 73], the 

purely ohmic contact conditions “correspond to either metal electrodes with adjacent δ-doped 

semiconductor interfacial layers or heavily doped semiconductor electrodes with a band gap 

similar to that of the transport layer”. When the contact is not ohmic the “acting” potential 

difference ( )0ϕ  is not equal to the applied potential 0V , but to the difference in the 

electrochemical potentials of the holes divided by their charge q, ( ) ( )( ) qMIEC
p

tip
p 00 ξ−ξ=ϕ , 

and the difference ( )( ) qMIEC
p

tip
p 0ξ−ξ  should be calculated self-consistently from the applied 

voltage. However the derivation that follows is valid after anzats bVVV +→ 00 . 

The condition of the potential and electric field vanishing at the infinity leads to the 

local space charge vanishing that is valid under the condition 00 pN = . Then equation (A.3) 

acquires the form  
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and can be integrated in a straightforward way. Multiplying both sides of the equation by the 

potential gradient we calculated the first integral as 
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where the constant 1=a  from the boundary conditions of electric field vanishing at the 

infinity. Using new variable ( )( )Tkqu Bϕ= cosh  one could rewrite (A.4) as 
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Here we introduced the screening radius ( )2
00 2 qpTkR BS εε= . 

 Substitution of Eqs.(A.5) in Eq.(18) in the limit SRh >>  gives the estimations for the 

MIEC surface displacement. Note, that for the ionically blocking planar top and substrate 

electrodes the identity ( )( ) 0, 0
0

=− −−∫ aa

h

NtzNdz  is valid [77, 78, 79, 93], since the total amount 

of ionized acceptors is conserved. The conditions ( )( ) 0, 0
0
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the expression for 
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electrodes only the electron subsystem contributes to the surface displacement (18) as:  
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Under the condition of high film thickness, SRh >> , Eq.(A.6) reduces to  
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It follows from Eq.(A.7b) that in the linear approximation the electronic surface displacement 

is proportional to the applied voltage 0V , stoichiometric acceptor concentration −
0aN , tensorial 

deformation potential V
iiΞ~  and flexoelectric effect iijjγ~  via the coupling constant ( )γΞλ ~,~V . 

 For ionically conducting electrode(s) substitution of Eqs.(A.5) with −== 000 aNNp  in 

Eq.(18), yield the mixed ionic-electronic strain-voltage response as: 
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Under the condition of thick films, SRh >> , Eq.(A.8) reduces to  
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