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Abstract

We propose a method to prepare an entangled spin-orbit state between the spin and the orbital

angular momenta of a neutron wavepacket. This spin-orbit state is created by passing neutrons

through the center of a quadrupole magnetic field, which provides a coupling between the spin and

orbital degrees of freedom. A Ramsey fringe type measurement is suggested as a means of verifying

the spin-orbit correlations.
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I. INTRODUCTION

Recently it was demonstrated that neutrons can support orbital angular momentum

(OAM) states by using a spiral phase plate to write a helical wavefront onto a neutron beam

[1, 2]. This work is related to manipulating orbital angular momentum states of photons

[3–7] and electrons [8–11]. Neutrons have also an intrinsic spin of ~/2, and in this work we

suggest a means of coupling the neutron spin and OAM to prepare an entangled spin-orbit

state of a neutron wavepacket. This spin-orbit state could in principle be used for quantum

metrology applications such as probing chiral and helical materials.

For convenience let us consider a neutron beam propagating in the z-direction with mo-

mentum kz, and the expectation values of momentum in the transverse plane equal to zero.

The OAM operator in a cylindrical coordinate system (r, φ, z) is Lz = −i~ ∂
∂φ
. The OAM

eigenstates are a convenient basis for the neutron wavepacket when the coherence lengths

in the transverse directions are equal σx = σy ≡ σ⊥, where σx,y = 1/(2∆kx,y), and ∆kx,y are

the x and y spreads of the wavepacket’s transverse momentum distributions.

Under this cylindrical symmetry the neutron wavefunction is separable in terms of spin

and each of the cylindrical coordinates Ψs(r, φ, z) = R(r)Φ(φ)Z(z) |s〉, where s ∈ {↑=
(

0
1

)

, ↓=
(

1
0

)

} specifies the neutron spin state along the quantization axis. With the standard

deviation of momentum being constant in the transverse direction, the transverse wavefunc-

tion R(r)Φ(φ) may be described in terms of solutions to the 2-D harmonic oscillator, and the

longitudinal wavefunction Z(z) treated as a Gaussian wavepacket. The eigenstates, denoted

by |nr, ℓ, kz, s〉, are specified by the radial quantum number nr, the azimuthal quantum

number ℓ, the wave vector along the z direction kz, and the spin state s.

The eigenstates in cylindrical coordinates are

|nr, ℓ, kz, s〉 = N ξ|ℓ|e−
ξ2

2 L|ℓ|
nr

(

ξ2
)

eiℓφZ(z) |s〉 , (1)

where ξ = r/σ⊥ is the rescaled radial coordinate, N = 1
σ⊥

√

nr!
π(nr+|ℓ|)!

is the normalization

constant, nr ∈ (0, 1, 2...), ℓ ∈ (0,±1,±2...), and L|ℓ|
nr (ξ

2) are the associated Laguerre poly-

nomials [12]. The total neutron energy is

ET = ~ω⊥(2nr + |ℓ|+ 1) +
~
2k2z
2m

− ~µ · ~B, (2)

where ~µ is the neutron magnetic dipole moment, ω2
⊥ = ~/(2mσ2

⊥), m is the neutron mass,

and ~B is the external magnetic field.
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II. NEUTRON OAM STATES

The first realization of a neutron OAM state was demonstrated using a spiral phase plate

(SPP) [1]. Before we considering spin-orbit states of neutrons it is useful to describe the

action of a SPP in terms of orbital basis states. We may ignore the spin component here as

the action of this spiral phase plate is spin independent. Consider a SPP of thickness h(φ) =

h0+hsφ/(2π), where φ is the azimuthal angle, h0 is the base height, and hs is the step height.

As a result of the optical potential [13], a neutron wavepacket propagating on axis through

the SPP acquires a phase of α(φ) = −Nbcλh(φ) = α0 + qφ, where Nbc is the scattering

length density of the SPP material, λ is the neutron wavelength, q = −Nbcλhs/(2π) and the

uniform phase α0 = −Nbcλh0. The parameter “q” is commonly referred to as the topological

charge and it quantifies the nature of the singularity at the center [14]. Generally, when

a plane wave propagates through such a topology, the wavefronts become |q| intertwined
helical surfaces with a helicity defined by the sign of q.

