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Electric driving of magnetization dynamics in a hybrid insulator
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Established forms of electromagnetic coupling are usually conservative (in insulators) or dissipa-
tive (in metals and semiconductors). Here we point out the possibility of nondissipative electric
driving of magnetization dynamics, if the valence electronic states have nontrivial topology in the
combined space of crystal momentum and magnetization configuration. We provide a hybrid in-
sulator system to demonstrate that the topology-based nonconservative electrical generalized force
is capable of supporting sustained magnetization motion in the presence of Gilbert damping, with
quantized and steady energy pumping into magnetization motion from the electric field. We also
generalize our results to magnetic textures, and discuss electric field induced Dzyaloshinskii-Moriya
interaction which can be nonconservative.

I. INTRODUCTION

The study of electrical control of magnetization dy-
namics has occupied a large part of solid state research
for many decades, which generally falls into two separate
categories known as multiferroics [1–3] and spintronics [4]
depending on the conductive behavior of the hosting ma-
terials. The former deals with insulators where electrical
effects on magnetization is characterized through the free
energy [5], and the resulting torque would be naturally
considered as conservative and unable to drive sustained
motion of the magnetization for a static electric field. In
the latter, one finds various current induced magnetic
torques in metals and semiconductors [6–8], which can
provide a persistent source of energy for sustained mo-
tion of magnetization, but one has to deal with wasteful
and prohibitive joule heating in practice.

Magnetic insulators have recently been utilized to
achieve low-dissipation magnetization control by combin-
ing the insulator with heavy metals hosting prominent
spin Hall effect that injects a spin current into the insu-
lator [9, 10]. An electric field can also directly manipulate
magnetization in an insulator without Joule heating by
means of spin-orbit torques mediated by occupied elec-
tronic states [11–13]. In particular, mesoscopic transport
theories proposed the exchange gapped edge states of a
two dimensional topological insulator in hybrid with a
magnet as a unique platform for studying the magnetic
Thouless motor [14, 15], which works as the inverse mode
of the adiabatic charge pumping by a cyclic magnetic
motion [16–18] under an applied voltage. By using the
scattering matrix approach [19], previous works showed
quantized electrical energy transfer into the magnet if the
magnetization accomplishes a cyclic motion [14, 15]. On
the other hand, as the Berry curvature in the mixed space
of crystal momentum and magnetization configuration
underlies the magnetic Thouless pumping, it would be in-
teresting to reveal the relation between nonzero electrical
energy input into magnetic dynamics and the topological
characteristics in the mixed parameter space [20]. More-
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over, it has not been shown whether the electric driving
of sustained magnetic motion, which enables a motor,
can be realized in the presence of magnetic damping due
to coupling of magnetization to other degrees of freedom
than electrons.

In this study we show the possibility of nondissipative
driving of magnetization dynamics with steady energy
pumping by a static electric field in insulators. This is
motivated by the fact that electric polarization is not al-
ways a single-valued quantity [21, 22], and the adiabatic
current pumped by cyclic motion of the magnetization
can acquire a quantized net amount of energy from a
static electric field under certain topological conditions
of the valence electronic states. We exploit this idea
in a model system of edge states of a two-dimensional
topological insulator gapped by hybrid with a magnetic
wire, and show explicitly sustained magnetization mo-
tion when a constant electric field is applied to overcome
Gilbert damping.

Our results can also be generalized to the case of slowly
varying magnetic textures. There is a topological current
bilinear in the gradient and time derivative of the mag-
netization density [23], a sort of anomalous Hall current
induced by the artificial electric field from the time de-
pendent magnetic texture [24–27]. This current provides
a channel of nondissipative drive of the magnetic tex-
ture by an external static electric field. In topologically
nontrivial cases this drive is nonconservative and capa-
ble of delivering a nonzero and quantized amount of en-
ergy when the magnetic texture wraps around the Bloch
sphere in time. In topologically trivial cases, where the
electric polarization induced by magnetization gradient
is well defined, the drive is conservative because it can
be identified as originating from a polarization energy
density whose susceptibility to the magnetization gradi-
ent gives the electric field induced Dzyaloshinskii-Moriya
interaction (DMI) [28–31].

