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We rigorously establish an Arrhenius law for the mixing time of quantum doubles based on any Abelian

group Zd. We have made the concept of the energy barrier therein mathematically well-defined, it is related

to the minimum energy cost the environment has to provide to the system in order to produce a generalized

Pauli error, maximized for any generalized Pauli errors, not only logical operators. We evaluate this generalized

energy barrier in Abelian quantum double models and find it to be a constant independent of system size. Thus,

we rule out the possibility of entropic protection for this broad group of models.

PACS numbers:

I. INTRODUCTION

Whether it is possible to preserve arbitrary quantum infor-

mation over a long period of time is a question of both funda-

mental and practical interest. Active quantum error correction

provides a way to protect quantum information but requires

keeping track of and correcting the errors over a short time

scale. Alternatively, quantum self-correcting systems would

passively preserve quantum information in the presence of a

thermal environment without the need for external interven-

tion on the system. The dynamics of these quantum ”memo-

ries” would be such that the probability of an error occurring

on the encoded information is exponentially suppressed with

system size, resulting in an exponentially long memory time.

Candidates for self-correction are typically systems governed

by a local Hamiltonian whose degenerate ground space stores

quantum information.

Assessing whether a system is self-correcting requires esti-

mating the scaling of its memory time with system size. This

difficult problem is often reduced to evaluating the energy bar-

rier, loosely defined as the maximal energy of intermediate

states in a sequence of local transformations taking a ground

state to an orthogonal ground state, minimized over all such

possible sequences. This sequence of excited states mimics

the evolution of the system under thermalization and decod-

ing. The intuition (and implicit conjecture) is that the system

obeys the phenomenological Arrhenius law which relates the

memory time tmem to the energy barrier ∆E∗ and the inverse

temperature β ≡ 1/kBT

tmem ∝ eβ∆E∗

(1)

The Arrhenius law is a useful guiding principle. For clas-

sical models, one can intuitively understand the exponentially

long (classical) memory time of the ferromagnetic 2D Ising

model by realizing that its energy barrier is proportional to

the linear system size. Indeed, to go from the all up state to

the all down state, one needs to flip a macroscopic droplet

of spins whose energy scale with its perimeter. For quantum

models, the most widely known example of a self-correcting

quantum memory is the 4D Kitaev’s toric code [1–3] whose

energy barrier is also proportional to the linear system size.

The scaling energy barrier of a quantum model is intimately

related to the geometrical support of operators mapping a

ground state to a different orthogonal ground state, called

logical operators. For the 4D toric code, logical operators

are tensor product of single qubit operators acting on a two-

dimensional sheet-like subset of qubits, similar to the logical

operator of the 2D Ising model which flips all spins.

While the 4D Kitaev’s toric code is self-correcting, it re-

quires addressable long-range interactions if embedded in a

lattice of lower dimensionality. Various attempts have been

made to decrease the dimensionality of such a self-correcting

code, while retaining a large energy barrier of the system [4–

6]. A typical shortcomings of these codes includes sensitiv-

ity to perturbations [7], while genuine topological systems are

known to be robust [8]. Finding a self-correcting system in

three dimensions (or lower) is still an open question.

Following the intuition based on the Arrhenius law, it is

believed that quantum self-correction requires a scaling en-

ergy barrier, i.e., an energy barrier that is an increasing func-

tion of system size. However, a formal relation between self-

correction and a scaling energy barrier has not been estab-

lished and the Arrhenius law has only be proven for a few

models while there are known counterexamples. Moreover, it

was recently suggested that there might exist a different kind

of protection [9], one that does not require a scaling energy

barrier, coined entropy protection. The intuition is that while

there exist paths in phase space mapping a ground state to

an orthogonal ground state while only introducing a constant

amount of energy, these paths might not be the typical. Typ-

ical paths, however, might require the system to go through

a scaling energy barrier. We could think of such a model as

having an effective free energy barrier, i.e., there are free en-

ergy valleys in the landscape between the two ground states

and in order to get out of such a valley the system would have

to overcome an effective barrier.

In 2014, Brown et al. proposed a local 2D Hamiltonian

which seemed to realize entropy protection [10] since its

memory time exhibits a super exponential scaling, albeit only

in a limited range of temperature. This model consists of a

toric code-like structure, where instead of qubits d-level spins

(qudits) are placed on the edges of a square lattice. This

model also corresponds to the quantum double of Zd. Its
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elementary excitations are d different electric and d differ-

ent magnetic anyons. Specifically, in Ref. [10] d = 5, and

due to charge-flux duality, it is convenient to think only in

terms of e.g. electric charges. Then there are 5 different

charges, grouped as: vacuum, light particle, heavy particle,

heavy antiparticle, light antiparticle. Particle-antiparticle pairs

have the same mass, furthermore the masses are set such that

mheavy > 2mlight to ensure that thermal evolution of the sys-

tem favours the decay of a heavy particle into two light par-

ticles. The authors of Ref. [10] further introduce defect lines

to the system by modifying local terms of the Hamiltonian.

When a light particle crosses such a line, it becomes a heavy

one and vice versa. This construction results in fractal-like

splitting of typical anyon-paths, resembling the fractal geo-

metrical support of logical operators in Haah’s cubic code

[11, 12]. The authors of Ref. [10] numerically observed a

memory time for this entropic code similar to the cubic code,

that is, it grows super-exponentially with the inverse temper-

ature (tmem ∝ exp(cβ2)). A striking difference between the

cubic code and Brown’s entropic code is, however, that while

the former has an energy barrier that grows logarithmically

with system size, the energy barrier of the entropic code is

a constant, independent of system size. Thus, Brown’s en-

tropic code seems to have a better scaling of memory time

than the one predicted by the Arrhenius law. However, it was

also remarked that the super-exponential scaling did not re-

main valid at arbitrarily low temperature, i.e. in the limit of

very large β. Thus, Brown’s entropic code argues for the pos-

sibility of entropy protection but failed to settle the question

whether entropy can protect quantum information and lead to

a better scaling of than memory time than the one predicted

by Arrhenius law.

Here, we settle this question in the negative by proving that

a scaling energy barrier is necessary for self-correction for any

quantum double model of an Abelian group, a general frame-

work which contains Brown’s entropic code. Thus, entropy

cannot protect quantum information in the absence of a scal-

ing energy barrier for those models. Technically, we establish

a rigorous version of the Arrhenius law as an upper bound for

the mixing time of quantum doubles of Abelian groups. We

prove that the mixing time –defined as the longest time an ini-

tial state takes to thermalize to the Gibbs state– and thus the

memory time are upper bounded by poly(N) exp(2βǫ) where

N is the size of the system and ǫ is the generalized energy bar-

rier. We rigorously define ǫ by a natural quantity arising from

our analysis which straightforwardly extends the intuitive no-

tion of energy barrier. Finally, we evaluate the generalized

energy barrier and show that it is independent of system size

or temperature for two-dimensional Abelian quantum double

models. As our bound holds for any temperature, this means

that Abelian quantum doubles don’t allow for entropy protec-

tion, i.e., their memory time can at most scale exponentially

with inverse temperature. Our results are based on the method

presented in Ref. [13] and are a generalization of the results

therein, where the author has derived a similar Arrhenius law

bound and energy barrier for any commuting Pauli stabilizer

codes in any dimensions.

The paper is organized as follows. In Sec. II A and II B we

introduce the framework of our analysis: the construction of

Abelian quantum doubles and the noise model used to simu-

late the thermal environment. In Sec. III we present our main

result: the upper bound on the mixing time and the formula for

the generalized energy barrier, followed by a discussion on the

physical interpretation of this result in Sec. IV. We present the

details of the derivation of the bound in Sec. V. Finally, we

conclude with possible future directions in Sec. VI.