Let the incident neutron state carry well defined quantum numbers nri and ℓi: |ψin〉 =
|nri, ℓi〉, where we suppress the kz and s labels as they are unaffected by the SPP. To simplify

we set z = 0 at the exit of the SPP and we set σ⊥ = 1. The state after the SPP can be

expanded in terms of the basis functions

|ΨSPP〉 = eiqφ |ψin〉 =
∞
∑

nr=0

∞
∑

ℓ=−∞

Cnrℓ |nr, ℓ〉 , (3)

with the coefficients

Cnr,ℓ =

∫ ∞

0

dr

∫ 2π

0

dφ r〈nr, ℓ |ΨSPP〉 . (4)

When the incoming neutrons have zero OAM (nri = ℓi = 0), the coefficients are

Cnr,ℓ =











eiqπsinc(qπ) for nr = ℓ = 0
|ℓ|
2
Γ(1+ |ℓ|

2
)√

nr !(nr+|ℓ|)!
ei(q−ℓ)πsinc[(q − ℓ)π] otherwise

(5)

where Γ (1 + |ℓ|/2) is the gamma function [12]. When the incoming state has a definite

orbital quantum number ℓi, the output state is a state with definite orbital quantum number

ℓi + q.

Fig. 1 shows the probabilities (|Cnr,ℓ|2) for nr = 0, 1 and ℓ = 0, 1,−1. From Eq. (5) we see

that Cnr,ℓ=0 6= 0 only when nr = 0. From Fig. 1 we see that when a neutron wavepacket with
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FIG. 1. The probabilities for each of the ℓ = 0, 1,−1 and nr = 0, 1 states when a neutron

wavepacket with no OAM (nri = ℓi = 0) passes through a spiral phase plate with a topological

charge q.

zero OAM passes through a SPP, the OAM quantum number of the neutron wavepacket is

incremented by the topological charge (q) of the SPP. The radial quantum number of the

outgoing wavepacket can take any allowed value, the most probable one is nr = 0 for small

q-values. If we consider, for example, a topological charge of q = +1 then the state after the

SPP is

|ΨSPP〉 =
∞
∑

nr=0

√

π

16nr!(nr + 1)!
|nr, 1〉 . (6)

Hence a SPP provides control over the orbital quantum number. 3He neutron counting

detectors do not distinguish different radial states and so the effect of measurement traces

over the radial quantum number.

Below we propose and analyze a method to create a neutron spin-orbit state over the

coherence length of a neutron wavepacket. The spin independent optical phase from the

SPP is replaced by a spatially dependent spin rotation. The OAMs are generated as a result

of the topological phase arising from the spin rotations induced by a quadrupole magnetic

field. The resulting state is a spin-orbit state.

4



III. NEUTRON SPIN-ORBIT STATES

Consider a neutron wavepacket spin polarized along the z-direction, traveling through a

quadrupole magnetic field geometry ∂Bx/∂y = −∂By/∂x. The magnetic field vector is given

by ~B = −|∇B|r(cos(qφ), sin(qφ), 0) where |∇B| is the quadrupole gradient. The topological
charge of the quadrupole is q = −1. Note that the magnitude of the magnetic field varies

radially, while the direction changes azimuthally. The Hamiltonian of the neutron inside

the quadrupole field can be parametrized by H = −~̂σ · ~Bγ~/2 where ~̂σ corresponds to

the Pauli matrices and γ = −2|~µ|/~ is the neutron gyromagnetic ratio. The effect of this

Hamiltonian in generating OAM is similar to those used in optics to generate OAM based

on Pancharatnam-Berry geometrical phases [15–21], and as shown recently for generating

OAM with electrons through a type of Wien filter [9, 11, 22].

