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A theoretical formalism for the description of the interaction of microwave photons with a thin
(compared to the photon wavelength) magnetic metasurface comprised of dipolarly interacting nano-
scale magnetic elements is developed. A scattering matrix describing the processes of photon trans-
mission and reflection at the metasurface boundary is derived. As an example of the use of the
developed formalism, it is demonstrated, that the introduction of a magnetic metasurface inside a
microstrip electromagnetic waveguide quantitatively changes the dispersion relation of the funda-
mental waveguide mode, opening a non-propagation frequency band gap in the waveguide spectrum.
The frequency position and the width of the band gap are dependent on the waveguide thickness,
and can be controlled dynamically by switching the magnetic ground state of the metasurface. For
sufficiently thin waveguides the position of the band gap is shifted from the resonance absorption
frequency of the metasurface. In such a case, the magnetic metasurface inside a waveguide works
as an efficient reflector, as the energy absorption in the metasurface is small, and most of the
electromagnetic energy inside the non-propagation band gap is reflected.

I. INTRODUCTION

The traditional approach to the development of tun-
able microwave devices is to use in them magnetic mate-
rials magnetized externally by a variable bias magnetic
field created by a combination of permanent magnets and
electromagnets1,2. The presence of bulky and heavy mag-
nets, that also bring a significant dependence of the bias
magnetic field on the temperature, limits the applications
of the magnetically biased and tunable devices in modern
microwave electronics.

On the other hand, the paradigm of reconfigurable
metamaterials3 and the idea of transformation optics4

introduced a possibility of a precise control of electro-
magnetic waves. The reconfigurable metamaterials have
been demonstrated experimentally using, for example,
micro-mechanical properties5–8, electrostatic forces9,10

and temperature11.

However, it is highly desirable to have a reconfigurable
metamaterial with ultra-short switching times, capable
of working without mechanical changes in structure and
without a bias magnetic field. To address this problem a
new concept of nano-structured magnetic metamaterials
based on the dipolarly coupled arrays of single-domain
magnetic nanoelements has been introduced12,13. The
elements in these arrays are sufficiently small to be mon-
odomain and have sufficient shape or crystallographic
anisotropy to keep a definite direction of their static mag-
netization in the absence of an external bias magnetic
field. If the anisotropy of the array element is uniaxial—
each element is bi-stable, and can exist in quasi-stable
states with two opposite directions of its static magneti-
zation. The collective static magnetization state of an
array of dipolarly coupled magnetic elements depends
on the structure of the 2D periodic lattice of the ar-

ray, and, also, on the magnetization “prehistory”, and
can be switched by the application of short (less than
100 ns) pulses of an external bias magnetic field14,15. Ob-
viously, when the static magnetization state of an array is
changed—the microwave absorption properties of the ar-
ray are changed also, and the difference of the microwave
absorption frequencies of the same array existing in two
different static magnetization states may exceed several
linewidths of the array’s absorption line12,14. Between
the switches the bias magnetic field is not necessary for
the functioning of the array as a passive microwave de-
vice.

The possibility to dynamically control the microwave
properties of the nano-structured magnetic metamateri-
als and to use them without a permanent bias magnetic
field creates significant advantages for the devices based
on these metamaterials compared to the traditional de-
vices based on continuous magnetic films and multilay-
ers16,17. However, the amount of magnetic material in
the magnetic nanowire arrays is so small, that the mi-
crowave absorption in them is too small for most practi-
cal applications.

Therefore, the authors have proposed18 to use the ar-
rays of coupled magnetic nanoelements as reflectors or
metasurfaces. In contrast with traditional materials (e.g.
ferrites) that resonantly absorb electromagnetic waves,
the metasurfaces19–25 significantly change the electrody-
namic boundary conditions for the dynamic electric and
magnetic fields18–20,23,25 near the resonant frequency of
the metasurface, thus creating a strong reflection of the
electromagnetic waves.

In this paper we continue to study interaction of mi-
crowave electromagnetic fields with magnetic metasur-
faces, and introduce a scattering matrix formalism (simi-
lar to the formalism described in [26]) describing the scat-
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tering of microwave photons at magnetic metasurfaces.
In the framework of this formalism the electromagnetic
field is represented as a superposition of photons with two
opposite circular polarizations, and the central result of
this work is the derivation of a photon scattering matrix

Ŝ of the nanostructured magnetic metasurface. Having
an explicit expression for the photon scattering matrix,
it is straightforward to calculate the photon transmis-
sion, reflection and/or change of spin at the interface of
a magnetic metasurface.