II. FRAMEWORK

We now introduce the framework in which our result is

valid. First, we introduce the systems of interests, i.e. the

quantum double of Abelian groups. Second, we model the

thermalization of such a system by the Davies map.

A. Abelian quantum doubles

Abelian quantum doubles are a special case of the quan-

tum double construction introduced by Kitaev [1], where the

quantum double is based on the cyclic group Zd. This was the

model investigated in Ref. [10] with d = 5, and it is a gener-

alized toric code construction (the toric code is the quantum

double of Z2) acting on d-level spins or qudits.

1. Generalized Pauli operators

We will choose a basis for the Hilbert space of a qudit to

be labelled by orthonormal states {| ℓ〉} where ℓ ∈ Zd
∼=

{0, . . . , d− 1}. We introduce the generalized Pauli operators,

Xk and Zk, k ∈ Zd. They act on a qudit according to:

Xk |ℓ〉 = |ℓ⊕ k〉 , (2)

Zk |ℓ〉 = ωkℓ |ℓ〉 , (3)

where ⊕ is the addition modulo d and ωℓ = exp(i2πℓ/d),
ℓ ∈ Zd are the dth roots of unity. The eigenvalues of the

Z generalized Pauli operator but also the X generalized Pauli

operator are precisely the dth roots of unity. In our convention,

the identity is a generalized Pauli operators with k = 0. One

can straightforwardly derive the following useful identities

X† = Xd−1 Z† = Zd−1 Zk′

Xk = ωkk′

XkZk′

. (4)

2. Hamiltonian

We now define the Hamiltonian of the quantum double of

Zd on 2N d-level spins or qudits located on the edge of a

two dimensional square lattice with N vertices. We define

a (generalized) Pauli operator to be a 2N -tensor product of

single-qudit (generalized) Pauli operator Xk or Zk, k ∈ Zd.

For convenience, we will henceforth omit the (generalized)

modifier. We note PM the set of Pauli operators acting non-

trivially on at most M ≤ 2N qudits. The qudits on which a

Pauli operator acts non-trivially are its (geometrical) support.
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FIG. 1: (a) Star operator A(v) in blue and plaquette operator B(p) in

red. A defect line is shown as a thick gray line traversing the lattice,

with the modified star and plaquette operators near such a line in

orange. (b) Examples of anyon paths for an Abelian quantum double

(d > 2).

The local interactions of the Hamiltonian will be Pauli op-

erators supported on four qudits neighbouring either a vertex

v of the lattice for star operatorsA(v) or a plaquette p for pla-

quette operators B(p), see Fig. 1(a). A star (and a plaquette)

is the union of four edges or, equivalently, qudits located on

those edges. It is convenient to label the qudits around a star

+ or plaquette � using the cardinal points: East, South, West

and North. The star operator A(v) for vertex v is

A(vi) = XE ⊗XS ⊗X†
W ⊗X†

N (E, S,W,N) = +v (5)

and the plaquette operatorB(p) for plaquette p is

B(p) = ZE ⊗ Z†
S ⊗ Z†

W ⊗ ZN (E, S,W,N) = �p. (6)

The eigenvalues of star and plaquette operators are the dth

roots of unity, inherited from the single-qudit Pauli operators.

The projector unto the eigenvalue ωa of the star operator at

vertex v is

P a(v)
v =

1

d

d−1
∑

k=0

(ωaA(v))k. (7)

Similarly, the projector unto the eigenvalueωa of the plaquette

operator at plaquette p is

Qb(p)
p =

1

d

d−1
∑

k=0

(ωbB(p))k. (8)

Note that those projectors commute since every star operator

commute with every plaquette operator.

The Hamiltonian of the Zd quantum double is [1, 10]

H =
∑

v

d−1
∑

a=0

Ja(v)
v P a(v)

v +
∑

p

d−1
∑

b=0

Jb(p)
p Qb(p)

p , (9)

where J
a(v)
v and J

b(p)
p are non-negative numbers. We set

∀v, p J0
v = J0

p = 0 such that a ground state |Ω〉 is a com-

mon +1 eigenvector of all P 0
v and Q0

p

∀v, p P 0
v |Ω〉 = Q0

p|Ω〉 = +|Ω〉. (10)

FIG. 2: (a) Anyon pair created from vacuum, (b) one of the anyons

moved and (c) the pair fused back to vacuum, all the while applying

local operators.

The ground space is degenerate whenever this Hamiltonian is

defined on a manifold with non-zero genus. For instance, on

a square lattice with periodic boundary condition, i.e., a torus,

the ground space is d2-degenerate and can be used to encode

quantum information. The positive numbers J
a(v)
v and J

b(p)
p

for non-zero a and b can physically be interpreted as masses of

the different excitations of the model, which we now discuss.

3. Excitations and syndromes

Every spectral projector P
a(v)
v andQ

b(p)
p are pairwise com-

muting. Moreover, they commute with the Hamiltonian.

Thus, it is convenient to label an energy eigenvector |ψ〉 using

the quantum numbers a = {av} and b = {bp} defined by

av = 〈ψ |A(v)|ψ〉 (11)

bp = 〈ψ |B(p)|ψ〉. (12)

Using the terminology of quantum error correction, we define

the syndrome of |ψ〉 by

e(|ψ〉) = (a,b) ∈ ZN+N
d . (13)

Hence, the Hamiltonian can be diagonalized using the differ-

ent syndrome values, i.e.,

H =
∑

(a,b)

ǫ(a,b)Π(a,b), (14)

where the explicit formula for the energies ǫ(a,b) and projec-

tors Π(a,b) can be found in Sec. V A. Let us try to draw a

physical picture which will help intuition.

The syndrome of an energy eigenvector is a bookkeeping of

the different excitations at every vertex and plaquette. The +1

eigenvectors ofP
a(v)
v for a(v) 6= 0 have a point-like excitation

located on the vertex v which we call an electric charge (or

chargeon) of type a. Similarly, the +1 eigenvectors of Q
b(p)
p

for b(p) 6= 0 have a point-like excitation located on the pla-

quette p which we call a magnetic flux (or fluxon) of type b.
The ground states of the Hamiltonian have syndrome (0,0).

Physically, the point-like excitations can (i) be created out

of the vacuum by applying a local operator on a ground state,

(ii) propagate on the lattice and (iii) annihilate back to the vac-

uum by applying a local operator. This can be understood at

the level of the syndrome. Consider on a ground state and then

apply a generalized Pauli operator Xk on a qudit located on a
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horizontal edge (see Fig. 2). This will modify the eigenvalues

of the plaquette operators North and South of that horizontal

edge, denoted B(pN ) and B(pS). Indeed, the resulting state

will be a +1 eigenvector of the spectral projectors Q−k
pN

and

Qk
pS

. Physically, Xk created a magnetic flux of type k (resp.

−k) on the South (resp. North) plaquettes. In other words,

Xk created a pair of conjugate magnetic fluxes out of the vac-

uum. Similarly, Zk would create a pair of conjugate electric

charges out of the vacuum. We assign to any generalized Pauli

operator ση the syndrome e(η) of the state ση |Ω〉

e(η) = e(ση|Ω〉). (15)

In our examples,

e(Xk) = (a = 0,b = [0, . . . , 0, k,−k, 0, . . . , 0]) (16)

e(Zk) = (a = [0, . . . , 0, k,−k, 0, . . . , 0] ,b = 0). (17)

Given any energy eigenvector |ψ〉 and any generalized Pauli

operator η, the syndrome of the state ση|ψ〉 is obtained by

e(ση|ψ〉) = e(η)⊕ e(|ψ〉). (18)

This very simple addition rule stems for the Abelian structure

of the group Zd and is related to the fusion rules of the excita-

tions of this Abelian topological model.