The rest of the paper is organized as follows. In Sec. II
we focus on the electric-field induced generalized force on
a homogeneous magnetization in insulators, and study its
nonconservative nature which is related to certain topo-
logical conditions of the occupied electronic states. These
general rationales are illustrated in a hybrid insulator in
Sec. III, in which the electric driving of sustained mag-
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netic motion is also demonstrated. Section IV is devoted
to the electrical generalized force on the magnetization in
inhomogeneous insulators and its relation to an electric-
field induced DMI. Finally, we concludes the paper in
Sec. V.

II. ELECTRICAL GENERALIZED FORCE ON
MAGNETIZATION

In the language of analytic mechanics, an generalized
force is an amount of work done on the system per
unit displacement in the dynamical variable (the mag-
netization here). Considering a system with a homoge-
neous magnetization m coupled to an electronic insula-
tor, change in the magnetization can in general pump an
adiabatic electric current

j = e

∫
[dk] Ωkm · ṁ, (1)

where Ωkm is the electronic Bloch-state Berry curvature
in the parameter space of the magnetization and crystal
momentum k (set ~ = 1 unless otherwise noted), with its
Cartesian components given by −2Im〈∂kiu|∂mju〉. Here
|u〉 is the periodic part of the Bloch wave, and the band
index n is omitted for simple notation. [dk] ≡ ddk/(2π)d

with d as the spatial dimension, and the summation over
valence bands is implied. Through this adiabatic cur-
rent, an external electric field can deliver work on the
system, with the work density δw = E · jdt, which is
proportional to δm = ṁ · dt. Therefore, we obtain the
electrical generalized force density on magnetization as

Eem ≡
δw

δm
= eE ·

∫
[dk] Ωkm. (2)

This electrical generalized force is nondissipative be-
cause of the lack of conduction electrons for joule heat-
ing, and is in fact topological in the sense that it delivers
a quantized amount of energy over a cycle of the mag-
netization motion. For simplicity, we first consider an
insulator with zero Chern numbers in the Brillouin zone
at each point over the path of m, such that one can take
a k-space periodic gauge to locally define an electronic
polarization P = −e

∫
[dk]Ak [21], with Ak = 〈u|i∂ku〉.

Then the electrical work density delivered over the cycle
can be written in terms of the change of this polarization

w =

∮
dm · Eem = E ·∆P . (3)

This change is quantized in units of ∆P = −ea/V0 with
a being a discrete lattice vector (including the null vec-
tor) and V0 the volume of a unit cell. When this change is
zero, so that the polarization is globally defined, the elec-
trical generalized force is conservative in the sense that
its work can be regarded as a change in the globally well
defined polarization energy density −E · P . When this

FIG. 1. A ferromagnetic wire (blue bar) hybridizes and gaps
the edge states of a two-dimensional topological insulator
(green region). When the magnetization m moves around
(blue circle on the right) on the Bloch sphere, the pumped
adiabatic current j along the edge couples to an applied elec-
tric field E to provide energy to overcome Gilbert damping.
A static magnetic field H is applied to help preparing the
system into a sustained motion of limit cycle.

change is nonzero, the electrical generalized force is non-
conservative and capable of supporting sustained magne-
tization motion even in the presence of Gilbert damping
due to other dissipative channels.

Some comments are in order. First, if the electronic in-
sulator is one dimensional, then the electrical work (per
unit length) over a cycle of the magnetization reduces to
eE times the Chern number over the torus of the com-
bined space of crystal momentum and the magnetization
(along its path), corresponding to the quantized number
of electrons pumped over the cycle. Second, quantization
of electrical work over the cycle of magnetization also ap-
plies to insulators with nonzero k-space Chern numbers
by a simple argument. Although one cannot take a peri-
odic gauge in k-space, one can always choose a periodic
gauge over a fixed one dimensional path of the magneti-
zation. It is then clear that the electrical work over the
cycle equals the Brillouin-zone integral of the k-gradient
of the Berry’s phase over the cycle. Topological quantiza-
tion of this work then follows from the multi-valuedness
of the Berry’s phase. Third, using the Bianchi identity
on Berry curvatures, one can easily show that the electri-
cal generalized force is curl-free ∂m×Eem = 0 everywhere
in m-space, except the singular points where the energy
gap above the filled states of the electron system closes.