To illustrate the application of our formalism to the so-
lution of a practical electrodynamic problem, we present
below the calculation of the dispersion equation of the
main electromagnetic waveguide mode propagating in a
parallel-plate microstrip waveguide containing an array
of magnetic nanowires oriented parallel to the conduc-
tive plates of the waveguide. It is important to stress,
that the solution of such an electrodynamic problem is
highly non-trivial, as this problem has drastically differ-
ent spatial scales: the scale of the monodomain magnetic
nano-element of the metasurface (nm), and the wave-
length of the main electrodynamic mode of the waveg-
uide (cm or mm). This difference in spatial scales makes
the problem extremely difficult for the standard finite-
difference methods. The direct numerical modeling of
such a system is prohibitively time-consuming. Also, due
to the fact that the dynamics of magnetization in mag-
netic nano-elements comprising the magnetic metasur-
face is governed by the Landau-Lifshitz-Gilbert (LLG)
equations, we have an additional complication related to
the necessity to solve the Maxwell equations simultane-
ously with the LLG equation27,28 .

The other possible approaches to this problem in-
clude the “effective medium” approach and the multiple-
scattering theory29. However, a simple Maxwell-Garnett
scheme can not be directly applied to the ferromag-
netic elements30, because the magnetic permeability of
a ferromagnetic element depends on the internal mag-
netic field, which is created by all the other ferromag-
netic elements in the metasurface31. A rigorous Clausius-
Mossotti model, also, can be applied to the derivation of
the effective medium constants for a magnetic metasur-
face24,25, but it requires the solution of a highly non-
trivial problem of an electromagnetic wave scattering on
a nano-scale magnetic scatterer of an arbitrary shape.
To escape these complications, below we propose to use
a standard spin-wave theory to find spectra of collective
spin wave excitations of a magnetic metasurface com-
prised of interacting magnetic elements of an arbitrary
shape12.

We demonstrate below that using the developed for-
malism of the photon scattering matrix this problem
can be solved analytically. In this solution we show,
that the multiple reflections of the electromagnetic wave
from the magnetic metasurface substantially increase the
efficiency of the interaction between the propagating
wave and the metasurface. The introduction of even a
very thin magnetic metasurface (7 × 10−4 times thin-

ner than the free-space wavelength of the electromag-
netic wave) into a waveguide leads to the appearance of
a non-propagation bandgap in the dispersion law of the
main mode of the waveguide. The frequency position of
the bandgap can be changed by switching the magnetic
ground state of the magnetic dot array comprising the
metasurface. It is also important to note, that this band
gap is associated with the reflection of the propagating
waveguide mode from the magnetic metasurface, rather
than with the mode absorption in this metasurface. This
strong reflection is caused by the transformation of the
electromagnetic field inside the waveguide caused by the
necessity to fulfill the boundary conditions for electric
and magnetic fields at the upper and lower surfaces of the
magnetic metasurface. We also demonstrate below, that
for a sufficiently thin waveguide it is possible to choose
the parameters of the metasurface and the waveguide in
such a way, that the dissipation of the electromagnetic
wave at the frequencies situated inside the band gap is
minimized, and the waveguide containing a metasurface
acts as an almost ideal reflector of electromagnetic waves.

The paper has the following structure. In Sec. II we
derive a photon scattering matrix formalism for magnetic
metasurfaces. In Sec. III we apply the developed formal-
ism to a problem of a wave propagation in a parallel-plate
waveguide containing a magnetic metasurface. In Sec. IV
we present numerical (but not micromagnetic) results for
the dispersion of a fundamental mode in a waveguide con-
taining magnetic metasurface. The conclusions are given
in Sec. V.

II. INTERACTION OF PHOTONS WITH A

MAGNETIC METASURFACE

A. Boundary conditions

We consider a microwave electromagnetic field of the
frequency ω in a free space containing a nanostructured
magnetic metasurface, see Fig 1. The thickness d of
the metasurface is assumed to be much smaller than the
wavelength d ≪ 2πc0/ω of the propagating waveguide
mode, where c0 is the speed of light. It is also assumed,
that the profile of static magnetization is uniform along
the length of the nanowires comprising a metasurface.

For the further consideration we introduce an or-
thonormal coordinate system (x,y,z). Here, z is a unit
vector perpendicular the metasurface, x lays along the
intersection of the metasurface and the plane of incidence
of the microwave photons (see below) , and y = z × x

(see Fig. 1. We also assume that the metasurface is lo-
cated at z = 0.

At the metasurface the microwave electric (e) and
magnetic (h) fields satisfy the following boundary con-
ditions18,23–25:

e− − e+ = −iωµ0d
[

z× (χ̂ · h̄)
]

, (1a)

h− − h+ = −d(∇ρ ⊗ z+ z⊗∇ρ) · χ̂ · h̄, (1b)
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FIG. 1. Picture of a magnetic metasurface exposed to elec-
tromagnetic radiation. Incident photons with amplitudes as

±1,
wave-vector k and the incident angle θ are scattered from the
metasurface and converted into the scattered photons with
amplitudes bs±1. The index s = ±1 defines the photon spin, 1
stands for −1, and d is the metasurface thickness.

where, e± = e(z = ±0), h± = h(z = ±0), χ̂ is
the external susceptibility tensor of a magnetic metasur-
face18, ∇ρ = x ∂/∂x + y ∂/∂y is the in-plane differen-
tial operator, ⊗ denotes the direct vector product, and
h̄ =

(

h++h−)
)

/2 is an average magnetic field acting on
the metasurface.