Fluxons and chargeons turn out to be (Abelian) anyons, i.e.,

quasi-particles which are not bosonic nor fermionic. Yet their

anyonic nature will not be essential in our work. However, we

will from now on use the term anyon to designate a generic

point-like excitation (either a fluxon or a chargeon). More-

over, chargeons and fluxons are related by an exact duality

which maps the lattice to the dual lattice. Thus, it will often

be convenient to focus on a single anyon type, e.g., chargeons

in order to simplify our discussion and notations. Also, we

would like to introduce a single index s which labels either

the vertices or the plaquettes, i.e., s = v/p. Thus, any anyon

(chargeon or fluxon) is located on a site (vertex or plaquette).

B. Thermal noise model

The model used in our work to simulate the thermalization

process of the quantum double is the Davies map [14, 15], the

gold standard for simulating the thermalization of many body

systems [3, 10, 12, 16]. The system is coupled to a bosonic

bath and the Hamiltonian of {system+bath} reads

Hfull = Hsystem + χ
∑

α

Sα ⊗Bα +Hbath, (19)

where Bα is the operator acting on the bath and Sα ≡ Sj
α′ is

an operator acting on spin j of the system. We consider the

weak coupling limit, with χ≪ 1.

The density operator of the system, noted ρ, evolves ac-

cording to the master equation

dρ

dt
= −i[Heff, ρ] + L(ρ), (20)

where Heff is the (Lamb-shifted) system Hamiltonian Heff =
Hsystem +

∑

α,ω S
†
α(ω)Sα(ω) and the Liouvillian is

L(ρ) =
∑

α,ω

γα(ω)

(

Sα(ω)ρS
†
α(ω)−

1

2
{S†

α(ω)Sα(ω), ρ}+
)

.

(21)

The operators governing the evolution of the system in energy

space are the spectral jump operators, Sα(ω). They take the

system from energy eigenstate ǫ′ to another eigenstate with

energy ǫ = ǫ′ + ω, and have the form

Sα(ω) =
∑

ǫ(a,b)−ǫ(a′,b′)=ω

Π(a,b)SαΠ(a
′,b′). (22)

They are the Fourier transforms of Sα(t) (the time-dependent

operator acting on the system due to its contact with the ther-

mal bath):

Sα(t) =
∑

(a,b),(a′,b′)

eiǫ(a,b)tΠ(a,b)SαΠ(a
′,b′)e−iǫ(a′,b′)t.

(23)

The rate with which a state of the system is taken to another

state ω far in energy, by applying the jump operator Sα(ω)
due to its coupling to the thermal bath is the transition rate

γα(ω). These transition rates obey detailed balance

γα(ω) = eβωγα(−ω). (24)

This Liouvillian drives any state towards the Gibbs state

ρG ∝ e−βHsystem (25)

which is its unique fixed point: L(ρG) = 0.

Applying the Davies map to a Zd quantum double we need

to choose an operator basis for the jump operators Sα. For

d = 2, a possible choice is the Pauli group, while for d > 2
it is the generalized Pauli group. We should be careful, since

although the elements of the Pauli group are Hermitian, the

elements of the generalized group are not: X† = Xd−1. We

can circumvent this problem by either writing the interaction

terms in the full Hamiltonian as σj,α′ ⊗ B†
α + σ†

j,α′ ⊗ Bα

with σj,α′=(l,m) = Z l
jX

m
j , thus Sj,α′ = Z l

jX
m
j as in the Z2

case, or by constructing Hermitian jump operators: Sj,α′ =

1/
√
2(σj,α′ + σ†

j,α′). Independent of which choice we make,

our results in the following sections are the same.

III. GENERALIZED ENERGY BARRIER

We establish a formerly ill-defined link between the energy

barrier of a system and its mixing time for Abelian quantum

doubles. We prove a rigorous Arrhenius law upper bound for

the mixing time (Sec. III B, details of the proof in section V),

and give a proper definition for the energy barrier appearing in

that bound (Sec. III A). In section III C we evaluate this energy

barrier for Abelian quantum doubles in two dimensions and

find it is a constant independent of system size or temperature.



5

A. Definition of the generalized energy barrier

Recall from the introduction that the energy barrier is intu-

itively related to the decomposition of operators acting non-

trivially within the ground space (logical operators) into a se-

quence of local operators. Surprisingly, the generalized en-

ergy barrier arising from our analysis is related to the energy

cost of building an arbitrary Pauli operator. This seems to go

against intuition since an arbitrary Pauli operator ση ∈ P2N

can create an extensive amount of energy. However, excita-

tions which appear in the final error configuration e(η) cre-

ated by the Pauli operator will not contribute towards the gen-

eralized energy barrier: only intermediate excitations created

in the sequential construction of this final error configuration

do. Note that if ση is a logical operator, the generalized energy

barrier coincides with the intuitive energy barrier.

The idea is thus to consider sequences of Pauli operators
{

σηt

}

which sequentially build the operator ση by applying

Pauli operators acting on a single qudit. We call such a se-

quence a local errors path. Indeed, we think of η as the index

of the final error which we sequentially build through single

qudit errors such that the error at step t is indexed by ηt.

Definition 1 (Local errors path) A local errors path

{σηt}t≥0 is a sequence of Pauli operators such that

σηt=0 = I (26)

locality ∀t ∃P ∈ P1 σηt+1 = P · σηt (27)

convergence ∃ ση, T t > T ⇒ σηt = ση (28)

At any intermediate step t ≤ T , the Pauli operator σηt will

create a syndrome e(ηt) corresponding to a pattern of anyons.

At every site, only the energy of an anyon whose charge is dif-

ferent from the one in the syndrome e(η) contribute towards

the energy barrier. Formally, we define the additional energy

of the error indexed by ηt with respect to the error indexed by

η as

Definition 2 (Additional energy) Let ηt and η be indices of

two Pauli operators. The additional energy of the error σηt

with respect to the reference operator ση is

ǫ(ηt|η) =
∑

s

Jes(η
t)

s

(

1− δes(ηt),0

) (

1− δes(ηt),es(η)

)

(29)

Note that in Eq. (29), summands do not contribute if

es(η
t) = 0, i.e., if the intermediate error does not create ex-

citations on site s but also if es(η
t) = es(η), i.e., if the in-

termediate error creates the same excitation on site s as the

reference error ση.

We are now in position to define the generalized energy bar-

rier of an error ση and then of the Hamiltonian.

Definition 3 (Generalized energy barrier) Let {σηt} be an

arbitrary local errors path converging to the Pauli operator

ση ∈ P2N . The generalized energy barrier of ση is

ǫ(η) = min
{σ

ηt}→ση

max
t
ǫ(ηt|η) (30)

The generalized energy barrier of the Hamiltonian H is

ǫ(H) = max
η

ǫ(η). (31)

In the next section, we will now introduce the mixing time,

an upper bound on the quantum memory time, and then in-

troduce our bound which relates it to the generalized energy

barrier through a formula similar to the Arrhenius law given

in Eq. (1).

B. Arrhenius upper bound on the mixing time

We define the mixing time as the time scale after which

the evolution of any initial state of the system becomes

ε = e−1/2-indistinguishable from the Gibbs state defined by

Eq. (25). The ε = e−1/2 value is chosen so the relationship

between the mixing time and the gap of the Liouvillian will

have a convenient form, and the exact value won’t modify ei-

ther the qualitative aspect of our calculations or the scaling of

the bound obtained on the mixing time.

Definition 4 (Mixing time) The mixing time of a Liouvillian

(whose fixed point is the Gibbs state ρG) is

tmix(ε) = min{t | t′ > t⇒ ||eLt′ρ0 − ρG||1 < ε ∀ρ0}, (32)

with ε = e−1/2.

where we used the trace norm, ||A||1 = Tr
[√
A†A

]

, to mea-

sure the (in)distinguishability of two quantum states.