Assuming the neutron is traveling along the quadrupole axis, the time the neutron spends

inside the quadrupole magnetic field is tQ = lQ/vz, where lQ is the length of the quadrupole

and vz = 2π~/(mλ) is the neutron velocity. Ignoring the small radial neutron path displace-

ment due to the gradient, the operator on the spin is

UQ = cos

(

πr

2rc

)

1 + i~n · ~̂σ sin
(

πr

2rc

)

, (7)

where ~n · ~̂σ = (σ̂x cos φ− σ̂y sinφ), and we have re-parametrized the operator using the

radius rc at which the spin undergoes a spin flip after passing through the quadrupole

γ|∇B|rclQ/vz = π. The action of the quadrupole depends on its length, the gradient

strength, and the neutron wavelength.

Defining raising and lowering OAM operators l± = e±iφ and spin operators σ̂± = (σ̂x ±
iσ̂y)/2, the operator of the quadrupole in Eq. (7) becomes

UQ = cos

(

πr

2rc

)

1 + i sin

(

πr

2rc

)

(l+σ̂+ + l−σ̂−). (8)

The second term of Eq. (8) is an entangling operation between spin and orbital momenta.

Hence passage of a neutron wavepacket through a quadrupole has the potential to entangle

the spin and orbital degrees of freedom though we must also consider changes to the radial

quantum number.

Consider the case where a spin-up polarized neutron is initially in a well defined OAM

eigenstate |ψin〉 = |nri, ℓi, ↑〉 and is passing on axis through the quadrupole. If we ignore the
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small change in kz, ∆kz, and σ⊥ as the wavepacket propagates through the quadrupole, the

state after the quadrupole can be expanded in the basis functions as

|ΨQ〉 =
∞
∑

nr=0

∞
∑

ℓ=−∞

(Cnr,ℓ,↑ |nr, ℓ, ↑〉+ iCnr,ℓ,↓ |nr, ℓ, ↓〉) . (9)

The coefficients in Eq. (9) are given by

Cnr ,ℓ,↑ =

∫ ∞

0

dξ

∫ 2π

0

dφ 〈nr, ℓ |nri, ℓi〉 ξ cos
(

πσ⊥
2rc

ξ

)

(10)

Cnr ,ℓ,↓ =

∫ ∞

0

dξ

∫ 2π

0

dφ 〈nr, ℓ |nri, ℓi〉 ξeiφ sin
(

πσ⊥
2rc

ξ

)

(11)

Integrating over φ selects ℓ = ℓi for the spin-up coefficients, and ℓ = ℓi+1 for the spin-down

coefficients. This simplifies Eq. (9) to

|ΨQ〉 =
∞
∑

nr=0

(Cnr,ℓi,↑ |nr, ℓi, ↑〉+ iCnr ,ℓi+1,↓ |nr, ℓi + 1, ↓〉) . (12)

Note that this coupling between spin and OAM can easily be seen from the quadrupole

operator in Eq. (8).

The coefficients Cnr,ℓi,↑ and Cnr,ℓi+1,↓ are real for all values of rc/σ⊥. The various coeffi-

cients Cnr,ℓ,s are plotted in Fig. 2, given an input state with nri = ℓi = 0. The ratio rc/σ⊥

quantifies the action of the quadrupole on the neutron wavepacket. The strong quadrupole

fields regime correspond to rc → 0 and the weak quadrupole regime to rc → ∞. It can be

verified that
∑∞

nr=0(C
2
nr,ℓi,↑

+ C2
nr,ℓi+1,↓) = 1.

A. Characterizing the Spin-Orbit States

Neutron interferometers have been used to demonstrate single-particle entanglement be-

tween different degrees of freedom, such as spin + path and spin + energy, and have sup-

ported extensive studies of quantum contextuality [23–27]. A useful measure of entanglement

for a bipartite quantum system is the concurrence [28–30], which is equal to 1 when the en-

tanglement is maximum and 0 when the state is separable. For a bipartite mixed state ρSO,

the concurrence is given by

C(ρSO) = max{0, λ1 − λ2 − λ3 − λ4}, (13)
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FIG. 2. The coefficients Cnr,ℓ,s of the spin-orbit state for nr = 0 and nr = 1 as a function of rc/σ⊥.