The electrodynamic boundary conditions at a meta-
surface that are very similar to (1) were used previ-
ously23–25 to calculate the transmission of electromag-
netic waves through a metasurface using a Clausius-
Mossotti-like model. The model of a metasurface pre-
sented in 23–25 is very general, and can be applied to
metasurfaces of different types.

However, the Clausius-Mossotti procedure is rather
complicated technically for the metasurfaces comprised
of strongly interacting magnetic elements that we are de-
scribing in our current work. In our approach, this pro-
cedure is not necessary, because the external susceptibil-
ity tensor chi, which we use in our boundary conditions
(1)), is calculated using the spectra of collective spin-
wave excitations of the nanostructured magnetic meta-
surface (see Sec. IV and [18] for details). These spec-
tra are dependent on the shapes, magnetic parameters

and the lattice structure of an array of magnetic nanoele-
ments comprising the magnetic metasurface, thus giving
a simple, but qualitatively correct description of the col-
lective dynamic magnetic properties of the metasurface.

B. Photon representation

To solve electrodynamic problems involving magnetic
metasurfaces one, typically, needs to find a solution of
Maxwell equations with the boundary conditions (1) and
other boundary conditions defining a particular problem.
The direct solution of such a system of equations in terms
of the components of vectors e and h describing dynam-
ical electric and magnetic fields is usually difficult, be-
cause the boundary conditions (1) themselves satisfy
the Maxwell equations, thus making the system of equa-
tions overdetermined and degenerate. Of course, in each
particular case it is possible to find a projection of the
equations to avoid the degeneracy, but this difficulty has
to be dealt with on a case-by-case basis.

Our way out of this difficulty will be to use a conven-
tional scattering matrix formalism26, where we operate
with the complex amplitudes of photons, which are the el-
ementary excitations of an electromagnetic field that sat-
isfy the Maxwell equations. This approach simplifies the
calculations considerably, and provides a general frame-
work, that could be used to solve a variety of electrody-
namic problems involving magnetic metasurfaces based
on the arrays of interacting magnetic nanoelements.

First, we write a six-dimensional electromagnetic
field vector comprised of the components of the three-
dimensional vectors e and h in the form:

f(r, t) =

(

e(r, t)
µ0c0h(r, t)

)

. (2)

This representation looks natural, but is not convenient,
since only four components of the vector f are linearly
independent, because the electric and magnetic fields
are connected by the Maxwell equations. Thus, below
we will make several formal steps to transfer the prob-
lem from the six-dimensional space, involving projections
of the variable electric and magnetic fields, to a four-
dimensional space, involving photon amplitudes, thus re-
moving the degeneracy of the boundary conditions (1).

The electromagnetic field can be represented as a su-
perposition of photons. The photons with the frequency
ω have wavevectors k0 with |k0| = k0 = ω/c0. Since
we are interested in the interaction of photons with a
metasurface lying in the (x,y) plane, we consider here
only the photons having equal projections of their wave
vectors onto the (x,y) plane. Of course, there is a possi-
bility of an alternative representation of the electromag-
netic field as a superposition of the s- and p-polarized
plane waves23. However, in such a case the s- and p-
waves have different projections on the direction of the
magnetic field at the metasurface, and are not completely
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equivalent. In contrast, when the basis of circularly po-
larized waves (photons) is used, the photons having left
and right circular polarizations are absolutely equivalent.

There are four types of such photons distinguished by
their direction of propagation σ = sign(z · k0) = ±1,
namely propagating along and counter the positive direc-
tion of the axis z, and their chirality s = ±1, associated
with the photon spin. Without loss of generality we can
assume that the wavevector k0 lies in the (x,z) plane,
which allows us to define the propagation angle as:

θ = arcsin(x · k0/k0), (3)

and −π/2 < θ < π/2, see Fig. 1.
For each of the four above introduced photon modes we

can define a six-dimensional vector of the electromagnetic
field f̌sσ. These six-dimensional “photon mode” vectors
will be used below as a four-dimensional basis in the six-
dimensional space to represent the electromagnetic fields:

f̌sσ =
1√
2

(

y

σ

)

+
iσs√
2

(

−σ

y

)

(4)

where σ = −σx cos θ + z sin θ. Each of the photon
modes carries a spin of32:

ssσ = −i~
[

(es
σ)

† × esσ
]

, (5)

where esσ = 1/
√
2(y−iσsσ) is a component responsible

for the electric field of in the f̌sσ mode. By the definition
|ssσ| = ~ and the direction of ssσ is collinear with k0. The
projection of spin ssσ of each of the photon modes on the
axis z is:

z · ssσ = s~ cos θ, (6)

and does not depend on the direction of propagation.
From the definition, it is seen, that the sign of the pro-
jection is connected with the photon chirality.

