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We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by
a linearly time-dependent field. When this field passes through values at which spin energy level splittings
become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to
co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different
diabatic states induced by such a sweep of the field.

I. INTRODUCTION

Cavity quantum electrodynamics (cavity QED) is the study
of light interaction with discrete quantum systems, such as
spins of electrons and atoms, at conditions of significant cou-
pling to a single photon. Traditional realizations of cavity
QED in atomic physics [1] have recently been extended to
numerous solid state applications, including superconductors
[2], spins of defects and quantum dots [3] and fiber optics
[4]. One of the most fundamental models in cavity QED is
the Tavis-Cummings model [5] that describes coupling of Ns
two-level systems, which we will call spins for simplicity, to
a single optical cavity mode and an external field. The Hamil-
tonian of this model is given by [6]

Ĥ = ωâ†â−∆

Ns∑
i=1

σ̂i+

Ns∑
i=1

εiσ̂i+g

Ns∑
i=1

(â†σ̂−i + âσ̂+
i ), (1)

where ω and â are, respectively, the frequency and the annihi-
lation operator of the cavity mode, and σ̂±i are ith spin’s rais-
ing/lowering matrices. Parameter g describes spin couplings
to the optical mode. This coupling is assumed to be identical
for all spins, as in the original Tavis-Cummings model [5]; ∆
is the Zeeman-like splitting induced by the external field. We
include the possibility of spins to experience additional local
level splittings described by arbitrary parameters εi. We also
introduced projection operators

σ̂i ≡ (1̂i + σ̂iz)/2,

to spin “up” states. Here 1̂i is a unit matrix acting in the ith
spin subspace, and σ̂iz is the Pauli z-matrix of the ith spin. This
model can be physically derived from a more general Dicke
model [7] by applying the rotating wave approximation. The
latter is well-justified in numerous available realizations of the
cavity QED.

The model (1) conserves the number of excitations, i.e. the
Hamiltonian commutes with the operator of the number of
bosons plus the number of spins up:

N̂e = â†â+

Ns∑
i=1

σ̂i. (2)

Therefore, it is usually possible to diagonalize the matrix
Hamiltonian numerically for small Ns and Ne. However, the

size of the phase space grows quickly with Ne and Ns, so fur-
ther approximations are usually invoked, such as the degen-
eracy assumption that all parameters εi are identical. Various
limits and extensions of the model (1) at constant parameters
have been solved with algebraic Bethe ansatz [8].

Cavity QED is usually discussed in the context of achieving
control of quantum states of two level systems and the photon
mode. For example, practical goals can be to implement gates
for quantum computation with spin qubits or to use spins as
emitters of strongly nonclassical photon states. Such a control
requires the ability to change parameters of the system in time.
Therefore, time-dependent versions of the cavity QED models
currently garner considerable scientific attention [9, 10].

Landau-Zener (LZ) transitions [11] induced by a linear
sweep of parameters in cavity QED models have been sug-
gested as a tool to produce a strongly non-classical light
source and entangle qubits in an optical cavity [12, 13]. In
the case of the model (1), this corresponds to the assumption
that

∆ = βt, (3)

with some constant sweeping rate β and t is time. Beyond
cavity QED, similar models of linearly driven interacting spin
systems have been recently discussed for applications in ultra-
cold atomic gases [14, 15], LZ-interferometry [16], quantum
dots [17], quantum control [18], and quantum coherence [19].

Considering Eq. (3) at t→ ±∞, one can disregard the last
sum in the Hamiltonian (1) so that its eigenstates become si-
multaneously the eigenstates of the photon number operator,
â†â, and spin polarization operators, σ̂iz . We will call such
states the diabatic states. Imagine then that at large nega-
tive time t, the system is in the state without photons in the
cavity mode and with all spins polarized in the diabatic state
|0; ↑1↑2 . . . ↑Ns

〉. As time changes, eventually, spin splittings
become comparable to the coupling strength g so that some of
the spins flip by emitting photons. Since photons are bosons,
the increase of their number enhances the coupling of the pho-
ton mode to all the spins, which facilitates new transitions and
so on. Such nonlinear effects can be used in practice to induce
strongly correlated spin-photon states.

Importantly, at large positive time t all spin levels again
split out of the resonance so that all transitions terminate.
There is a characteristic time ∼ g/β, during which nonadi-
abatic transitions are essential. We will assume sufficiently
high quality optical cavity, for which this time is much shorter
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than the time of photon loss, so we can disregard dissipation.
One can define then the following scattering problem: Given
Eqs. (1), (3) and that at t → −∞ the system is in one of the
diabatic states of the Hamiltonian Ĥ , marked by an index n,
what is the probability Pn′n ≡ Pn→n′ to find the system in a
diabatic state with an index n′ at t→ +∞? We will call such
a scattering problem exactly solvable if there is a procedure to
write down any element Pn′n of the transition probability ma-
trix P̂ explicitly in terms of the well known special functions
of model parameters.

The time-dependent problem with the Hamiltonian (1) un-
der assumption (3) looks very complex at first view. In order
to find scattering probabilities between microstates one has to
solve a system of many coupled differential equations with
linearly changing time-dependent coefficients. Solutions of
such equations show violant oscillations, which decay with
long power-law tails in time. In addition, the number of cou-
pled equations is growing exponentially with Ns. Therefore,
generally, such systems remain challenging to study even nu-
merically at Ns > 4.

In this article we will argue, however, that the scattering
problem for this model is exactly solvable, i.e., we will pro-
vide an iterative procedure to obtain transition probabilities
between any pair of states in any sector of the model in a fi-
nite number of steps. We will also investigate some of the
consequences of this solution.

The plan of our article is as follows. In section 2, we will
describe the connection of the model (1)-(3) to the multistate
LZ problem and explore simplest situations that reduce to the
previously solved models. In section 3, we will present so-
lution of the model (4) in the eight-state sector, which corre-
sponds to one of the simplest nontrivial cases of the Hamilto-
nian (1) that do not reduce to the already known solvable mul-
tistate LZ models. We discuss higher dimensional sectors in
section 4. In section 5, we consider the degenerate case εi = 0
for all i and derive the full transition probability matrix for the
four-state sector, and investigate transition probabilities from
the fully polarized initial conditions at arbitrary size of the
phase space. In section 6, we will summarize our major find-
ings and discuss perspectives to explore other strongly driven
explicitly time-dependent interacting quantum problems.