The input state is nri = ℓi = 0. The vertical line at rc/σ⊥ = 1.82 corresponds to the point of

maximum concurrence for the nr = 0 subspace (see Fig. 3). Strong quadrupole fields correspond

to rc → 0 while no quadrupole rc → ∞.

where the λi’s are the eigenvalues, sorted in descending order, of
√√

ρSO(σy ⊗ σy)ρ
∗
SO(σy ⊗ σy)

√
ρSO,

and ρ∗SO is the complex conjugate of ρSO. For a pure state ρSO = |ψSO〉〈ψSO|, Eq. (13) reduces
to

C(|ψSO〉) =
√

2 (1− Tr[ρ2S]), (14)

where ρS = TrO[|ψSO〉〈ψSO|] is the reduced density matrix obtained by tracing over the

subsystem S (or equivalently tracing could be over subsystem O).

Let us first consider the entanglement of the spin-orbit neutron state in the case where

we filter on a single radial quantum number nr = η. In this case the renormalized spin-orbit

state is a pure state

|ψη〉 =
1

√
pη

(Cη,ℓi,↑ |ℓi, ↑〉+ iCη,ℓi+1,↓ |ℓi + 1, ↓〉) , (15)

where pη is the probability of the the wave-packet being in the specific nr = η subspace:

pη = C2
η,ℓi,↑

+ C2
η,ℓi+1,↓. (16)

The concurrence of the |ψη〉 and probability coefficients pη as a function of rc/σ⊥ are shown

in Fig. 3 for the radial subspaces η = 0, 1, 2. The concurrence of the spin-orbit state obtained
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FIG. 3. Concurrence (on the left) of the spin-orbit state for the filtered η = 0, 1, 2 subspaces, and

the probability (on the right) of the given η = 0, 1, 2 subspaces. The vertical line at rc/σ⊥ = 1.82

corresponds to the point of maximum concurrence for the η = 0 subspace.

by passing through a quadrupole is maximized for the η = 0 radial subspace when there

is a spin flip at ∼ 1.82 times the coherence length of the wavepacket. This condition is

represented by the vertical line in Fig. 2 and Fig. 3.

Next we consider the case where the neutron capture cross-section of the detector is

independent of the nr subspace. For nri = ℓi = 0, the spin-orbit density matrix obtained by

tracing over the radial degree of freedom is

ρSO =
∞
∑

nr=0

[

C2
nr,0,↑ |0, ↑〉 〈0, ↑|+ iCnr,0,↑Cnr,1,↓ |0, ↑〉 〈1 ↓|

−iCnr ,0,↑Cnr ,1,↓ |1, ↓〉 〈0, ↑|+ C2
nr ,1,↓ |1, ↓〉 〈1, ↓|

]

. (17)

This reduced state is not a pure state (Tr[ρ2SO] 6= 1). The concurrence of this mixed spin-

orbit state can be computed using Eq. (13) and the resulting value is shown in Fig. 4. We

find that the maximum value of concurrence is C(ρSO) = 0.97 and it occurs at rc/σ⊥ =

1.82. Hence even after averaging over all radial subspaces the spin-orbit state is still highly

entangled.

IV. PROPOSED EXPERIMENTAL IMPLEMENTATION

To experimentally implement this proposal a quadrupole magnet can be constructed from

correctly orientated discrete NdFeB magnets. A 10 cm long quadrupole with a gradient of

13.8 T/cm would be required to satisfy the rc = 1.82σ⊥ condition for neutrons with a typical

transverse coherence length of σ⊥ = 100 nm [31, 32] and a wavelength of 0.271 nm. With the

0.7 T surface field of NdFeB magnets this gradient corresponds to an inner quadrupole gap
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FIG. 4. Concurrence of the spin-orbit state obtained by tracing the radial subspace. The vertical

line at rc/σ⊥ = 1.82 corresponds to the point of maximum mixed state concurrence of 0.97. The

concurrence does not go to 1 because the traced state is not pure.

of around 1 mm. In such an experimental setup, the concurrence (Eq. (14)) of the η = 0, 1, 2

filtered states is 1, 0.77, and 0.55 respectively, and the traced concurrence (Eq. (13)) is 0.97.