It is also convenient to introduce a dual vector basis ǧs
σ

to the vectors f̌sσ, the elements of which we will call pro-

jectors and define it as:

ǧs
σ =

(

f̌sσ − f̌−s
−σ sin

2 θ

cos2 θ(3− cos 2θ)

)†

. (7)

One can easily check that the vectors forming the basis
of the “photon modes” (4) and the basis of “projectors”
(7) satisfy the following orthogonality relation:

ǧs
σ · f̌s′σ′ = δss′δσσ′ , (8)

where δ is the Kronecker symbol.
Using the basis of the “photon modes” (4) one can

represent the dynamical electromagnetic field as a super-
position of photons traveling in the directions along and
counter to the positive direction of the z axis and having
the wavevectors k0 and k′

0 = k0 − 2z(z · k0):

f(r, t) =
∑

s=±1

qsσ f̌
s
σe

ik0·r−iωt +
∑

s=±1

qs−σ f̌
s
−σe

ik′

0
·r−iωt + c.c. (9)

where qsσ are the complex amplitudes of the “photon
modes”, and σ = z · k0/|z · k0|. The modulus of the
complex amplitude has a physical meaning of the photon
density, while the argument of this amplitude defines the
phase of a particular mode.

C. Scattering matrix

The metasurface plane divides the space into two sub-
spaces. In each sub-space there are two classes of pho-
tons: the photons traveling towards and the photons
traveling from the metasurface. We shall name the pho-
tons of the first class incident photons, while the photon
of the second class scattered photons. Fixing some vector
k0 and using the representation (9) we can express the
electromagnetic fields at the both sides of the metasur-
face in the following form:

f− =

(

∑

s=±1

as1 f̌
s
1 + bs1f̌

s
1

)

eik0·ρ−iωt

f+ =

(

∑

s=±1

as1 f̌
s
1 + bs1f̌

s
1

)

eik0·ρ−iωt,

(10)

where 1 stands for −1 and ρ is a vector lying in the
(x, y) plane. Here asσ is the complex amplitude of the
incident photon, while bsσ is the complex amplitude of
the scattered photon. Substituting these decompositions
for electromagnetic fields in the boundary conditions (1)
and regrouping terms we get:

∑

s=±1

as1f̌
s
1 − ias1B̂ · f̌s1 − as1f̌

s
1 − ias1B̂ · f̌s1 =

∑

s=±1

bs1f̌
s
1 + ibs1B̂ · f̌s1 − bs1f̌

s
1 + ibs1B̂ · f̌s1, (11)

where:

B̂ = −k0d

2

(

0̂ M̂

0̂ L̂

)

, (12)

M̂ = (y ⊗ x− x⊗ y) · χ̂,
L̂ = sin θ(x ⊗ z+ z⊗ x) · χ̂,

(13)

and 0̂ is the 3x3 zero matrix.
Multiplying Eq. (11) by the projectors ǧs

σ we obtain
four scalar equations, which can be written in a matrix
form as follows:

(Î + i Û) · b̃ = (Î − i Û) · ã, (14)

where

ã =
(

a11 a
1

1 a11 a
1

1

)

,

b̃ =
(

b11 b
1

1 b11 b
1

1

)

,
(15)
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are the 4-dimensional vectors consisting of the ampli-
tudes of the incident and scattered photons, Î is the
four-dimensional identity matrix and Û is the 4 x 4 ma-
trix, the elements of which are calculated as follows:

[

Û

]ss′

σσ′

= σǧs
σ · B̂ · f̌s′σ′ . (16)

The four-dimensional matrix Û is the projection of the
six-dimensional boundary operator B̂ into the four-
dimensional space, and the explicit expressions for the
matrix elements of Û are presented in the Appendix.

Using these matrix elements we can, finally, write a
simple expression relating the amplitudes of the scattered
photons to the amplitudes of the incident photons via the
scattering matrix Ŝ:

b̃ = Ŝ · ã, (17)

where

Ŝ = (Î + i Û)−1 · (Î − i Û). (18)

Eq. (17) is the representation of the the boundary con-
ditions (1) in the “photon basis". It is clear, that in
this four-dimensional photon basis the boundary condi-
tion have a simple and compact form. This representa-
tion of the boundary conditions at the sides of a magnetic
metasurface is the central result of this paper. The devel-
oped formalism of the “photon amplitudes”, similarly to
the formalism of “second quantization” in quantum me-
chanics, is coordinate-independent, making it convenient
to use this formalism in a wide class of electrodynamic
problems. When the explicit form of the scattering ma-
trix Ŝ is known, it is possible to solve almost any elec-
trodynamic problem involving a magnetic metasurface
characterized by the external susceptibility tensor χ̂ as
a standard problem in a linear scattering formalism. We
note, that a similar scattering matrix Ŝ was obtained
using the basis of plane linearly polarized waves in 23,24.