II. DRIVEN TAVIS-CUMMINGS MODEL AS A
MULTISTATE LANDAU-ZENER PROBLEM

We will start our discussion with slightly rewriting the
Hamiltonian in order to reduce the number of independent pa-
rameters. Due to conservation of the number of excitations
(2), we can replace the operator

∑Ns

i=1 σ̂i with Ne − â†â in
any sector with a constant Ne. The term with Ne commutes
then with the rest of the Hamiltonian and can be safely re-
moved by a gauge transformation. Hence, we can rewrite the
fist two terms in (1) as (ω+βt)â†â. If only the evolution from
infinitely large negative to infinitely large positive time values
is considered, the redefinition of time, t→ t− ω/β, does not
affect boundary conditions and, consequently, the scattering
probabilities. On the other hand, it removes parameter ω from

the Hamiltonian. Moreover, rescaling time as t → t/
√
β in

the Schrödinger equation, iψ̇(t) = Ĥ(t)ψ(t), where ψ(t) is
the state vector, and redefining couplings as g/

√
β → g and

εi/
√
β → εi, parameter β drops out of this equation. There-

fore, the Hamiltonian of the problem simplifies:

Ĥ = tâ†â+

Ns∑
i=1

εiσ̂i + g

Ns∑
i=1

(â†σ̂−i + âσ̂+
i ). (4)

Let us first consider Ne = 1. In this case, the available phase
space consists of the state with a single photon:

|Ns + 1〉 ≡ |1; ↓1, ↓2, . . . ↓Ns
〉, (5)

and Ns states with a single spin excitation:

|i〉 ≡ |0; ↓1, ↓2, . . . , ↑i, . . . ↓Ns
〉. (6)

In order to enumerate different diabatic states, here and in
what follows we will assume the convention in which the state
with the minimal possible number of photons has index 1; di-
abatic states with the same number of photons are labeled in
the decreasing order of their energy at t → −∞ (when disre-
garding coupling terms in the Hamiltonian), and states with a
larger number of photons have higher indexes than the states
with a smaller number of photons. Let ε1 > ε2 > . . . > εN .
Following this convention, the Hamiltonian (4) in the basis
(5)-(6) has the matrix form:

Ĥ =


ε1 0 . . . 0 g
0 ε2 0 . . . g
...

...
. . .

...
...

0 . . . 0 εNs
g

g g . . . g t

 . (7)

At this point, we note that the Hamiltonian (7) and the more
general Hamiltonian (4) belong to the class of, so-called, mul-
tistate LZ models that describe the evolution of a numberN of
states according to the Schödinger equation with parameters
that change linearly with time [20]:

i
dψ

dt
= Ĥ(t)ψ, Ĥ(t) = Â+ B̂t. (8)

Here, ψ is the state vector in a space of N states; Â and B̂ are
constant Hermitian N ×N matrices. One can always choose
the, so-called, diabatic basis in which the matrix B̂ is diag-
onal, and if any pair of its elements are degenerate then the
corresponding off-diagonal element of the matrix Â can be
set to zero by a time-independent change of the basis, that is

Bij = δijβi, Anm = 0 if βn = βm, n 6= m ∈ (1, . . . N).
(9)

Constant parameters βi are called the slopes of diabatic levels,
nonzero off-diagonal elements of the matrix Â in the diabatic
basis are called the coupling constants, and the diagonal ele-
ments of the Hamiltonian

Hii = βit+ εi,
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FIG. 1. Diabatic levels and couplings between them described by the
Hamiltonian (4) at Ne = 1.

where εi ≡ Aii, are called the diabatic energies. Some of the
multistate LZ models have been already studied with the pur-
pose to obtain transition probabilities between diabatic states
[21–28]. For example, the model (7) is a special case of the
exactly solvable Demkov-Osherov model [21].

It is convenient to represent any multistate LZ-model in the
time-energy diagram that plots diabatic energies with intersec-
tions of diabatic energy levels marked by corresponding pair-
wise coupling constants, as we show in Fig. 1 for the model
(7). According to this figure, the Demkov-Osherov model de-
scribes the case of a single level intersecting a band of parallel
diabatic levels.

It turns out that, irrespectively of the coupling strength,
transition probabilities in the Demkov-Osherov model can be
obtained following a simple rule: One should obtain a semi-
classical trajectory that connects the initial and final states in
the graph in Fig. 1 and assume that probabilities to pass, p, or
turn, q, at any level intersection are described by the standard

LZ formula for intersection of two levels:

p = e−2πg
2

, q = 1− p. (10)

Only semiclassical trajectories that turn or pass forward in
time are allowed, so there is, maximum, a single trajectory
that connects any given pair of states for the Demkov-Osherov
model. The probability of the full trajectory is then the prod-
uct of all encountered pairwise passing or turning probabili-
ties. If there is no such a semiclassical trajectory that connects
two given diabatic states, the corresponding transition proba-
bility is zero. For example, if evolution starts with the state
|Ns + 1〉 with a single photon, then the probability to remain
in this diabatic state at t→ +∞ is given by

PNs+1,Ns+1 =

Ns∏
i=1

p = pNs . (11)

Similarly, e.g,

P21 = 0, P22 = P11 = p, P13 = q2p. (12)

We remind that we use the convention in which P21 means the
probability of the transition from level-1 to level-2.

Consider now another case that reduces to another multi-
state LZ-model, which solution is known. Assume that we
have an arbitrary minimal number of bosons NB but only two
spins. The diabatic basis consists then of only four states:

|1〉 = |NB ↑1↑2〉, |2〉 = |NB + 1; ↑1↓2〉, (13)
|3〉 = |NB + 1; ↓1↑2〉, |4〉 = |NB + 2; ↓1↓2〉.

Let us denote g1 = g
√
NB + 1, and g2 = g

√
NB + 2. The

Hamiltonian (4) in the diabatic basis then reads:

Ĥ =

 ε1 + ε2 +NBt g1 g1 0
g1 ε1 + (NB + 1)t 0 g2
g1 0 ε2 + (NB + 1)t g2
0 g2 g2 (NB + 2)t

 . (14)

In Fig. 2, we show diabatic levels of this model. Although
slopes of the levels are plotted there for the case NB = 0, we
note that arbitrary NB would merely increase the slopes of all
levels by equal amount, keeping relative slopes between lev-
els the same, so geometry and the chronological order of level
crossings would not change. The model in Fig. 2 is recognized
as a four-state generalized bow-tie model, which exact solu-
tion is known [22]. The generalized bow-tie model generally
describes the case when several diabatic levels interact with
two other parallel levels but do not interact with each other
directly. Each of the levels from the first set couples equally
to the parallel levels. Moreover, all diabatic levels from the
first set must intersect at a single point - right in the middle
between the parallel levels. It is easy to check that those con-

ditions are satisfied by levels of the Hamiltonian (14).