Loosely defining the quantum memory time as the maximal

time after which one can recover information about the initial

ground state, we immediately see it is upper bounded by the

mixing time. Indeed, the Gibbs state treats all ground state on

the same footing and thus information about the initial ground

state has disappeared. We do not provide a formal definition

of the quantum memory time in this work.

Our main result relates the generalized energy barrier to the

mixing time through a relation similar to the Arrhenius law.

Theorem 5 (Arrhenius bound on mixing time) For any

Abelian group Zd, for any inverse temperature β, the mixing

time of the Davies map Liouvillian of the quantum double of

Zd is upper bounded by

tmix ≤ O
(

βNµ(N)eβ(2ǭ+∆)
)

, (33)

where 2N is the number of qudits in the system, ∆ is the gap

of the system Hamiltonian, ǭ is the generalized energy bar-

rier and µ(N) defined by Eq. (36) is the length of the longest

optimal local errors path.

The derivation of this result can be found in section V. We

will now show that for Abelian quantum double, ǭ is bounded

by a constant independent of system size in Sec. III C and that

µ(N) is bounded by 8N(d− 1) in Sec. III D. The right hand

side of Eq. (33) has a dependence on a low power of N , that
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does not qualitatively modify the scaling of the mixing time

nor the behaviour of the system when considered as a candi-

date for a quantum memory. The important physical quality

of this bound is the Arrhenius law scaling. This scaling is set

by the gap of the system Hamiltonian but, more interestingly,

by the generalized energy barrier, which we now evaluate.

C. The generalized energy barrier is a constant for Abelian

quantum doubles

We will now evaluate the generalized energy barrier of any

2D quantum double of an Abelian group and show that it is

a constant, independent of system size, more precisely 2Jmax.

While this was known for the Z2 case [13], we extend it to any

Zd quantum double. From now on, we consider a Zd quantum

double, with arbitrary d. Furthermore, we henceforth omit

the ’generalized’ modifier in (generalized) energy barrier for

simplicity.

To evaluate the energy barrier of the Hamiltonian, given by

Eq. (31), we want to bound the barrier of an arbitrary Pauli

operator, given by Eq. (30). Thus, we aim to exhibit a local

errors path where the additional energy of any intermediate

error is a constant. To do so, we will use the following strat-

egy. We will first turn the final error syndrome into a weighted

directed graph intuitively corresponding to the worldlines of

anyons. Then, we will decompose that graph into cycles and

trees. Cycles correspond to pair of conjugate anyons appear-

ing out of the vacuum, propagating and then fusing back to the

vacuum. Trees represent propagation of anyons, whose posi-

tion (resp. word lines) correspond to terminal vertex (resp.

edges) of the tree. Finally, using different techniques for cy-

cles and trees, we show how to build the error of each type

by moving at most one anyon at a time in a way that the ad-

ditional energy of any intermediate error involve at most two

local terms of the Hamiltonian, resulting in an energy barrier

of at most 2Jmax.

1. Graph corresponding to an error configuration

• Any error is the product of elementary errors whose

supports are disjoint. The energy barrier of the error

is the largest energy barrier of its elementary errors.

Let’s consider an arbitrary error, i.e., a Pauli operator.

Its geometrical support, i.e., qudits on which it acts

non-trivially, splits into connected components. We can

decompose the global operator into a product of ele-

mentary operators, each of which is supported on one

connected component. No terms of the Hamiltonian

has support which intersect two connected components.

Thus, we can choose the local errors path so that ele-

mentary errors are built sequentially. In any intermedi-

ate error, there is a unique elementary error under con-

struction. The other elementary errors are either not

constructed yet, or already constructed. In either case,

they do not contribute towards the energy barrier.

• Any elementary error can be interpreted as anyons de-

caying and fusing together, thus forming a fully con-

nected, directed graph with weighted edges. Due to

charge conservation, this graph is a flow.

The error is a tensor product of single-qudit Pauli oper-

ators which create pair of conjugate anyons out of the

vacuum, fuse and move anyons. Thus, to every ele-

mentary error, we can associate a graph with weighted

edges, often referred to as string-nets in the literature.

Such a graph is depicted on Fig. 3.

A terminal vertex, i.e., a vertex of valency 1, is an

anyon. It is convenient to label terminal vertices by their

anyonic charge, i.e., the value of the syndrome of the el-

ementary error on that site. Other vertices correspond

to world lines of anyons. Vertices are linked by an edge

of weight k if the errors between them correspond to

moving an anyon of charge k along the orientation of

the edge. An edge of weight k connecting site i to site

j is equivalent to an edge of weight d− k connecting j
to i.

At this point, we have built a directed graph satisfy-

ing weight conservation at every vertex. Indeed, weight

conservation in the graph is equivalent to charge conser-

vation of the anyons in this Abelian topological model.

Such a graph is called a graph flow.

2. Decomposing the graph into cycles and trees

We now use a well-known result from flow theory: any flow

can be partitioned into three sets: a rotational and an irro-

tational flow and a harmonic component (Helmholtz-Hodge

decomposition) [17].

On this discrete geometry of a graph, the rotational flow

consist of loops (a.k.a cycles), the irrotational flow consists

of trees which can be thought as union of strings and the har-

monic part consist of irrotational flows on the non-contractible

cycles.

This decomposition can be physical interpreted in terms of

anyons which we now do in order to evaluate the energy bar-

rier. Remember the rules of the additional energy, defined in

Definition. 2 : an intermediate error has additional energy if

an anyon at a given site is not the anyon created by the ref-

erence error. The goal is now to build the reference error by

introducing as little additional energy as possible.

3. Evaluating the energy barrier

Loops correspond to a particle-antiparticle pair appearing

out of the vacuum, then propagating and eventually fusing

back to the vacuum. Such a configuration can be created by

moving two anyons. Thus, loops have an energy barrier cor-

responding to the energy of two anyons.

We now explain how to construct an error whose support is

a tree.
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FIG. 3: Illustration of the steps towards constructing the optimal

canonical path for quantum double Z5: (a) the support of the error

can be partitioned into three connected components, coloured in red,

blue and green; (b) each elementary error can be interpreted as fu-

sions, decays and moving of anyons; (c) an elementary error can be

mapped onto a fully connected directed graph with weighted edges

(reversing the orientation of an edge changes the weight from k to

d − k); (d) this can be interpreted as a flow of charges; (e) the flow

can be partitioned into a rotational (blue) and irrotational (red) part;

and (f) these different partitionings of the flow are all equivalent to

applying the same combination of operators in either loops or strings.

We can consider the tree to be a superposition of strings,

each string corresponding to a pair of conjugate anyons which

has been created out of the vacuum and then propagated. The

terminal vertex of the tree correspond to anyons, conveniently

labelled by their anyonic charge. For convenience, choose one

of these terminal vertices to be the root of the tree. Other ter-

minal vertices will now be called ”leaves”. The root is con-

nected to each leaf by a path whose weight is the anyonic

charge of the leaf. Each such path is a string operator con-

necting an anyon (at the leaf) to its conjugate anyon (at the

root). See Fig. 4 for a graphical example.

We construct the error corresponding to the tree by itera-

tively choosing a random leaf and then applying the sequence

of generalized Pauli operators which create the correct anyon

at the site of the leaf and then move its conjugate anyon to the

site of the root. We sequentially connect each leaf to the root.

During any step, there will be at most two violations, one for

the site of the conjugate anyon being moved to the site of the

root and one for the anyon at the root which might not have

�

�

�

�

FIG. 4: Decomposition of a tree into strings for the quantum double

of Z5. The weight of each edge of the graph is represented by a

colour coding.

the anyonic charge it should have in the error configuration.