Since the linearly independent basis of our problem is
four-dimensional, the symmetry properties of the 4x4 ma-
trix Û determine all the symmetry properties of the scat-
tering process of an electromagnetic wave from a mag-
netic metasurface. For example, if the 3x3 external sus-
ceptibility tensor of a metasurface is Hermitian χ̂ = χ̂†,
the 4x4 scattering matrix Û of this metasurface is also
Hermitian Û = Û

†, and the scattering matrix Ŝ · Ŝ† = Î

is unitary, meaning that there is no dissipation in the
process of transmission and reflection of electromagnetic
waves at this metasurface.

III. ELECTROMAGNETIC WAVEGUIDE

CONTAINING A MAGNETIC METASURFACE

To demonstrate an application of our theoretical
formalism to a particular electrodynamic problem we
consider below the scattering of an electromagnetic

FIG. 2. (a) Sketch of an electromagnetic waveguide with
parallel conducting plates containing a magnetic metasurface
situated between the waveguide plates. The magnetic meta-
surface is represented by an array of monodomain magnetic
nanowires, arranged in a periodic lattice; (b) Cross-section of
the electromagnetic waveguide. Green arrows show photon
trajectories in the waveguide. Symbols as

σ
, bs

σ
and cs

σ
stand

for photon amplitudes.

wave propagating in a parallel-plate strip-line microwave
waveguide of the thickness L = 2l from a magnetic meta-
surface placed inside the waveguide at the distance l from
the bottom conductive plate of the waveguide, parallel to
this plate (see Fig. 2(a)). The thickness of the metasur-
face is d, and it is assumed to be small d ≪ l.

The electromagnetic field in the waveguide must sat-
isfy the Maxwell equations, the boundary conditions (1)
on the metasurface and the Leontovich boundary condi-
tions33 at the conductive plates. Instead, of facing this
complex system of equations we use the developed for-
malism of the scattering matrices to find the influence of
the magnetic metasurface on the dispersion properties of
the elextromagnetic wave propagating on a waveguide.

The electromagnetic field of any particular mode trav-
eling in the waveguide and having the wavenumber k can
be represented as a set of photons34 reflecting between
the plates with some complex propagation angle θ with
respect to the axis z, see Fig. 2(b). The photons are scat-
tered by the metasurface, travel to the plates, than are re-
flected by the conductive plates, and, finally, travel back
to the metasurface. Reflection from a conductive plate re-
verses the photon’s propagation direction σ and changes
its amplitude, and after the reflection from the plates the
photons return to the metasurface ( see Fig. 2(b)). The
amplitudes c of these “new” incident photons can be re-
lated to the amplitudes b of the scattered photons by the
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expression:

csσ = e2ik0l cos θ
[

p1b
s
−σ + p2b

−s
−σ

]

, (19)

where p1 = r1 + r2, p2 = 1 + r1 − r2, and the coeffi-
cients r1 and r2 are found from the Leontovich boundary
conditions33:

r1 =
1

ζ cos θ − 1
, r2 =

ζ

ζ − cos θ
, (20)

where ζ = (1− i)
√

ωρ/(2µ0c20) is the relative impedance
of the conductive surface and ρ is the resistivity of the
metal forming this surface. In a stationary regime the
new incident photons must be identical to the initial pho-
tons ã = c̃. This condition leads us to the following
equation:

(Î − Q̂ · Ŝ) · ã = D̂(ω, θ) · ã = 0, (21)

where

Q̂ = e2ik0l cos θ







0 0 p1 p2
0 0 p2 p1
p1 p2 0 0
p2 p1 0 0






. (22)

The non-trivial solutions of (21) exist if and only if:

det D̂(ω, θ) = 0. (23)

This condition yields a secular equation for the waveguide
modes. Finding roots θj of the secular equation for a
given frequency, one can obtain a dispersion relation for
the j-th mode of a waveguide:

kj = k0 sin θj(ω). (24)

Even in the case when there is no loss of energy in
the metasurface (χ̂ is Hermitian) and in the conductive
plates (ρ = 0), the solution of the secular equation (23)
can be complex. The complex angle θj stands for the
evanescent waves in the waveguide, and the wave number
of the propagating wave in this case also becomes com-
plex. For the lossless case all boundary conditions are
conservative, and those evanescent waves are associated
not with the damping, but with the fact, that propagat-
ing electromagnetic waves can not simultaneously satisfy
all the boundary conditions. This effect is, in a way, sim-
ilar to the total internal reflection in dielectrics35. If the
waveguide is sufficiently wide to support several modes34

the secular equation (23) has multiple real solutions.
From the computational point of view the secular equa-

tion (23) is an equation for a single complex variable, and
it can be solved numerically in practically all cases.