It has been noticed by Demkov and Ostrovsky that the semi-
classical procedure that we described above for the Demkov-
Osherov model can be equally applied to determine exact
solution of the bow-tie model [22]: As in the case of the
Demkov-Osherov model, there is a unique path in Fig. 2 that
preserves causality and connects any given pair of diabatic
states at t→ ±∞. Let us denote

p1 = e−2πg
2(NB+1), p2 = e−2πg

2(NB+2),

and qi = 1 − pi; i = 1, 2. Then the exact form of the
transition probability matrix for the model (14) can be readily



4

FIG. 2. Diabatic levels and couplings between them described by the
Hamiltonian (14) at NB = 0.

written using Fig. 2 and semiclassical rules:

P̂ =

 p21 q1p1 p2q1 q1q2
q1p2 p1p2 q22 p2q2
p1q1 q21 p1p2 p1q2
q1q2 p1q2 p2q2 p22

 . (15)

One more important observation made by Demkov and
Ostrovsky in [22] is that the degenerate case of a general-
ized bow-tie model, which in our case corresponds to ε1 =
ε2 = 0, reduces to a model, which exact solution can be
trivially obtained from the knowledge of the transition prob-
ability matrix of the nondegenerate case, such as (15). Let
a(t), b1(t), b2(t), c(t) be the amplitudes of states, respectively,
|1〉, |2〉, |3〉, |4〉 defined in (13). In the degenerate case, i.e., at
ε1 = ε2 = 0, the Schrödinger equation for these amplitudes
with the Hamiltonian (14) corresponds to a set of four coupled
differential equations:

iȧ = NBta+ g1(b1 + b2),

iḃ1 = (NB + 1)tb1 + g1a+ g2c,

iḃ2 = (NB + 1)tb2 + g1a+ g2c,

iċ = (NB + 2)tc+ g2(b1 + b2). (16)

Let us now introduce new variables b± = (b1±b2)/
√

2. Then
the amplitude b− completely decouples while the remaining
amplitudes satisfy a new differential equation:

i
d

dt

 a
b+
c

 = Ĥ(3)

 a
b+
c

 , (17)

where

Ĥ(3) =

 NBt g1
√

2 0

g1
√

2 (NB + 1)t g2
√

2

0 g2
√

2 (NB + 2)t

 . (18)

Equation (17) corresponds to a new three-state LZ model in
which all diabatic levels intersect in one point at t = 0. This
model is also exactly solvable, and it is known as a stan-
dard bow-tie model [23]. Comparing exact solutions for stan-
dard and generalized bow-tie models, Demkov and Ostrovsky

pointed that transition probabilities between states |1〉 and |3〉
of the model (18) are the same as transition probabilities be-
tween states |1〉 and |4〉 in the nondegenerate version of the
four-state model (14), while transition probabilities from or
to the level |2〉 of the model (18) are given by summation of
transition probabilities, respectively, from and to both parallel
levels with amplitudes b1, b2 in the nondegenerate version of
the model (14). For example,

P
(3)
12 = P12 + P13, P

(3)
23 = P24 + P34,

where the index “(3)” marks transition probabilities in the
model (17), and probabilities Pij are defined in (15). Hence,
the full transition probability matrix for the model (17) reads:

P̂ (3) =

 p21 q1(p1 + p2) q1q2
q1(p1 + p2) (1− p1 − p2)2 q2(p1 + p2)

q1q2 q2(p1 + p2) p22

 ,

(19)
where the element P (3)

22 was determined merely from the fact
that, for unitary evolution, the transition probability matrix
must be doubly stochastic, i.e. the sum of its elements along
any column or any raw should be equal to one. Here, we make
a new observation that

1 + P
(3)
22 = P22 + P33 + P23 + P32, (20)

where, on the right hand side, we have the sum of all transition
probabilities between parallel levels in the four-state model
(14), and the left hand side is the sum of the probability to
stay at the central level in the model (17) plus 1. This unit, 1,
can be interpreted as the probability, Pb−→b− , to stay in the
antisymmetric state with amplitude b− if the evolution starts
with b− = 1. We will use this observation to derive transition
probabilities in the higher dimensional sectors of the degener-
ate version of the model (4).

III. EIGHT DIMENSIONAL SECTOR

A. Parameters of the Model

Let us first introduce the notation to be used in this section
and later on:

gn = g
√
NB + n, pn = e−2πg

2(NB+n), qn = 1− pn,
(21)

where n is a positive integer, and NB is the minimal number
of photons that can be in the given sector of the model, i.e.
NB = Ne − Ns for Ne ≥ Ns. Formally, NB is an integer
parameter of the model (4), however, our subsequent discus-
sion will apply equally to continuation of this parameter to
any positive real value. In this sense, our following discussion
goes beyond the scope of the model (1). We also note that neg-
ative integer values of NB are also allowed as far as Ne > 0.
In such a case, only the sector of states coupled by positive
real couplings (21) should be considered physical. We will
focus only on sectors with Ne ≥ Ns, although treatment of
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cases with Ne < Ns is similar. We will also introduce two
parameters:

N ≡ 2Ns , (22)

and a nonnegative integer parameter M(n) that is the num-
ber of spins “down” in the state number n, e.g., M(1) = 0,
M(2) = 1, M(N) = Ns, e.t.c.. The meaning of N is the
number of independent connected states in the sector with Ns

spins-1/2 when Ne ≥ Ns.