At the end of the procedure, the charge of the anyon at the

root will be the one it should have in the reference error since

the total anyonic charge of the tree is zero. Thus, trees have

an energy barrier corresponding to the energy of two anyons,

similar to the energy barrier of loops.

We have thus proven the following result:

Theorem 6 (Energy barrier of Abelian Quantum Doubles)

For any d, the generalized energy barrier ǫ of the quantum

double of Zd is at most the energy of two anyons, i.e.,

ǫ(HZd
) ≤ 2Jmax (34)

D. Length of the local errors path

We have established in the previous subsections that the op-

timal local errors path consists of partitioning the error into a

product of errors, each of which is supported either on a loop

or a union of strings. The question remains what is the length

µ(N), i.e., the number of steps before the local errors path
{

σηt

}

converges to the reference error ση . Formally, define
∣

∣

{

σηt

}
∣

∣ to be the number of operators needed to converge
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to a reference error ση . We only consider optimal local er-

rors path, i.e., those which realize ση with the minimal energy

barrier. We then define the optimal local length of an error to

be

µ(η) = min
{σ

ηt}→ση

maxt ǫ(η
t|η)=ǫ(η)

∣

∣

{

σηt

}∣

∣ (35)

and the quantity which enters in the bound of mixing time,

Eq. (33) is the maximal optimal local length of errors

µ(N) = max
ση

µ(η) (36)

Note that this is constrained optimization: we choose to first

minimize the energy barrier and then look at the length of the

local errors path realizing that minimum. This choice is dic-

tated by the fact that the energy barrier enters the exponential

in Eq. (33) whereas the maximal optimal local length of errors

µ is only a multiplicative constant. Nonetheless, µ is an ex-

tensive quantity since for any error, µ(η) is lower-bounded by

twice the size of the support of the error (the factor two comes

from applying the X and Z part of the error independently).

Thus, 4N ≤ µ.

However, in order to minimize the energy barrier, a given

qudit could be affected multiple times by single-qudit oper-

ators applied between two intermediate errors. In the lan-

guage of graph, a given edge of the graph could belong to

a large number of loops and trees. Indeed, one has to be

careful to avoid such a phenomenon. Here we will show that

the loop part of the error can be constructed with a path of

length at most 4(d − 1)N while the string part with a path of

length at most 4(d− 1)N , thus the maximal optimal length is

µ(N) ≤ 8(d− 1)N .

1. Loops

Given a qubit, we want to bound the number of loops which

act non-trivially on that qudit. A priori, the number of loops

could be very large. However, we can use a simple procedure

to reduce it. The idea is to look at the weight of all edges

overlapping that qudit and to identify subsets of those weights

which sum to 0 modulo d. In that case, we can fuse the cor-

responding anyons to the vacuum and get new loops which

do not affect the qudit. We call this procedure merging. An

example of merging is presented on Fig. 5.

This procedure can be repeated on every qudit indepen-

dently. The question is then to bound the number of loops at

the end of merging. In Appendix A, we investigate this ques-

tion using multiset theory and find that the maximal number

of loops that can remain after merging is d − 1 (see Thm. 9).

Thus, after merging, any qudit belongs to at most (d-1) loops

of type X and (d-1) loops of type Z. Since there are 2N qudits,

µloops ≤ 4(d− 1)N. (37)

�

�

�

�

FIG. 5: Merging of loops at a qudit initially affected by three loops

for the quantum double of Z5. The weight of each edge of the graph

is represented by a colour coding.

2. Strings

A union of strings – after removing the loops from the struc-

ture – form a tree with several ”leaves”, the leaves correspond-

ing to the end position of anyons.

It will be necessary to introduce a procedure to ”prune the

tree”, i.e., decompose a tree into a superposition of subtrees

without introducing new anyons. This pruning procedure was

not necessary to prove that the generalized energy barrier is at

most 2Jmax, but will prove useful to bound the length of the

canonical path.

The pruning procedure identifies subtrees that can be re-

moved from the original tree. Those subtrees should have

leaves whose anyonic charge sum to zero modulo d so that

they can be removed without affecting the root. Before iden-

tifying those subtrees, it is convenient to first ”fatten the tree”

by connecting every leaf of weight k to the root through a

string of weight k. The pruning procedure then proceeds by

visiting every vertex of the tree (for instance using a post-

order depth first search [30]). At every vertex of the tree, it

checks whether there exists a subset of edges with zero-sum.

If so, the pruning procedure removes the subtree generated

by the corresponding leaves. After visiting every vertex, the

pruning stops. The tree is now decomposed into simple trees.

Simple trees have at most d − 1 leaves since any set of d
anyons contains a subset whose sum is zero modulo d (see

Thm. 9). Their depth is thus bounded by d − 1 Also, every

vertex of a simple tree belongs to at most d− 1 strings.

Thus, after pruning, every qudit belongs to at most (d − 1)
loops of type X and (d − 1) loops of type Z . Since there are

2N qudits,

µstrings ≤ 4(d− 1)N. (38)

E. The effect of defect lines

For Abelian quantum double, it is possible to locally mod-

ify the Hamiltonian in order to introduce defect lines, such as

in the work of Brown et al. [10]. Defect lines are character-

ized by an invertible element M ∈ Zd and an orientation. An

anyon of type k ∈ Zd crossing a defect line of type M along

the orientation (resp. against the orientation) will be trans-

formed into an anyon of type M · k (resp. M−1 · k). What do

we mean by ”transformed”? Consider two vertices (v−, v+)
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on the lattice, one on each side of the defect line such that the

orientation points from v− to v+. There exists a local Pauli

operator which maps a +1 eigenstate of P k
vi to a +1 eigenstate

of PM·k
vi . In other words, an excitation will locally at energy

Jk become an excitation carrying energy JM·k.

In [10], Brown et al. proposed a local 2D Hamiltonian

which seemed to realize entropy protection [10]. This model

is the quantum double of Z5; and due to charge-flux duality,

we’re allowed to think only in terms of e.g. electric charges.

Then there are 5 different charges, grouped as: vacuum, light

particle, heavy particle, heavy antiparticle, light antiparticle.

Particle-antiparticle pairs have the same mass, furthermore

mheavy > 2mlight to ensure that during the thermal evolution of

the system it is favorable for the heavy particles to decay into

two light particles. In order to favor the occurrence of heavy

particles, the authors of Ref. [10] introduced defect lines of

type M = 2 to the system. The star and plaquette terms of

the Hamiltonian near a defect line are slightly modified in this

case, and the modified operators are shown in Fig. 1. This

changes the dynamics so when a light particle crosses such a

line, it becomes a heavy one and vice versa. Thus, the excita-

tions in the model are typically light particles which propagate

freely until they eventually cross a defect line, acquire mass,

and then decay into two light particles. It was observed nu-

merically in [10] that the memory time seems to behave like

tmem ∝ exp(cβ2) over some range of parameters but seems to

fail for large β. Can our bound shed new light on this model?

To that end, we now analyze the effect of those defect lines on

our bounds.

1. Syndromes for the Hamiltonian with defect lines

One could wonder whether the definition of the energy bar-

rier given by Eq. (31) should be changed due to the introduc-

tion of defect lines. It does not. However, the Hamiltonian

changed and thus the syndromes of Pauli errors will change

too. Given a Pauli error ξ ∈ P2N , its syndrome with respect

to the new Hamiltonian enew(ξ) is related to the syndrome

eno defect lines(ξ) it had in the absence of defect lines by simply

multiplying the syndrome by the defect line string T1 ∈ Z2N
d ,

enew(ξ) = (T1) · eno defect lines(ξ) (39)

where multiplication is understood ditwise and modulo d. The

defect line string T1 ∈ Z2N
d is defined for every site s by

(T1)s =

{

M if s near (and on the ”−” side of) a defect line

1 otherwise

(40)

Therefore, there is a consistent way to get the syndromes of

the quantum double Zd with defect lines, and we can use this

new set of syndromes to work through the same steps in the

derivation as we did for the quantum doubles without defect

lines. These two derivations will essentially be identical –

except for the different definitions of the syndromes – and we

will arrive to the same formula for the energy barrier.