Having calculated the propagation angle θj for the j-
th waveguide mode, one can substitute it back into the
matrix D̂(ω, θj) and calculate the vector ãkj

which is a
non-trivial solution of this homogeneous equation. Sub-
stituting the found vector ãkj

for ã into (17) one can

find the amplitudes of the scattered photons b̃kj
. Then

a distribution of the electric and magnetic fields in the
waveguide can be calculated from (9):

(

e(r, t)
µ0c0h(r, t)

)

=

∑

s=±1

(

as−σ f̌
s
−σe

−ik0|z| cos θj + bsσ f̌
s
σe

ik0|z| cos θj
)

×

eik0x sin θj−iωt + c.c., (25)

where σ = sign z.
Thus, we have shown, that the developed theoretical

formalism of photon scattering matrices allows one to
solve analytically the problem of electromagnetic wave
propagation in a parallel-plate waveguide containing a
magnetic metasurface and having plates of a finite con-
ductivity. The magnetic metasurface could have an arbi-
trary susceptibility tensor χ̂, meaning an arbitrary com-
plex magnetic ground state and an arbitrary direction of
the static magnetization12,13,18. We provided a method
to compute the dispersion relation for the waveguide
modes (24) and the field distribution of each of these
modes (25). It is important to note, that the developed
formalism allows one to treat electrodynamic problem
involving arbitrarily complex magnetic metasurfaces in a
way, that is very similar to the solution of well-known
problems, like photon scattering from a conductive sur-
face33.

Below, we briefly discuss the conditions of applicabil-
ity of the proposed model. The boundary conditions (1)
were obtained in the magnetostatic approximation. In
this approximation it is assumed, that the spin-waves in
the array travel much slower than the electromagnetic
waves, i.e. vsw ≪ c0. For the parameters of a typi-
cal array of magnetic nano-elements the spin-waves are
rather slow36 vsw ≈ 1 km/ s, so this condition is fulfilled
naturally. Another important assumption was made con-
cerning the array’s thickness. The external electromag-
netic field acting on the array (see [18] for details) was
assumed to be uniform across the array, meaning that all
the other geometric parameters of the problem should be
larger than the array’s thickness. This condition requires
that the distance between the waveguide plates is much
larger than the array’s thickness. These approximations
considerably simplify the employed mathematical formal-
ism. A similar problem, where some of the above limi-
tations are relaxed, can be solved using a more rigorous
approach of Clausius-Mossotti23,25, but at a cost of much
more complicated computations.

IV. RESULTS

In our numerical example, we considered a magnetic
metasurface, created by an array of magnetic nanowires,
oriented perpendicularly to the plane of the array. The
array is placed in the middle of a parallel-plate waveg-
uide. The waveguide plates are assumed to be made of
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FIG. 3. Dispersion relation for the fundamental mode in a
flat EM waveguide containing an array of magnetic nanowires
located in the middle between the conductive plates for the
cases of the ferromagnetic (FM, solid line) and the chessboard
antiferromagnetic (CAFM, dashed line) ground states of the
array. The band gaps are indicated by shadowed regions. The
waveguide thickness is 0.5 mm. The parameters of the mag-
netic nanowire array: thickness 10 µm, radius of a nanowire 60
nm, the lattice constant of the square lattice 220 nm. Mate-
rial properties: saturation magnetization 800 kA/m, Gilbert
damping constant 0.01. Resistivity of the waveguide plates
1.68 × 10−8 Ω ·m.

copper with the electrical resistivity ρ = 1.68×10−8Ω·m.
The nanowires37 are assumed to be made of made of
Permalloy, to have the height d = 10 µm and radius
r = 60 nm, and to be arranged into a square lattice
with the lattice constant A = 220 nm. The array can
exist in two ground states, namely, the ferromagnetic
(FM)state, when all the magnetic moments are orien-
tated in the same direction, and the chessboard antiferro-
mangetic (CAFM)state, when the nearest neighbors have
their magnetic moments oriented in the opposite direc-
tions12.

For these two (FM and CAFM) ground states the ex-
ternal susceptibility tensors are found to have the follow-
ing forms:

χ̂FM =
f

2

ωM

ωFMR − ω − iΓFM





1 i 0
−i 1 0
0 0 0



 , (26)

χ̂CAFM = ζ
f

2

ωM

ωAFMR − ω − iΓAFM





1 0 0
0 1 0
0 0 0



 , (27)

where, for our parameters of the array, ωFMR/2π ≈
4.06GHz is the frequency of the ferromagnetic resonance
(FMR), ωAFMR/2π ≈ 12.1GHz is the frequency of the

antiferromagnetic resonance (AFMR), f = πr2/A2 ≈
0.23 is the magnetic material filling fraction, ωM/2π ≈
28GHz for the Permalloy, ΓFM = αGωFMR, ΓAFM =
αGωAFMR, αG ≈ 0.01 is the Gilbert constant and ζ ≈ 1.2
is a numerically evaluated constant, which depends on
the shape of the nanowires and on the lattice symme-
try13. The switching between the magnetic ground states
of a metasurface based on an array of identical mag-
netic nanoelements can be done, for example, by applying
short pulses of an in-plane bias magnetic field14. In the
case when the array contains two types of slightly differ-
ent magnetic elements the switching can be performed
quasi-statically by application of a perpendicular mag-
netic field38,39

The dispersion relation for the considered parameters
of the array and the waveguide thickness L = 0.5mm is
plotted in Fig. 3 for the cases of the FM (lower part of
the curve) and CAFM (upper part of the curve) ground
states of the array. The thickness of the waveguide is cho-
sen to be sufficiently small to guarantee that the cut-off
frequencies for the higher modes are larger than ωAFMR.
The dispersion relation of the fundamental mode of the
waveguide is practically unaffected by the presence of the
magnetic dot array in the frequency regions that are far
from the resonance frequencies of the FM and CAFM
ground states. At the same time, near the resonance fre-
quencies, namely, ωFMR and ωAFMR, the dispersion re-
lation changes drastically. The introduction of the array
opens substantial band gaps in the spectrum of the fun-
damental waveguide mode near the resonance frequencies
even in the case when the magnetic dot array is extremely
thin: ωd/(2πc0) ≈ 7.1× 10−4.