B. Diabatic and Adiabatic Levels

The nearest sector of the model (4) with more than two
spins has Ns = 3, which, for Ne ≥ Ns, corresponds to di-
mensionality of the model N = 8 with the Hamiltonian:

Ĥ =



ε1 + ε2 + ε3 g1 g1 g1 0 0 0 0
g1 ε1 + ε2 + t 0 0 g2 g2 0 0
g1 0 ε1 + ε3 + t 0 g2 0 g2 0
g1 0 0 ε2 + ε3 + t 0 g2 g2 0
0 g2 g2 0 ε1 + 2t 0 0 g3
0 g2 0 g2 0 ε2 + 2t 0 g3
0 0 g2 g2 0 0 ε3 + 2t g3
0 0 0 0 g3 g3 g3 3t


. (23)

Here, for simplicity, we dropped the termNBt1̂ from the main
diagonal of the matrix (23) because this term can be removed
by a time-dependent change of phases of all diabatic state am-
plitudes [6, 20]; therefore it does not influence transition prob-
abilities and can be disregarded. Note that the definition of
couplings (21) still depends on NB .

Our major method to study models like (23) is based on
the observation that, surprisingly, all known exactly solvable
models of the type (8) with a finite number of interacting states
[20–22, 24, 27, 28] have exact solutions for the scattering ma-
trix that coincide with predictions of the independent cross-
ing approximation, which we described for cases of Demkov-
Osherov and bow-tie models in previous section. Moreover,
all such solvable models have two properties [27, 28]:

(i) the absence of the dynamic phase effect on transition
probabilities in the semiclassical framework, and

(ii) the existence of exact crossings of eigenenergy levels
(i.e. instantaneous eigenvalues of the Hamiltonian as func-
tions of time) that correspond to each intersection of diabatic
levels (i.e. diagonal elements of the Hamiltonian in the dia-
batic basis) without direct couplings in the diabatic level dia-
gram.

Here by the dynamic phase we mean the trivial phase

φdyn = −
∫ ∞
−∞

[βk(t)t+ εk(t)] dt, (24)

where k(t) is the index of the level along a semiclassical tra-
jectory. Its time-dependence follows from the possibility of
switching diabatic level indexes at level crossing points.

LZ-integrability conditions (i)-(ii) have already been used
by one of us to search for new solvable multistate LZ sys-
tems. There are already three different such models that have
been found and solved in [27, 28] despite rigorous mathemat-
ical proof for their integrability is still missing. The major
observation of the present article is that invariant sectors of

FIG. 3. Diabatic levels and couplings between them described by
the Hamiltonian (23). For convenience, equal terms are added to all
slopes of diabatic levels: Ĥ → Ĥ − 1.5t1̂. This is equivalent to a
change of time-dependent phases of state amplitudes, which does not
change transition probabilities. Blue arrows demonstrate the unique
semiclassical path connecting the state |6〉 at t → −∞ to the state
|5〉 at t→ +∞.

the model (4), such as the 8 × 8 model (23), in the nonde-
generate case (e.g., ε1 > ε2 > ε3), also satisfy conditions
of integrability (i)-(ii); therefore, corresponding matrices of
transition probabilities can be obtained exactly by applying
the independent crossing “approximation”.

The structure of diabatic levels of the model (23) is shown
in Fig. 3. By examining all possible semiclassical trajecto-
ries, one can conclude that condition (i) is trivially satisfied
because there is always only a single semiclassical path con-
necting any pair of two states, i.e., there is no interference
of different trajectories connecting the initial and final states.
Therefore, the dynamic phase factorizes and cancels upon tak-
ing the absolute value of the transition amplitude.

In order to test condition (ii), we diagonalized the Hamilto-
nian (23) and obtained its eigenvalues as functions of time, as
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FIG. 4. (Color online) Eigenvalues of the Hamiltonian (23) shown
as functions of time (eigenenergy levels). Parameters are: NB = 1,
ε1 = 2.4, ε2 = 0, ε3 = −1., g = 0.35. For convenience, equal terms
are added to the main diagonal of the Hamiltonian: Ĥ → Ĥ−2.5t1̂.

shown in Fig. 4 for NB = 1 and g = 0.35. At such couplings,
these functions are already quite distorted from the graph of
diabatic levels in Fig. 3. However, one can see visually that
Fig. 4 has ten exact crossing points, which is just the same as
the number of diabatic level crossings in Fig. 3 that are not
marked by direct pairwise couplings.

Certainly, a Hamiltonian eigenvalue level crossing that is
visually looking exact may hide an invisible mini-gap due to
higher order processes. In order to check that this is not the
case, we developed a numerical algorithm to estimate the min-
imal distance between a pair of eigenenergy levels. Accord-
ing to this algorithm, we increase time near a crossing point in
small steps δt and trace changes in the difference of eigenen-
ergies, |En−En+1|, with nearby indexes. We keep going until
this difference stops decreasing. Then we make one step back
and decrease the size of the step by two orders of magnitude
and then repeat the process. After several iterations, we could
estimate the minimal difference |En −En+1| for visually ex-
act crossings to be less than 10−14 at parameters chosen in
Fig. 4. This leaves no doubt that the crossing points in Fig. 4
are truly exact. Therefore, condition (ii) is satisfied.

We also observed the phenomenon that has not appeared in
previous studies of integrable LZ-systems with conditions (i)-
(ii) satisfied. At increasing values of coupling parameter g,
some of the pairs of exact crossing points may approach each
other and, eventually, annihilate with each other. For example,
by increasing g for the model (23) further, only six out of
ten exact crossing points survive. It seems, however, that this
fact does not break integrability of the model. Consequently,
condition (ii) should be reformulated by requiring only that at
sufficiently small but finite values of couplings diabatic level
crossings without direct transitions should give rise to exact
crossings of eigenenergy levels.

C. Solution of Eight-State Model

Consider the unique allowed semiclassical path from the
level-6 to the level-5 that we mark by blue arrows in Fig. 3.
(a) (b)

(f)

(c) (d)

(e)

FIG. 5. (Color online) Comparison of numerical calculations of
transition probabilities with semiclassical solution (25). All dis-
crete points correspond to results of direct numerical solution of
the Schrödinger equation with the Hamiltonian (23) starting at t =
−1000 and changing time up to t = 1000 with a time step size
dt = 0.0001. Solid lines are theoretical predictions of Eq. (25). In
(a) and (b), independence of transition probabilities of energy level
splittings is tested for ε1 = 0.5ε, ε2 = 0, ε3 = −ε. Other parameters
are explained in figures. In (c-f), transition probabilities are shown
as functions of coupling constant g with different initial conditions
at parameter values ε1 = 0.5, ε2 = 0, ε3 = −1. For better visibil-
ity, not all possible transition probabilities are shown at given initial
conditions.