When can the electrical work on magnetization be
nonzero? Quantization of its value implies that the elec-
trical work is invariant if the path inm-space is deformed
without closing the energy gap. In particular, within a
singly connected region where the gap is open, the elec-
trical work is zero on all closed paths. This applies for
example to the north or south hemispheres of magneti-
zation in the two dimensional ferromagnetic Dirac model
studied in [32], where one can define polarization ener-
gies separately for each region, although cannot globally
because of gap closing on the equator. Consequently, this
model system cannot provide nonzero electrical work for
sustained magnetization motion. It is therefore clear that
the singular points of gap closing have to be arranged to
define multiply connected regular regions, where electri-
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cal work can possibly be nonzero on topologically non-
trivial paths.

III. A MODEL FOR SUSTAINED
MAGNETIZATION MOTION

Here we propose a one dimensional model system,
where the gap closes on the two poles of the magne-
tization Bloch sphere, and the electrical work per unit
length is eE times the winding number of the path
around the poles. The system is constructed by inter-
facing a magnetic wire with the topological edge states
of a two-dimensional topological insulator (Fig. 1). The
exchange coupling renders the electronic system insulat-
ing by opening a gap in the Dirac spectrum. The relevant
low-energy Hamiltonian is

ĥ = ~vkσ̂y + Jσ̂ ·m, (4)

where v is the Fermi velocity, σ̂ is the Pauli matrix, and
J is the coupling constant. The magnetization m is as-
sumed to have a fixed magnitude and is parameterized by
the polar angle θ relative to the y axis and the azimuthal
angle φ as shown in Fig. 1. The energy gap is open
everywhere except at the north and south poles of the
Bloch sphere with my = ±m (red dots). Assuming that
the lower band is filled and the electric field is applied
along the magnetic wire (positive x direction), we can
evaluate the formula for the electrical generalized force
to find

Ee =
−eE
2πm

êφ
sin θ

= −eE ∂mφ
2π

. (5)

It is singular at the poles and is a gradient of the multiple-
valued azimuthal angle, so that the electrical work den-
sity over a closed path on the Bloch sphere is quantized
in terms of the winding number of the path∮

dm · Ee = −NteE, (6)

in line with the aforementioned general topological ar-
guments. The winding number Nt counts how many
times the closed path wraps around the y axis counter-
clockwise.

In such a one dimensional insulator it is also interest-
ing to understand the electrical generalized force from
the polarization as Ee = E∂mP , where the polarization
is not single-valued and can only be determined to be
P = −eφ/2π up to an uncertainty quantum −e. Con-
sistently, the two gap closing poles are singular points of
the polarization, and the change of polarization upon a
closed path on the Bloch sphere is −eNt.

We now proceed to study the dynamics of the mag-
netization to see the effect of this generalized force. In
the absence of coupling to the electronic system, we can
rewrite the Landau-Lifshitz-Gilbert equation of the fer-
romagnet in the form of −∂mG0+ṁ×Ω0

m−η0ṁ = 0, as

FIG. 2. Free energy contours in the angular space and typical
evolution trajectories on the Bloch sphere in the absence (top
panels) and presence (middle panels) of an electric field, and
in the presence of both electric and magnetic fields (bottom
panels). In the last case, a limit cycle emerges.

balancing out a conserved force from the free energy G0,
a Lorentz type force from the m-space Berry curvature
Ω0

m [33], and a frictional force with a scalar damping
coefficient η0. We will model the free energy density as
G0 = −K0m̂2

x −Hmy with an easy axis anisotropy and
an applied static magnetic field H. The m-space Berry
curvature is given in terms of the gyromagnetic ratio γ0

as Ω0
m = m/(m2~γ0). The damping coefficient is related

to the Gilbert number λ as λ = (γ0)2η0.
In the presence of coupling to the electronic system,

the equation of motion becomes

Eem − ∂mG + ṁ×Ωm − ηṁ = 0, (7)

where the electrical generalized force enters as an ex-
tra term along with electronic modifications to the other
terms. The gap opening in the electronic system con-
tributes a lowering of the free energy Ge = Ke(m̂2

y − 1)
that we model as a hard-axis anisotropy. The electronic
contribution to the m-space Berry curvature is given by
Ωe

m =
∫

[dk] Ωm = m/(m2~γe), where Ωm = ∂m ×Am

is derived from Am = 〈u|i∂mu〉, and γe = 2πv/J . Fi-
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nally, we assume that the gap of the electronic system
remains open during the course of dynamics, so there
is no electronic contribution to the damping coefficient
η = η0.