The band gap in the fundamental mode spectrum
arises not from the losses incurred inside the array. To
illustrate this we plot the dependence of the band gap
width on the waveguide thickness L for the FM ground
state in Fig. 4(a), with the dashed lines defining the fre-
quency of the FMR. The band gap width grows with the
decrease of the waveguide width, and, which is rather
remarkable, the central frequency of the band gap devi-
ates from the FMR frequency of the array for thinner
waveguides.

This metasurface, having a large and almost totally
reactive impedance, requires a propagating waveguide
mode to have an in-plane component of the electric field
at the metasurface boundary to satisfy the boundary con-
ditions (1). As a result of this, the propagation angle θ
of the waveguide mode deviates from its “normal” value
of π/2, the wave slows down, and the bandgap in the
mode spectrum is formed. Qualitatively, the appear-
ance of the band gap can be understood in terms of
the “method of virtual images”35. Being very good mir-
rors, the conductive plates of the waveguide create a vir-
tual “photonic crystal” for the photons of the main mode
propagating inside the waveguide, thus forming a band
gap in its frequency spectrum40. With the decrease of
the waveguide thickness, the “reactive” metasurface sheet
produces a progressively strong (“virtual” metasurfaces
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FIG. 4. (a) Dependence of the position of the band gap as
a function of the thickness (L) of the waveguide for the fer-
romagnetic ground state; (b) Distribution of the z compo-
nent for the magnetic field across the waveguide for waveg-
uide thickness L = 0.1mm and frequency ω/(2π) = 4.35GHz.
Grey vertical lines define the positions of the conductive
planes, while the dashed red line defines the position of the
magnetic array. (c) Quality factor (solid line, left axis) and
spatial decay parameter of the wave along the waveguide
(dashed line, right axis) versus frequency for the waveguide
having thickness L = 0.1mm. The shaded area shows the po-
sition of the band gap. The dash-dot-dash line indicates the
frequency of the ferromagnetic resonance in the both figures.
Parameters of the array are the same as for Fig. 3.

become closer) effect and opens a larger frequency band
gap (see Fig. 4(a)).

The shift of the bandgap central frequency away from
the FMR frequency, seen at small waveguide thicknesses,
is a characteristic feature of the ferromagnetic ground
state of the array, and is absent for an array existing
in the AFM state. This shift is connected with the
gyrotropic properties of the tensor χ̂FM (26) and the

boundary conditions (1), which require the presence of
non-zero y components of the electric field and a non-
zero z-component of the magnetic field at the location
of the array. In Fig. 4(b) we show the distribution of
the z component of the magnetic field across the waveg-
uide for a waveguide with thickness L = 0.1mm. Near
the conductive plates the magnetic field component is
almost zero, while at the position of the metasurface
(magnetic array) it is increased substantially. Interest-
ingly, the quasi-TEM mode has no y-component in the
electric field and no z-component in the magnetic field,
even for the propagation angle that deviates from π/2.
In terms of the waveguide modes the obtained mode for
the waveguide with a metasurface in the FM state can
be explained as a quasi-TEM mode coupled with one of
the higher evanescent TM modes, that have the neces-
sary field components. The frequencies of the TM modes
are higher that the frequency for the TEM mode, so the
frequency of the coupled mode is also increased, and the
band gap deviates from the frequency of the FMR.

For the frequencies lying inside the band gap, the
waveguide mode becomes evanescent. This means, that if
one places a magnetic metasurface inside a waveguide and
excites an electromagnetic wave outside the area where
the metasurface is placed, this wave will be mostly re-
flected and some of its energy will be dissipated. The
complete problem of the excitation of such a composite
waveguide falls out of the scope of this paper. However,
we can estimate a quality factor Q of the waveguide con-
taining a magnetic metasurface in the form of a magnetic
nanowire array as follows33,35:

Q(ω) ≈ ωW (ω)

Pm(ω) + Pe(ω)
, (28)

where W (ω) is the total stored electromagnetic energy:

W (ω) =
1

2

ˆ

V

(ǫ0|e(r)|2 + µ0|h(r)|2)dV, (29)

Pm(ω) is the power dissipated by the magnetic metasur-
face12,31:

Pm(ω) = ωµ0fd

ˆ

V

δ(z) Im
(

h̄∗(r) · χ̂ · h̄(r)
)

dV, (30)

and Pe is the energy dissipated by the conductive
plates33:

Pe(ω) = 2µ0c0 Re(ζ)

ˆ

V

δ(z − l)|h(r)|2dV. (31)

In Fig. 4(c) the frequency dependence of the quality fac-
tor is plotted for the case of the waveguide thickness
L = 0.1mm. The maximum absorption and the mini-
mum of Q, obviously, coincides with the frequency of the
FMR. However, for such a thin waveguide the central fre-
quency of the band gap deviates from the frequency of
the FMR, and in the band gap region the value the mag-
netic losses is much lower than at the FMR. At the same
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time, for the frequencies inside the band gap the pene-
tration depth is low, and the wave amplitude vanishes
inside the waveguide very quickly (maximum 15 dB/cm)
on the scale of a free space wavelength (equal to10 cm in
our example), see Fig. 4(c). In such a case one can ex-
pect, that the wave mode propagating in the waveguide
will be mostly reflected with practically no dissipation
caused by the magnetic metasurface (nanowire array).

The variation of the structural parameters of a mag-
netic dot array on the frequencies of the FMR and AFMR
has been studied previously12. In our case, this variation
shifts the position of the spectral band gap. The inter-
action of the incident photons with a magnetic meta-
surface, leading to the photon reflection, is determined
by the properties of the collective spin-wave excitations
(magnons) of the metasurface. The magnon damping
plays a negative role in this interaction, in a sense, that
the increase of damping (characterized by the parame-
ter alphaG) leads to the decoupling between the magnon
and photon systems, and, therefore, to the increase of
the penetration depth for the photons. A disorder in the
magnetic ground state of the array (or inhomogeneity
of the array’s geometrical parameters) can also lead to
the additional effective damping (inhomogeneous broad-
ening)15. One possible way of reducing the number of
defects in the magnetic state of an array by “program-
ming” the element’s shape has been recently proposed
in38.

In our calculations we placed the metasurface in the
middle of the waveguide in order to make the analytical
formalism (and, in particular, (22)) simpler. At the same
time, our numerical calculations did not demonstrate any
significant influence on the metasurface position inside
the waveguide of the dispersion of the fundamental mode
shown in Fig. 3.

V. CONCLUSIONS

In conclusion, we developed an analytical formalism
capable of describing both qualitatively and quantita-

tively the interaction of electromagnetic waves (photons)
with thin magnetic metasurfaces. The formalism is based
on the scattering matrix method, and allows one to solve
a wide variety of electrodynamic problems involving mag-
netic metasurfaces.

As an example of an application of our formalism we
investigated the behavior of electromagnetic waves in a
parallel-plate waveguide with conducting plates contain-
ing a magnetic metasurface formed by an array of mag-
netic nanowires. We found that even a rather thin mag-
netic metasurface introduced into the waveguide causes
qualitative changes in the dispersion of the fundamen-
tal mode of the waveguide, opening a band gap near the
magnetic resonance frequency of the metasurface. The
position of the band gap depends on the magnetic ground
state of the array. We showed also, that for sufficiently
thin waveguides the central frequency of the band gap
deviates from the frequency of the magnetic resonance.
In this case, the waveguide can reflect electromagnetic
waves with virtually no dissipation caused by the meta-
surface placed inside the waveguide.
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Appendix: Matrix elements for Û

The elements of the matrix Û are found by a direct substitution of the basis vectors (4) and projectors (7) into (16):

Û =
k0d

8







−ua
1 − ua

2 − us
3 + w11 ius

1 − ius
2 − us

3 + w11 ua
1 − ius

2 − iua
3 + w11 −ius

1 − ua
2 − iua

3 + w11

−ius
1 + ius

2 − us
3 + w11 ua

1 + ua
2 − us

3 + w11 ius
1 + ua

2 − iua
3 + w11 −ua

1 + ius
2 − iua

3 + w11

ua
1 + ius

2 + iua
3 + w11 −ius

1 + ua
2 + iua

3 + w11 −ua
1 + ua

2 + us
3 + w11 ius

1 + ius
2 + us

3 + w11

ius
1 − ua

2 + iua
3 + w11 −ua

1 − ius
2 + iua

3 + w11 −ius
1 − ius

2 + us
3 + w11 ua

1 − ua
2 + us

3 + w11






(A.1)

where:

wkn = kx · χ̂ · x cos θ + ny · χ̂ · y sec θ + z · χ̂ · z sin θ tan θ, (A.2)

and

us
1 = x · (χ̂ + χ̂T ) · y, ua

1 = ix · (χ̂ − χ̂T ) · y, (A.3)

us
2 = y · (χ̂+ χ̂T ) · z tan θ, ua

2 = iy · (χ̂− χ̂T ) · z tan θ, (A.4)

us
3 = z · (χ̂ + χ̂T ) · x sin θ, ua

3 = iz · (χ̂ − χ̂T ) · x sin θ. (A.5)

Note, that if χ̂ is Hermitian, the coefficients w and u are real.