Since LZ integrability conditions (i)-(ii) are satisfied for the
full model (23), the exact value of the probability of the tran-
sition from the level-6 to the level-5 is the product of all pair-
wise LZ transition probabilities encountered during passing
or turning at level intersections with nonzero couplings along
the semiclassical path. In this case, for example, P56 = p2q

2
3 .

Similarly, we can read probabilities of transitions between any
pair of states:
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P̂ =



p31 q1p
2
1 p2q1p1 p22q1 q2q1p1 q2p2q1 p3q2q1 q3q2q1

q1p
2
2 p1p

2
2 q22p2 q22p3 p22q2 p2p3q2 q23q2 p3q3q2

p1q1p2 q21p2 p22p1 p2q
2
2 q2p1p2 q32 p3p2q2 q3p2q2

p21q1 q21p1 p2q
2
1 p22p1 q2q

2
1 q2p2p1 p3q2p1 q3q2p1

q1q2p3 q1q2p3 q2p2p3 q2q
2
3 p22p3 p2q

2
3 q23p3 p23q3

q1p2q2 p1p2q2 q32 q2p3p2 p2q
2
2 p22p3 q23p2 p3q3p2

p1q1q2 q21q2 p2p1q2 p22q2 q22p1 q22p2 p22p3 q3p
2
2

q1q2q3 p1q2q3 q2p2q3 q2q3p3 p22q3 p2q3p3 q3p
2
3 p33


. (25)

D. Numerical Check

In order to test our predictions we solved the Schrödinger
equation for evolution with the Hamiltonian (23) numerically.
We used the algorithm that was described in the supplemental
material for Ref. [29]. According to it, quantum evolution is
simulated from a large negative time and proceeds to a large
positive time with very small time steps of a size dt. At each
time step, the state vector is updated with an evolution opera-
tor, which is approximated by

Û(t, dt) =
(

1̂− iĤ(t)dt/2
)(

1̂ + iĤ(t)dt/2
)−1

, (26)

where Ĥ(t) is the time-dependent matrix Hamiltonian (23),
and 1̂ is the unit matrix. Operator Û (t) is unitary, and up to the
order of o(dt2), it coincides with the true evolution operator,
T̂ e−i

∫ t+dt
t

Ĥ(τ)dτ , where T̂ is the time-ordering operator.
Figure 5 shows excellent agreement between numerical

results (discrete points) and theoretical predictions (solid
curves) for the 8 × 8 Hamiltonian (23) at all considered pa-
rameter values. One important theoretical prediction of the
solution (25) is that all transition probabilities are indepen-
dent of parameters εi, as far as we preserve their relative order
ε1 > ε2 > . . . > εNs

. In Figs. 5(a) and (b), we test this
prediction by varying these parameters. Importantly, when
they are close to zero, i.e., become much smaller than the
coupling constants gi, the independent crossing approxima-
tion cannot be justified, however, numerical solution still does
not show any sign of deviations from analytical predictions of
Eq. (25). Figures 5(c-f) show transition probabilities as func-
tions of the coupling g for different NB and different initial
state vectors. Again, perfect agreement of numerical results
with Eq. (25) at arbitrary values of parameters confirms our
expectation that Eq. (25) provides, actually, the exact nonper-
turbative solution of the multistate LZ problem (23). We also
tested solution (25) at “unphysical” non-integer values of pa-
rameter NB (Fig. 6(b)) and found no difference between the
theory and numerical results. In this sense applicability of our
solution extends beyond the model (4).

The described algorithm is easy-to-realize and it is highly
effective when the number of spins is small, Ns < 4. In such
cases, it produces estimates of transition probabilities with ac-
curacy of two significant digits for twenty different parameter
values in several minutes. However, in addition to exponen-
tially growing number of equations at higher values of Ns,
slow saturation of the solution at large time t and strong oscil-
lations in time require increasingly smaller sizes of time-steps

and a larger full time interval for simulations, making such
simulations unreasonably long to persue. It is likely, however,
that this numerical approach can be improved by employing
interpolation methods that can estimate the solution saturation
value by tracing decay of the oscillation envelope, thus reduc-
ing the simulation time interval considerably.

Finally, we note that when a single spin-photon coupling g
in (1) was replaced in our studies by a set of different param-
eters, γi 6= γj for i 6= j, that described couplings of different
spins to the photon mode, we found that integrability condi-
tion (ii) was not satisfied: Minigaps opened up at intersections
of diabatic levels without direct couplings. In this case, our
numerical studies showed substantial deviations (not shown)
from analytical predictions, such as Eqs. (15) and (25). These
tests provided additional evidence that the agreement of semi-
classical analytical predictions and numerical results are not
typical for the considered problem and parameter values, ex-
cept when semiclassical predictions become for some reason
exact.

IV. HIGHER DIMENSIONAL SECTORS

Explicit solution development for cases with ever higher
number of spins is an increasingly tedious task. We checked
numerically that our observations for Ns = 3 work equally
well at Ns = 4. For example, Fig. 6 shows eigenenergy levels
in the eleven-dimensional sector with Ne = 2. As expected,
there are plenty of exact crossing points to match all cross-
ings of diabatic levels without direct couplings. The case with
Ns = 4 generally leads to the sector dimensionality N = 16
(at Ne ≥ Ns), which would not be illuminating to develop in
this article fully. We will show in the following section that
the degenerate limit, εi = 0, leads to a much smaller subspace
dimensionality that we will be able to test numerically up to
Ns ∼ 20. Here, instead, we would like to examine already ob-
tained results and summarize the common properties that we
believe are valid for any higher dimensional non-degenerate
case.

Let us compare solution (25) for the case Ns = 3 with (15)
for Ns = 2. We can also extend this set by the case Ns =
1 that corresponds just to a two-state LZ model with P11 =
P22 = p1 and P12 = P21 = q1. The following properties
appear to be common for all three cases:

(a) There is an algorithm to obtain an explicit expression
for all transition probabilities by drawing the time-energy di-
agram for diabatic energy levels, such as in Figs. 1-3. There
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FIG. 6. (Color online) Eigenenergy levels of the Hamiltonian (4)
in the sector with Ns = 4 spins and Ne = 2 excitations, which
corresponds to totally eleven interacting states. Parameters are: ε1 =
2.5, ε2 = 1, ε3 = −1., ε4 = −2.; g = 0.32. For convenience, equal
terms are added to the main diagonal of the Hamiltonian: Ĥ →
Ĥ − 3t1̂.

is then a unique path connecting any two diabatic states at
t → ±∞, such as the path from level-6 to level-5 in Fig. 3,
which satisfies conditions of causality and the assumption
that diabatic levels can be switched only at level crossings
with a nonzero direct coupling between corresponding dia-
batic states. After identifying such a path, the transition prob-
ability of the full trajectory is given by the product of all pass-
ing and turning LZ probabilities at encountered level intersec-
tions along this path.