Representative results of the magnetization motion
are presented in Fig. 2, where we take γe/γ0 = π,
Ke/(m/γ0) = K0/(m/γ0) = 1 GHz and η = 0.2/(mγ0).
Shown in the top and middle panels (H = 0), there are
two types of energy conserved motion in the absence of
damping and external fields, divided by the contour of
zero energy (the white dashed curve). In the area enclos-
ing the two points of lowest energy, m rotates around the
x axis, whereas in the upper and lower areas outside of
the zero-energy contour m goes around the y axis. This
situation is changed in the presence of damping, as shown
in the top panel, where two points (φ = 0, θ = 0.3π)
and (φ = 0, θ = 0.7π) outside of the zero-energy contour
evolve to different points of lowest energy. In the middle
panels, an electric field eE/2π = 0.1K0 is applied, which
gives a force in the clockwise (negative φ) direction. The
blue trajectory starting from (φ = 0, θ = 0.7π) falls faster
to the +mx axis, while the red trajectory starting from
(φ = 0, θ = 0.3π) extends for 3/4 circle before the fi-
nal decay into the same energy minimum as the other
trajectory.

The lower panels show the situation where limit cycle
motion is found. We found it important to prepare the
system with predominantly around-my-axis energy con-
tours, so that the non-conservative electrical force can
be best utilized. We therefore apply a static magnetic
field in y direction with the magnitude H = K0/m to
change the energy landscape. We also switched the di-
rection of the electric field so that the electrical force
goes along the directions of the energy contours. We
found that all initial points in a wide region, between the
two dashed circles shown on the right of the lower panels
of Fig. 2, fall into the same limit cycle. For instance,
the blue curve starts from (φ = 0, θ = 0.4π) and evolves
into the right handed limit cycle under an electric field
eE/2π = −0.1K0. Figure 3 shows how the limit cycle
motion is reached in time for two trajectories (blue and
red) from different initial angles, along with one (black)
that falls into an energy minimum. On the limit cycle, we
found that the energy input from the electrical force bal-
ances out the energy dissipation from the Gilbert damp-
ing,

∮
dm · (Eem−ηṁ) = 0, as can be easily derived from

the equation of motion.

IV. ELECTRICAL DMI FORCE

So far we have been concentrating on nondissipative
electrical driving on a uniform magnetization. When the
magnetization is nonuniform, the electrical generalized
force Eq. (2) still applies as a local force density, but
there will be additional contributions due to the magne-
tization gradients. In metals, the electric-current induced
DMI have been discussed recently [34–36], which is simi-

FIG. 3. Time dependence of the polar angle for different
initial conditions, φ = 0, θ = 0.001π (black), θ = 0.4π (red),
θ = 0.8π (blue). Correspondingly on the Bloch sphere shown
in the inset, the red and blue trajectories evolve into a right-
handed limit cycle, whereas the black trajectory evolves into
the point of lowest energy.

lar to the current induced orbital magnetization [37, 38].
The intrinsic analog, the electric-field induced nondissi-
pative DMI [1, 39], remains elusive in the band picture,
but should be well defined in insulators as we show now.

To first order in the gradient, there is an adiabatic
current pumped by the magnetization dynamics [23] j =
e
∫

[dk] Ωk[kr]m · ṁ involving the second Chern form of
Berry curvatures Ωks[kr]mj ≡ ΩkskiΩrimj +ΩksriΩmjki +
ΩksmjΩkiri . Through this current, an external electric
field can produce a work density δw = E · jdt propor-
tional of δm, implying an electrical generalized force lin-
ear in the magnetization gradient

Eem = eE ·
∫

[dk] Ωk[kr]m. (8)

For reasons to be discussed later, we will call this an
electrical DMI force, although it is nonconservative in
general and capable of sustained driving of magnetization
textures.