2. Globally consistent labelling of anyon types in the presence of

defect lines

The only remaining question is: knowing that the definition

of the energy barrier is the same with defect lines, does the

evaluation of the energy barrier detailed in the previous sec-

tions go through the same way? The main issue is how to label

the excitations. Indeed, due to the presence of defect lines, the

local labelling of the anyon type is not consistent globally.

Here we explain how to recover a global labelling of anyon

types, under one technical condition we call consistency of

defect lines. We define the consistency of the defect lines of

a model by requiring that when we create a pair of anyons

from vacuum, then take one of them around any loop any-

where on the lattice, they fuse back to vacuum with each other.

Should that transparency condition be violated, the intersec-

tion of defect lines would become a sink and a source for sin-

gle anyons, which we forbid. Furthermore, we do not know

how the Hamiltonian of such a pathological model would be

written down in a form similar to Eq. (9).

Thus, we consider consistent defect lines. Our goal is to

take the globally inconsistent, local anyon syndromes which

is a record of the eigenvalues of the A(v)/B(p) star/plaquette

operators at each site, and translate them to a consistent,

global labeling of anyons. This translation is obtained through

a global dictionary T2 ∈ Zd using the formula

eglobal(ξ) = (T2) · elocal(ξ), (41)

where · is multiplication ditwise and modulo d. To define the

global dictionary, the idea is to label each region enclosed by

defect lines. The anyon types will be defined in one (arbi-

trary) reference region and all other regions will carry a label

to translate the local anyon type within its region to what it

would be in the reference region (global syndrome).

For instance, for Z5, with M = 2 an anyon type a in the

reference region might become: a or 2a or 4a or 8a(= 3a
mod 5), depending in which region we observe it. We can

name these regions, e.g. L = 1, 2, 4 and 3 in the above exam-

ple. Whenever we observe an anyon whose local type is b in a

region with a label L, we know that anyon would have a local

type b′ = L−1b in the reference region (or any trivial L = 1
region). Thus, the T2 dictionary is defined for every site by

(T2)s = L−1 for s ∈ region with label L. (42)

3. Evaluation of the generalized energy barrier and maximum

length of the optimal local errors path

Finally, introducing defect lines doesn’t change the allowed

anyon fusion/decay processes either, since the fusion rules

are the same as before in every region. Whenever a parti-

cle crosses a defect line it is essentially just renamed, i.e., it

doesn’t leave behind a charge at the defect line. Using the

fact that the syndromes can be made consistent with the pro-

cedure of tracing all anyons back to the L = 1 regions, any

error can still be mapped onto a graph flow of anyons, and the

plan for constructing any generalized Pauli error described in
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Sec. III C still works. Thus, the value of the energy barrier

and the maximum length of the optimal canonical path is un-

changed as well: ǭ = 2Jmax and µ(N) ≤ 4N2 + 4(d− 1)N .

Therefore, as neither the definition of the energy barrier,

nor the structure of errors, nor the optimal canonical path for

a certain error, nor the length of this path is changed by de-

fect lines, the Arrhenius law bound itself is unchanged by the

defect lines.

IV. DISCUSSION

A. Possible improvements

We briefly review some possible improvements on our

bounds, indicate possible avenues to achieve those improve-

ments and conjecture what the optimal bounds would be.

The polynomial dependence of the Arrhenius bound on

mixing time can probably be improved. Indeed, we expect

that better techniques would allow to get rid of the N pref-

actor in Eq. (33). However, the polynomial dependence of

the length of the longest optimal local errors path µ ∼ N is

tight since one can find errors whose length are of the order

of the number of qudits. Thus, we expect the mixing time to

scale with system size. The extensiveness of mixing time is

coherent with the intuition that some system relax locally.

However, the quantum memory time might be much shorter

than the mixing time. A dramatic example is the three-

dimensional toric code whose quantum memory time is con-

stant whereas its mixing time is exponentially long. Indeed,

one of the logical operator is string-like whereas the other log-

ical operator is supported on a 2D sheet of qudits. The expec-

tation value of the sheet-like logical operator thermalizes in

exponential time whereas the expectation value of the string-

like logical operator is short-lived. We expect the quantum

memory time of 2D Abelian quantum double to be a constant,

independent of system size.

B. Implication for entropy protection

In [10], authors investigate the quantum memory time of an

Abelian quantum double with d = 5 with defect lines. By

tuning the masses of anyons, they obtain a thermal dynamic

in which the typical world lines of anyons have a fractal struc-

ture. Indeed, heavy particles, rather than propagate, will (with

high probability) decay into two light particles propagating in-

dependently; while light particles will eventually cross a de-

fect line, become a heavy particle (at an energy cost), which

then decays into two light particles. Brown et al. numeri-

cally observe a super-exponential scaling of the memory time

which they explain to be the result of this fractal structure

of the world lines of excitations. It is called ”entropic pro-

tection” as the world lines only have a fractal structure and

thus there’s a scaling energy barrier for a typical worldine of

anyons. There are, in fact, world lines taking the system to

an orthogonal ground state with only a constant energy cost,

Upper bound

(this work)

Brown et al.

Super 

Arrhenius 

behavior

FIG. 6: Scaling of the logarithm of the quantum memory time tmem

as a function of the inverse temperature β. The quadratic scaling

(tmem ∼ ecβ
2

) numerically observed in [10] (represented schemati-

cally by the green curve) cannot extend to arbitrary low temperature

due to our upper bound (in blue). Thus, the super-Arrhenius behav-

ior (pink dashed line) will transition to an Arrhenius behavior (black

dotted line) for sufficiently low temperature.

however, the probability of such a world line are entropically

suppressed.

Applying the result of the present paper to this model, we

can see that its memory time is upper bounded by a strict Ar-

rhenius law, with an energy barrier that has no dependence

on temperature or system size, even when including the effect

of permuting type defect lines. Since our bound is valid for

any value of the inverse temperature β, we can see that the

exp(cβ2) scaling observed in Brown’s entropic code needs to

break down for sufficiently low temperatures, as the memory

time can’t exceed our bound. This breakdown at low tem-

perature was forecasted in [10]. Indeed, for low tempera-

ture the thermal process resulting in fractal-like world lines

of anyons is not typical anymore, since the environment can’t

provide the energy required for a light particle to become

heavy. Rather, a light particle near a defect line won’t cross,

but linger there until it meets with another particle and fuse

with it either to vacuum or to a heavy particle. If fused to a

heavy particle, that heavy particle can then cross the defect

line and lower the energy by becoming a light particle.

The low temperature behaviour of Brown’s entropic code

agrees with the fact that our bound doesn’t allow it to have a

better than exponential memory time. The scaling observed in

Ref. [10] is most likely limited to the region discussed there,

and needs to break down for temperatures out of that region.

One question that remains open is whether the super-

exponential behaviour they observe is an artefact of their con-

struction, e.g., of the decoder or a physical property of the

model. Indeed, one could imagine that the introduction of

defect lines does change the thermal behaviour of the model

over some temperature region. The super-exponential scaling

could then be understood as an entropic enhancement. While

this enhancement does not translate into a qualitatively dif-

ferent scaling at low temperature, it could introduce a multi-

plicative gain inside the exponential scaling. This conjectured

scenario is represented on Fig. 6.