(b) A direct consequence of (a) is that we can write down
the general formula for all elements along the main diago-
nal of the transition probability matrix. These elements corre-
spond to the probabilities of events that the system remains
at the initial diabatic state after the evolution. Since there
is always a unique semiclassical path for any transition in
the model (4), we can identify such a path in the given case
with the path at which the system never turns to other dia-
batic levels. If the initial level has the number m of spins
“down”, then there are m diabatic states with indexes i such
that M(i) = m − 1 that are directly coupled to the initial
state with coupling gm, and there are (Ns − m) states with
M(i) = m + 1 coupled to the initial diabatic state with cou-
pling gm+1. Hence:

Pnn = (pM(n))
M(n)(pM(n)+1)Ns−M(n), (27)

where function M(n) is defined after Eq. (22).
(c) At Ne ≥ Ns, all elements of the transition proba-

bility matrix are products of exactly Ns factors pi or qi,
i = 1, . . . Ns. Expressions, in terms of pi and qi factors, for
transition probabilities from any given level to all other states
are different from each other.

(d) The transition probability matrix, at Ne ≥ Ns, has a
symmetry, namely, let us consider elements of this matrix as
functions of pi and qi: Pnn′ = Pnn′(p1, . . . , pNs

, q1, . . . qNs
),

then

Pnn′(p1, . . . , pNs
, q1, . . . , qNs

) =

PN−n+1,N−n′+1(pNs
, . . . , p1, qNs

, . . . , q1). (28)

For example, if we know a compact expression for transition
probabilities from the state n = 1, i.e., with a minimal num-
ber of initial bosons, to any other state, then we can use the
symmetry (28) to find a similar expression for transition prob-
abilities from the state with index N , i.e. with a maximal
number of initial bosons, in the same invariant sector of the
model (4) at Ne ≥ Ns .

(e) While writing a general closed expression that describes
all possible transition probabilities is an interesting combina-
torial problem that we will leave open, it is possible to guess
what are transition probabilities for the physically most im-
portant case when the initial level has index n′ = 1, i.e., when
the evolution starts with the state having a minimal number of
photons in the cavity mode (all spins up). By comparing cases
withNs = 1, 2, 3, we introduce a conjecture that, for arbitrary
Ns value, the probability of a transition from level n′ = 1 to
level n has the form

Pn1 =

M(n)∏
k=1

qk

M(n)+1∏
r=1

pirr , (29)

where

M(n)+1∑
r=1

ir = Ns −M(n), (30)

and where ir are nonnegative integer numbers. Their zero val-
ues are allowed. Equation (30) does not specify the values of
ir completely but this is not needed if we are interested only
in the probability to find a specific number of flipped spins,m,
at the end of the evolution because the number of all possible
combinations of ir for all levels n withM(n) = m is equal to
the number Ns!/m!(Ns −m)! of all levels with polarization
m. Hence, all possible values of ir contribute to the probabil-
ity to find polarization m after the evolution. One can prove
this by noticing that the number of possibilities to organize
products of m + 1 probability parameters p1, . . . , pm+1 into
all possible products made ofNs−m of them, including terms
of higher powers of the same probability parameter, can be
mapped to the problem of allocatingm+1 bosons intoN−m
different discrete states, which results in Ns!/m!(Ns − m)!
different possibilities.

Let P1→m be the sum ofNs!/m!(Ns−m)! probabilities of
transitions from level-1 to all states with M(n) = m. Then,
after using the property (c), we find

P1→m =

(
m∏
k=1

qk

)
Ns−m∑

i1,...,im+1=0

δi1+...+im+1,Ns−m

m+1∏
r=1

pirr .

(31)
A special case is the probability of the transition from level-1
to level-N , i.e., from the state with all spins fully polarized
“up” into the state with fully polarized “down” spins. In such
a case

PN1 = P1N =

Ns∏
k=1

qk. (32)
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V. SINGLE SPIN COUPLED TO PHOTON MODE

In this section, we explore the degenerate case: εi = 0 for
all i ∈ 1, . . . , Ns. In the Schrödinger equation for amplitudes,
any multiplet with m spins “up” leads to Ns!/m!(Ns − m)!
equations that collapse only to a single equation for the sym-
metric combination of amplitudes, while equations for other
orthogonal state amplitudes in this multiplet completely de-
couple. After decoupling non-symmetric states, the remain-
ing set of equations is equivalent to quantum mechanical evo-
lution with the following Hamiltonian:

Ĥd = tâ†â+ g
(
â†Ŝ− + âŜ+

)
, (33)

where S± are spin raising/lowering operators for a spin size
S = Ns/2. This time-dependent spin-boson model has at-
tracted lots of attention recently due to applications in the the-
ory of dynamic transitions through a quantum critical point
and applications to experiments on molecular condensate cre-
ation by a passage of an ultracold atomic gas through a Fesh-
bach resonance. A number of approximate methods have been
used to study transition probabilities in the model (33), includ-
ing Keldysh technique and adiabatic approximation [30, 31].
It is also known that some of the simpler solvable multistate
LZ models correspond to specific limits of the model (33)
[32, 33]. Therefore, behavior of the model (33) is considered
well understood, at least in the limit of a large spin (S � 1).
Exact solution can, however, shed light on some cases that are
hard to explore with approximate techniques, such as moder-
ate spin sizes and probabilities of rare events.

Here, we will use the same notation, as in previous section,
to mark different diabatic states of the model (33), namely, the
index n ∈ (1, . . . , 2S+1) will mark all diabatic levels starting
from the lowest number of initial bosons. Spin polarization in
the model (33) is related to the index n as Sz = S − n+ 1.