Because the second Chern form is antisymmetric in the
crystal momentum, a nonzero result demands that the
electronic system is more than one dimensional. Consider
for simplicity a two-dimensional system with the mag-
netization gradient in the y direction (one-dimensional
domain wall or a spiral) and an electric field applied in
the transverse x direction. The electrical work per unit
transverse width over one pumping period may be writ-
ten as

W = eExNyt

∫
T 2

d2k

2π

∫
S2

dθdφ

2π
Ωkxkyθφ = eExNytC2

(9)
which is topological and quantized in terms of the sec-
ond Chern number C2 in the space [40] spanned by the
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Brillouin zone and the Bloch sphere, and the winding
number Nyt = 1

4π

∫
dydtm̂ · (∂ym̂ × ∂tm̂) for the map-

ping m̂(y, t) of the yt space-time onto the Bloch sphere
[41] (m̂ = m/m). This winding number has previously
appeared in discussion of quantized electromotive force
induced by a moving domain wall [42], the so called ferro-
Josephson effect, and the second Chern number may be
regarded as the quantum measure of the anomalous Hall
response to this emf [43]. The quantized electrical work
is therefore a result of this quantized Hall current in the
direction of the applied electric field.

The same second Chern number has also been intro-
duced in study of electric charges carried by magnetic
textures such as a skyrmion [30], where it may be un-
derstood as the quantum measure of charge response to
the quantized flux of artificial magnetic field [43]. This is
a sort of Streda dual effect of the quantum Hall current
response to the artificial electric field of the magnetic tex-
ture. This relationship becomes especially clear in the ab-
sence of spin-orbit coupling, where Ωkxkyθφ = ΩkxkyΩθφ
and C2 reduces to the first Chern number in k-space [44]
which characterizes the usual quantum anomalous Hall
insulators.

In non-Chern insulators where one may choose a pe-
riodic gauge in k-space, the electrical generalized force
may be written as a field derivative of the polarization
energy, Eem = −δmU , with [30, 31]

U = −
∫
drE · P =

∫
drDil∂iml, (10)

where P is the electric polarization induced by magne-
tization gradient, including a topological Chern-Simons
part [23] for which

Dil =
e

2
Ej

∫
[dk] (AkjΩkiml +AkiΩmlkj +AmlΩkjki).

(11)
However, this expression for the DMI coefficient is only
locally defined because of the gauge dependence of the
Chern-Simons form [45].

On the other hand, the electrical DMI force Eem [Eq.
(8)] is not only gauge invariant and single valued but also
well defined for Chern insulators. In practice, such a force
enters directly in determining the static and dynamic be-
havior of the magnetic textures. For example, we show
in the following that the width of a chiral Neel wall may
be tuned by such a force, as would normally be antici-
pated from DMI effects [34, 35]. Specifically, we consider
a chiral Neel wall with easy axis in the z direction in a
model of the insulating transition metal dichalcogenide
monolayer materials with magnetic proximity effect, and
show that its width would be enhanced (decreased) when
an electric field is applied in the x (−x) direction. We

employ the model Hamiltonian ĥ = ĥ0 + Jσ̂ ·m, where

ĥ0 is a six-band tight-binding Hamiltonian suitable for

the low-energy physics in monolayers of AB2 (A = Mo,
W; B = S, Se, Te), as was detailed in Ref. [46]. Consider
a right-handed up-down Neel-type wall with easy axis in

FIG. 4. Spin generation due to the electrical generalized force
in a model of chiral Neel wall of ferromagnetic transition metal
dichalcogenide monolayer.

the z direction, the induced spin is plotted in Fig. 4 un-
der an electric field in the positive x direction. With the
lowest two bands filled, the first Chern form contribution
vanishes. The dominant component, δsx, is antisymmet-
ric on the two sides of the domain wall center. Thus the
torque exerted on magnetization δτ = δs ×m is in the
positive y direction on both sides, increasing the width
of the domain wall. Apparently, when the electric field
is reversed, the width of the domain wall is decreased.

V. CONCLUSION

In conclusion, we have studied nondissipative electric
driving of magnetization motion in uniform and nonuni-
form magnetic insulators due to nontrivial topologies of
occupied Bloch states in the combined space of crystal
momentum and magnetization configuration. The resul-
tant nonconservative electrical generalized force is capa-
ble of supporting sustained magnetization motion even in
the presence of Gilbert damping. A minimal model has
been exploited to show explicitly the limit-cycle behav-
ior of magnetic evolution. For magnetic textures, there is
an additional nonconservative and nondissipative electri-
cal generalized force, related to a Chern-Simons DMI for
non-Chern insulators in the presence of an electric field.
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