Our bound, however, is more general than to only exclude
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the possibility of entropic protection for the specific construc-

tion of Brown et al. The result presented in the present

paper means that entropic protection doesn’t exist for any

Abelian quantum doubles (with or without permuting type de-

fect lines); in order to have a self-correcting memory based on

such models, one needs a scaling energy barrier. However, we

should remark that a scaling energy barrier does not always

ensure self-correction, as seen in the example of the welded

code [18] which is expected to have a memory time which is

independent of system size [16].

V. DETAILS OF THE DERIVATION

The derivation of the upper bound and the generalized

energy barrier for the Zd generalized case follow the steps

outlined in Ref. [13] for the Z2 model. Although the approach

for the Zd - Stabilizer models is very similar to the one pre-

sented in Ref. [13], the derivation differs in several key steps

from Z2 due to the increased complexity of the model. In

this section we present the general approach of the derivation

with an emphasis on the differences from the Z2 case.

To obtain the bound on the thermalization time presented

in Eqn. (33), we need to take two steps. First, we bound the

mixing time tmix in terms of the spectral gap λ of the Davies

generator, and then we proceed to prove a lower bound on the

spectral gap λ. To obtain the bound on the mixing time in

terms of the gap, we employ an upper bound to the conver-

gence in trace norm distance derived in Ref. [19]. For any

initial state ρ0, that evolves according to some semi-group

ρt = exp(tL)ρ0, we can bound the distance to its fixed point

ρG as ||ρt − ρG||tr ≤
√

||ρ−1
G ||e−λt. Since the Davies gen-

erator converges to the Gibbs state ρG = Z−1 exp(−βH) we

find ||ρ−1
G || = O(exp(c0βN)), with some model specific con-

stant c0. Given a lower bound 0 < µ ≤ λ to the spectral gap,

this bound would immediately imply an upper bound to the

mixing time given by

tmix ≤ O(βNλ−1) ≤ O(βNµ−1). (43)

To arrive at a lower bound to the spectral gap of the gen-

erator L, we can make use of a variational expression for

the spectral gap λ. Since the fixed point of L is the Gibbs

state, and we furthermore know that the Davies generator

is Hermitian with respect to a weighted Hilbert-Schmidt in-

ner product [14, 15], we can express the the gap in terms

of two quadratic forms. We define the Dirichlet form,

E(f, f) = −〈f,L∗(f)〉β = −tr[ρGf †L∗(f)] and the vari-

ance, V ar(f, f) = tr[ρGf
†f ] − |tr[ρGf ]|2. With these two

quadratic forms we can express the spectral gap as

λ = min
f∈M

dN

E(f, f)
V ar(f, f)

. (44)

For a simple proof of this identity the reader is referred to

[19–21]. Hence any constant µ > 0 serves as a lower bound

to the spectral gap if for all f ∈ MdN the Poincare inequality,

µV ar(f, f) ≤ E(f, f), holds. Naturally, the largest possible

µ coincides with λ. We will now use this inequality to derive a

lower bound to the spectral gap. Note that this problem can be

rephrased as an inequality for positive semi definite matrices.

Since both E(f, f) as well as V ar(f, f) are quadratic forms

in f , we can define two matrices, Ê and V̂ that correspond to

the matrix representations of these forms. Further using the

detailed balance condition we express E(f, f) = tr
[

f †Ê(f)
]

and V ar(f, f) = tr
[

f †V̂(f)
]

, where we have now inter-

preted MdN as a Hilbert space with the canonical inner

product. In this case the spectral gap can be defined as

τ = λ−1, where τ is the smallest positive number so that

τ Ê − V̂ ≥ 0, here any upper bound to τ constitutes a lower

bound to the spectral gap. We perform the following steps to

find such an upper bound to τ and in turn the lower bound

µ = τ−1 to the gap. Due to the similarity to the Z2 case,

the reader is referred to a [13] for a more detailed exposition

of the steps and proofs of the lemmata we need. We discuss

only the particular differences to the binary case in detail here.

A. Diagonalizing the Hamiltonian, then deriving the jump

operators of the Liouvillian.

Since the quantum double model is comprised of commut-

ing projectors, it is straight forward to diagonalize the full

Hamiltonian (9). We diagonalize the pure system Hamilto-

nian, by labeling the projectors for every subspace in terms of

the error syndromes assigned to different error configurations

introduced in Sec. II A. In order to be able to encode quan-

tum information into the ground state of this Hamiltonian, a

degeneracy of ground states is required. This can be achieved

by defining the square lattice on a surface with non-zero genus

or by special boundary conditions.

The diagonalized Hamiltonian can be written as:

H =
∑

(a,b)

ǫ(a,b)Π(a,b), (45)

with projectors and energies

Π(a,b) =

(

∏

v

P a(v)
v

)(

∏

p

Qb(p)
p

)

, (46)

ǫ(a,b) =
∑

v

Ja(v)
v +

∑

p

Jb(p)
p , (47)

where P
a(v)
v and Q

b(p)
p are the projectors onto different

chargeons and fluxons at vertex v and plaquette p intro-

duced before, J
a(v)
v and J

b(p)
p are the masses correspond-

ing to these anyons. The eigenstates of this Hamiltonian

thus correspond to different anyon configurations on the lat-

tice, and the states can be labelled by syndromes of the form

(a,b) = (a1, a2, ...aN , b1, b2, ...bN ) ∈ ZN+N
d .
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The diagonalization of H implies that we can write the

Gibbs state of the system as

ρG =
∑

(a,b)

ρabΠ(a,b), where ρab =
e−βǫ(a,b)

Z
. (48)

Note that the Projectors Π(a,b) are obtained as a Zd

Fourier transform of powers of the star A(v) and plaquette

B(p) terms as defined in Fig. 1 (a). We can write:

Π(a,b) =
1

d2N

∑

(x,y)

e
2πi
d

(<a,x>+<b,y>)σx̄σ̄ȳ, (49)

where σx̄ = Ax1(1)Ax2(2) · · ·AxN (N) and

σ̄ȳ = By1(1)By2(2) · · ·ByN (N). Observe that we

have introduced new labels x̄ and ȳ, which are linear

functions of x and y respectively and are defined by the

decomposition of {Axi(i)} and {Byi(i)} (which act on

vertices and plaquettes) into generalized Pauli operators, i.e.,

the {X x̄j

j }’s and {Z ȳj

j }, which act on edges of the model, so

that Ax1(1)Ax2(2) · · ·AxN (N) = X x̄1
1 X x̄2

2 · · ·X x̄2N

2N = σx̄
and By1(1)By2(2) · · ·ByN (N) = Z ȳ1

1 Z ȳ2

2 · · ·Z ȳ2N

2N = σ̄ȳ .