Let us first work out the case with S = 3/2 in detail. The
Hamiltonian (33) then describes the sector with four states that
are obtained from the eight-state sector (23) for the nondegen-
erate model in the limit ε1 = ε2 = ε3 = 0. Let |1〉, . . . , |8〉 be
the eight diabatic states in the nondegenerate case. In the de-
generate limit, diabatic levels with indexes n = 2, 3, 4 become
degenerate with each other, as well as levels with indexes
n = 5, 6, 7. As in the case of the four-state bow-tie model,
let us change the diabatic basis and introduce new states:

|u+〉 ≡
1√
3

(|2〉+ |3〉+ |4〉) , (34)

|u1〉 ≡
1√
2

(|2〉 − |4〉) ,

|u2〉 ≡
1√
6

(|2〉 − 2|3〉+ |4〉) ,

|v+〉 ≡
1√
3

(|5〉+ |6〉+ |7〉) , (35)

|v1〉 ≡
1√
2

(|5〉 − |7〉) ,

|v2〉 ≡
1√
6

(|5〉 − 2|6〉+ |7〉) .

(a) (b)

(c) (d)

FIG. 7. (Color online) Transition probabilities for the degenerate
case with total spin S = 3/2. Different sub-figures correspond
to different initial conditions. Discrete points correspond to results
of numerical simulations of the evolution with the Hamiltonian (36)
from t = −1000 to t = 1000 with a time step size dt = 0.0001.
Solid lines are theoretical predictions of Eq. (39). In all cases,
NB = 1.

In the basis of states |1〉, |u+〉, |v+〉, |8〉, the effective Hamil-
tonian of the degenerate limit of the model (23) reads

Ĥ
(4)
d =


0
√

3g1 0 0√
3g1 t 2g2 0

0 2g2 2t
√

3g3
0 0

√
3g3 3t

 . (36)

One can check by using the spin operator algebra and the def-
inition of parameters (21) that the Hamiltonian (36), indeed,
corresponds to the sector S = 3/2 of the Hamiltonian (33).

Our steps to derive transition probabilities in the model (36)
will be analogous to derivation of Eq. (17) for the case of the
three state bow-tie model, which also corresponds to the sec-
tor S = 1 of the model (33). Thus, transition probabilities
to/from the levels with extremal slopes (Sz = ±3/2) from/to
states |u+〉 or |v+〉 are given by the sum of transition proba-
bilities to all corresponding diabatic states in the model (23)
that become degenerate. For example, in order to find the
transition probability from level-2 to level-1 of the model (36)
one should take the sum of transition probabilities from levels-
2,3,4 to level-1 of the model (23):

P
(4)
12 = q1(p22 + p1p2 + p21).

In the case of transitions between |u+〉 and |v+〉, we have to
include information about probabilities to stay/leave to/from
the decoupled states. The state |u1〉 is coupled only to the state
|v1〉 with coupling g2, and |u2〉 is coupled to |v2〉 also with
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coupling g2. Corresponding transition probabilities between
those pairs of states are described by the standard 2-state LZ
transition probability:

Pu1,u1 = Pv1,v1 = Pu2,u2 = Pv2,v2 = p2, (37)
Pv1,u1

= Pv2,u2
= Pu1,v1 = Pu2,v2 = q2. (38)

By analogy with derivation of the probability to stay in
the second level in the degenerate three-state bow-tie model
that we described at the end of section 2, we equate the
sums of transition probabilities between sets of “becoming-
degenerate” levels in the basis |1〉, . . . , |8〉 of the model (23)
and the sums of corresponding transition probabilities in the

basis (34)-(35):

P
(4)
22 + Pu1,u1

+ Pu2,u2
=

∑
i,j=2,3,4

Pij ,

where Pij are elements of the eight-state probability matrix
(25). Similarly,

P
(4)
32 + Pv1,u1

+ Pv2,u2
=

∑
i=2,3,4

∑
j=5,6,7

Pji.

We can now summarize all such results in a single probability
matrix for the model (36), which we test numerically in Fig. 7:

P̂ (4) =

 p31 q1(p21 + p1p2 + p22) q1q2(p1 + p2 + p3) q1q2q3
q1(p21 + p1p2 + p22) A C q3q2(p3 + p2 + p1)
q1q2(p1 + p2 + p3) C B q3(p23 + p2p3 + p22)
q1q2q3 q3q2(p3 + p2 + p1) q3(p23 + p2p3 + p22) p33

 , (39)

where

C = q2(p22 + 2p2(p3 + p1) + p1p3 + q21 + q22 + q23 − 2),

A = 3p22p1 + p1q
2
1 + p3q

2
2 + 2p2(q21 + q22 − 1),

B = 3p22p3 + p1q
2
2 + p3q

2
3 + 2p2(q22 + q23 − 1).

Here, we would like to point to one useful symmetry of the
transition probability matrix (39):

P
(4)
ij = P

(4)
ji . (40)

This property is, actually, valid for any higher dimensional
sector of the model (33) because, in the matrix form, this
model belongs to the class of multistate LZ-chain models, in
which only couplings between states with nearest indexes are
nonzero. Indeed, for spin S, the only independent nonzero
matrix elements of the Hamiltonian (33) are

(
H

(2S+1)
d

)
nn

=

(n− 1)t, and(
H

(2S+1)
d

)
n,n+1

= gn
√
S(S + 1)− (S − n+ 1)(S − n).

The symmetry (40) was rigorously proved in [34] for any LZ-
chain model.

The worked out examples for S = 1 and S = 3/2 demon-
strate that there is a simple algorithm to obtain the transition
probability matrix for arbitrary S. Symmetric combinations
of “becoming-degenerate” diabatic states and extremal slope
states of the model (4) correspond to the diabatic states of
the desired sector of the model (33). For the latter, transition
probabilities become combinations of ones in the nondegen-
erate model (4) with Ns = 2S and transition probabilities of
the lower-S sectors of the degenerate model.

While there is no doubt that it is possible to automate the
process of deriving explicit expressions for the full transition
probability matrices and fully solve a few higher-dimensional
sectors, the number of terms involved is growing very quickly
with S. Instead, in the rest of this section, we will focus on the
physically most interesting case when the system starts with
a fully polarized state Sz = ±S, i.e., n = 1 or n = 2S + 1.
First, we note that Eq. (31) applies equally to the model (33),
where we can identify parameter Ns with 2S and parameter
m with an index n− 1 of the level of the Hamiltonian (33) to
which the transition is considered. So, in terms of parameters
of the model (33), we have

P1→n =

(
n−1∏
k=1

qk

)
2S+1−n∑
i1,...,in=0

δi1+...+in,2S+1−n

n∏
r=1

pirr .