The successful preparation of the entangled state could be verified by using a Ram-

sey Fringe experiment [33]. For the experiment we require a polarized neutron beam, two

quadrupole magnets and a solenoid between them (see Fig. 5). The first quadrupole creates

the spin-orbit state. The solenoid provides a uniform magnetic field along the spin quantiza-

tion axis and introduces a phase shift, β, in the spin degree of freedom. The corresponding

operator is Uz(β) = cos (β/2)1 + i sin (β/2) σ̂z. The second quadrupole can be rotated by

angle θ and can act as an inverse operator of the first quadrupole:

UQ2(θ) = cos

(

πr

2rc

)

1 + i sin

(

πr

2rc

)

[

e−iθl+σ̂+ + eiθl−σ̂−
]

(18)

With the setup shown in Fig. 5, when the input state is |0, 0, ↑〉, the state at the exit (global
phase excluded) is

|ΨR〉 = UQ2(θ)Uz(β)UQ |0, 0, ↑〉

=

[

cos

(

πr

rc

)

cos

(

β − θ

2

)

− i sin

(

β − θ

2

)]

|0, 0, ↑〉

− i sin

(

πr

rc

)

cos

(

β − θ

2

)

eiφ |0, 0, ↓〉 (19)
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The integrated intensities at the output are

I↑(β, θ) =

∫ ∞

0

dr

∫ 2π

0

dφ r |〈↑ |ΨR〉 |2

= 1− πσ⊥
rc

F

(

πσ⊥
rc

)

cos2
(

β − θ

2

)

(20)

I↓(β, θ) =

∫ ∞

0

dr

∫ 2π

0

dφ r|〈↓ |ΨR〉 |2

=
πσ⊥
rc

F

(

πσ⊥
rc

)

cos2
(

β − θ

2

)

, (21)

where F (πσ⊥/rc) is Dawson’s intergral [12]. The integrated spin intensities at the output

(Eq. (20) & (21)) show the same behaviour if β is varied for fixed θ, and if θ is varied for

fixed β. The fact that the phase induced by the spin rotation can be compensated by the

rotation of the orbital state is an indication of the spin-orbit entanglement. The bottom

part of Fig. 5 displays the spin-dependent integrated intensity for β varied with θ = π and

with rc/σ⊥ = 1.82. Note that the amplitude of the oscillations of the integrated intensity

is not 1 because the spin-orbit state obtained by tracing the radial degree of freedom is not

pure.

V. CONCLUSION

We have proposed a method for preparing spin-orbit states of neutron wavepackets using

a quadrupole magnetic field. We have also demonstrated that the spin-orbit state would

be entangled, and that this entanglement is maximized for certain values of the coherence

length and quadrupole magnetic field strength. Successful realization of the spin-orbit states

will provide an opportunity to use neutrons as a probe of chiral and helical materials.

For example, these unique spin-orbit coupled states may be used to study chiral magnetic

materials and skyrmions.
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FIG. 5. The top figure is the setup for the spin-orbit Ramsey fringe experiment. The arrows on

the magnets depict the quadrupole geometry. The bottom figure is the integrated intensity at the

output for the spin-up and spin-down neutrons as a function of the spin precession (β) inside the

solenoid. The rotation of the second quadrupole is set to θ = π. An identical plot can be obtained

when β = π and the quadrupole rotation is varied. This variation of the intensity is an indication

of the correlations between the spin and OAM. The phase induced by the spin rotation can be

compensated by the rotation of the quadrupole.
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