(41)
Moreover, using the symmetry (28), we can write a formula
for the transition from the state number 2S + 1:

P2S+1→n =

(
2S∏
k=n

qk

)
× (42)

n−1∑
i(n−1),...,i2S=0

δi(n−1)+...+i2S ,n−1

2S∏
r=n−1

pirr .

In Figs. 8 and 9, we compare theoretical predictions of
Eqs. (41)-(42) with our results of the direct numerical solu-
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FIG. 8. (Color online) Transition probabilities P1→n ≡ P
(2S+1)
n1

from the state n = 1 (Sz = S) to other states for evolution with the
Hamiltonian (33) in the sector with 16 states (S = 15/2) at different
coupling strengths. Theoretical predictions (dots on vertical lines)
of Eq. (41) are compared to results of direct numerical simulations
(empty boxes) Time evolution is from t = −2000 to t = 2000 with
time step dt = 0.00005. In all cases, NB = 0.

tion of the Schrödinger equation for two different sectors of
the model (33). Since the matrix Hamiltonian of the model
(33) has nonzero elements only along the main and the next to
the main diagonals, we can accelerate our simulations by ap-
plying the leap-frog algorithm to invert matrices, which scales
as NLog(N) with the size N of the matrix. This allows us to
check our theoretical predictions for considerably larger phase
space sizes than in previous sections. Therefore, Figs. 8 and
9 serve also as a test of our conjectures made about higher
dimensional sectors of the model (4).

Figure 8 corresponds to the initially polarized state without
bosons. Subfigures (a)-(d) show results at progressively larger
values of the coupling parameter g. At moderate values of
coupling, there is a phase (case (b-c)) at which practically all
states have substantially nonzero probabilities to be populated
at the end of the evolution. This is the result of the positive
feedback induced by the emission of bosons, which leads to
amplification of quantum fluctuations.

Figure 9 shows transition probabilities in the opposite pro-
cess when the spin is initially fully polarized “down” but there
are 2S photons that it can absorb. In this case, very small val-
ues of g are sufficient to produce substantial transition proba-
bilities, as shown in Fig. 9(a). By increasing g, the final dis-
tribution has a shape of a localized wavepacket that moves
towards the state with zero number of bosons with increasing
g (Figs. 9(b-c)). Eventually, at large g, the final distribution
becomes sharply peaked near the state with Sz = S.

FIG. 9. (Color online) Comparison of theoretical predictions (dots on
vertical lines) of Eq. (42) and numerical simulations (empty boxes)
for evolution with the Hamiltonian (33) in the sector with 18 states
(S = 17/2) at different coupling strengths. Time evolution is from
t = −2000 to t = 2000 with time step dt = 0.00005. In all
cases, NB = 0. Evolution starts with the fully polarized spin state
Sz = −S with 2S bosons, which corresponds to n = 2S + 1 = 18.

VI. DISCUSSION

We explored the cavity QED model of spins interacting
with a single optical mode in a linearly time-dependent field.
This model and its degenerate version (33) have already en-
countered in the literature with diverse applications, from cav-
ity QED to transitions through the Feshbach resonance in
molecular condensates [30–32]. Certainly, existence of an ex-
act solution can help to extend the discussion of these applica-
tions. For example, the semiclassical limit of the model (33)
corresponds to an explicitly time-dependent classical Hamil-
tonian dynamics with connections to the Painlevé (PII) equa-
tion [31]. It would be insightful to explore whether the semi-
classical limit of our solution can lead to the exact solution of
such a classical system.

Despite a number of fully solvable multistate LZ models
has been known, all such models describe relatively simple
situations, such as interactions of many uncoupled to each
other levels with a single level [21, 23]. Many known solvable
cases are, in fact, reducible in the sense that they can be de-
coupled into a set of independent Demkov-Osherov, bow-tie,
or two-state LZ models by applying simple well-characterized
symmetry transformations [24]. Only recently, conditions of
integrability, which we discussed in section 3B, have been
used by one of us to uncover a few more relatively small-size
solvable models [27, 28].

Perhaps, the most important achievement of our work is
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the demonstration that systems with very complex many-
body interacting Hamiltonians can be solvable at conditions
of arbitrarily strong nonadiabatic driving of model parame-
ters. Surprisingly, our final solution for the transition prob-
ability matrix appears to be relatively simple; it is expressed
only via elementary functions. This is in contrast to the time-
independent case, whose solution generally can be written
only implicitly via the roots of nonlinear algebraic equations.
Moreover, analysis of the independent crossing approxima-
tion, which we used to obtain transition probability matri-
ces in this article, appears to be even simpler than in models
[27, 28] that were previously derived using the same integra-
bility conditions. Namely, in the case of the model (4), there
is no interference between different semiclassical trajectories
that connect different initial and final states in the independent
crossing approximation. This strongly suggests that the class
of fully integrable multistate LZ models can be substantially
extended and it is important to continue developing the theory
of quantum integrability of multistate LZ systems in order to
obtain the means to deal with strongly interacting nonstation-
ary problems in quantum mechanics.

Several questions need to be resolved within this theory.
Until now, there is no mathematically rigorous proof of the LZ
integrability conditions introduced in [27, 28]. Their validity
is supported only by considerable amount of numerical tests
for models that have been solved by using such conditions and
by a number of models that have been solved analytically by

alternative methods. It is unclear whether there are counterex-
amples or further restrictions on these conditions. They do not
provide a direct path to derive new solvable models. Rather
they serve as a test that a model should pass in order to be
solvable by the semiclassical ansatz.

The most important clue that LZ integrability conditions
provide is that they request the existence of exact adiabatic
energy crossing points that must encounter when one is vary-
ing a single model parameter, which is also often the prop-
erty of quantum integrable systems solvable by the algebraic
Bethe ansatz. Recently, the reasons for the presence of such
crossing points were questioned, and a new type of a dynamic
symmetry based on the existence of nontrivial “commuting
partner Hamiltonians” was suggested to explain it [35]. Both
Demkov-Osherov and bow-tie models have been shown to
possess such commuting partners [36]. This observation may
be used to uncover new candidate LZ models that can be ex-
actly solved. Finally, we would like to mention that the Stokes
phenomenon has peculiar properties in multistate LZ systems
[34, 37]. Its relation to the LZ-integrability is another peace
of the puzzle.
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