The jump operators of the Davies generator are generated

by generalized Pauli errors acting on a single spin. The

commutation relations of single generalized Pauli’s with the

Hamiltonian projectors (46) is given by:

Z
lj
j X

mj

j Π(a,b) = Π(a⊕ e(lj),b⊕ e(mj))Z
lj
j X

mj

j , (50)

where e(lj) = (0, . . . 0, lj,−lj , 0 . . .0) and e(mj) =
(0, . . . 0,mj ,−mj, 0 . . . 0) are length N vectors whose only

nonzero elements correspond to the vertices at the ends of

edge j = (v, v′) and the plaquettes (p, p′) which contain edge

j. Alternatively, e(lj) (e(mj)) is the syndrome of the excited

state created by applying the error Z
lj
j (X

mj

j ) to the vacuum

state. That excited state contains two conjugate anyons of

charges ±lj (of fluxes ±mj) located on the vertices v and

v′ (plaquettes (p, p′) that contain the edge j).
Star and plaquette operators have one east edge E, one south

edge S, one west edge W and one north edge N. Due to the

construction of these operators: A(v) = {XE ⊗XS ⊗X†
W ⊗

X†
N ; (E, S,W,N) ∈ star(v)} for star operators and B(p) =

{ZE ⊗ Z†
S ⊗ Z†

W ⊗ ZN ; (E, S,W,N) ⊂ plaquette(p)} for

plaquette operators, a horizontal edge j = (v, v′) overlaps

with the X operator of the star operator A(v) west of edge

j and the X† operator of the star operator A(v′) east of j.
(Similarly, a horizontal edge j overlaps with the Z† operator

of the plaquette operator north of j, and Z operator of the

plaquette operator south j.) Therefore, one of the nonzero

elements in e(lj) is +lj and the other is −lj (+mj and −mj

in e(mj)).
Since the generalized Pauli basis is a complete matrix ba-

sis, any one local operator at edge j can be decomposed as

Sj,(l′j ,m
′
j)

=
∑

(lj ,mj)
[s]

(l′j ,m
′
j)

(lj ,mj)
Z

lj
j X

mj

j . In order to obtain

the jump operators from Eqn. (22), we use the commutation

relations (50) and obtain

Sj,(l′j ,m
′
j)
(ω) =

∑

(a,b)

∑

(lj ,mj)

Z
lj
j X

mj

j [s]
(l′j ,m

′
j)

(lj ,mj)
Π(a,b) (51)

×δ[ω − ǫ(a⊕ e(lj),b⊕ e(mj)) + ǫ(a,b)],

where ǫ(a,b) is the energy of the system before, while

ǫ(a ⊕ e(lj),b ⊕ e(mj)) is the energy configuration of the

system after applying the thermal errors. Note that for ease

of notation we have defined δ[x] = 1, whenever x = 0 and

δ[x] = 0 otherwise.

We point out a couple of significant differences from the Z2

case. First, much like the standard Pauli operators the gener-

alized Z
lj
j and X

mj

j generate a complete local unitary matrix

basis, so that any local error can be expressed as a sum of

their products. However, these matrices are not Hermitian.

This means that the coefficients [s]
(l′j ,m

′
j)

(lj ,mj)
need to obey spe-

cial constraints to ensure Hermiticity of the coupling opera-

tors Sj,(l′j ,m
′
j)

. As discussed before we make the particular

choice that Sj,(lj ,mj) = 2−1/2(Z
lj
j X

mj

j + h.c.). As we will

see, this will eventually result in terms appearing in the Liou-

villian that are proportional to 1jΠ(a,b) and terms that are

proportional to Z
2lj
j X

2mj

j Π(a,b). We are familiar with the

first kind of term from the case of Z2 -stabilizers. However,

the cross terms Z
2lj
j X

2mj

j Π(a,b), do not vanish automati-

cally unless we consider a small lift of the accidental degener-

acy in the Hamiltonian spectrum. They disappear when intro-

ducing a small spatial perturbation in the masses of different

particles, since the delta function δ[x] vanishes on the slighly

perturbed spectrum.

With these derivations for Sj,(l′j ,m
′
j)
(ω) it is in principle

possible to state the Davies generator from Eqn (21) ex-

plicitly. Since the Hamiltonian is comprised of only local

commuting terms, one can verify that after performing the

sum over ω in Eqn (21), one is left with a Lindbladian that

can be written as the sum of local terms; as done, e.g. in

Ref. [22]. Note, however, that we’re taking another approach,

as the representation mentioned above is not particularly

helpful for our derivation of the spectral gap as it obfuscates

the underlying general algebraic structure. This structure is

best understood in terms of the action of the generator L on a

suitable matrix basis.

B. Construction of the Dirichlet matrix and Ê and the

variance matrix V̂

In order to get a good handle on the matrix pair (Ê , V̂), we

need to choose a suitable matrix basis of the space MdN . It

turns out that the canonical choice is also the most suitable.

We define the tensor product of the generalized Pauli matrices

as our basis through

σ̄kσp = Zk1
1 Zk2

2 ...Zk2N

2N Xp1

1 Xp2

2 ...Xp2N

2N , (52)
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where Z
kj

j and X
pj

j are the generalized Pauli matrices intro-

duced in Eqn. (2). This matrix basis is orthogonal with respect

to the Hilbert-Schmidt inner product, i.e., (σ̄kσp|σ̄k′σp′) ∝
δk,k′δp,p′ . Here we denote the vectorization of σ̄kσp by

|σ̄kσp).

1. Dirichlet matrix

We first turn to the derivation of the Dirichlet matrix Ê ,

since this matrix proves to be more challenging. Recall the

defintion of E(f, f) = −tr[ρGf †L∗(f)]. Due to detailed bal-

ance, it turns out to be very useful to investigate the action of

the map −ρGL(·) on σ̄kσp.

Before we state the action of the generator on a basis el-

ement, we need to introduce some shorthand notation. For

the syndrome vectors (a,b) and (c, f) and for the error vector

(k,p) , corresponding to applying the operator σ̄kσp to the

system, we define the functions:

H
(k,p)
(a,b),(c,f) = γ(ω(k,p)(a,b)δ[ω(k,p)(a,b)− ω(k,p)(c, f)],

H̃
(k,p)
(a,b),(c,f) = γ(ω(k,p)(a,b)) + γ(ω(−k,−p)(a,b))

+γ(ω(k,p)(c, f)) + γ(ω(−k,−p)(c, f)).

We have introduced the Bohr frequencies ω(k,p)(a,b) =
ǫ(a ⊕ e(k),b ⊕ e(p)) − ǫ(a,b). Moreover, it proves

convenient to introduce an additional short hand for

syndromes that are modified by an additional error as

(a,b)(k,p) = (a⊖ e(k),b⊖ e(p)).

With this notation at hand, we can state an explicit represen-

tation of the action of the generator on the generalized Pauli

basis element, so that

−ρGL(σ̄kσp) =
∑

(a,b)

∑

j,(lj ,mj)

ρab
1

2
Π(a,b)σ̄kσp (53)

×
(

H
(−lj ,−mj)

(a,b)(k,p),(a,b)
e

2πi
d

(pj lj−kjmj)

+ H
(lj ,mj)

(a,b)(k,p),(a,b)
e

2πi
d

(kjmj−pj lj)

− 1

2
H̃

(lj ,mj)

(a,b)(k,p),(a,b)

)

.

Recall that we can express the projector Π(a,b) in terms of

a Zd Fourier transform over a particular subset of generalized

Pauli operators. This in particular means, that we can express

the action of L on any generalized Pauli again as a linear com-

bination of the same basis elements. Hence, we can read off

the matrix elements in this basis directly. Since the Dirichlet

matrix is essentially given by −ρGL, we can state it directly

in the basis {|σ̄kσp)} and obtain:

Ê =
1

d2N

∑

j,(lj ,mj)

∑

(a,b)

∑

(k,p)

∑

(x,y)

e
2πi
d

(<a,x>+<b,y>) (54)

× e−
2πi
d

<k,x̄> |ȳ ⊕ k, x̄⊕ p) (k,p|

× 1

2

(

1

2
H̃

(lj ,mj)

(a,b)(k,p),(a,b)
−H

(lj,mj)

(a,b)(k,p),(a,b)
θ(k,p),(lj,mj)

− H
(−lj,−mj)

(a,b)(k,p),(a,b)
θ(k,p),(−lj,−mj)

)

ρab,

where θ(k,p),(lj,mj) = e
2πi
d

(kjmj−pj lj).

2. Variance matrix

If we now turn to the second matrix V̂ , note that the vari-

ance V ar(f, f) can be interpreted as the Dirichlet form of a

completely depolarizing semi-group on MdN . That is we can

introduce the depolarizing generator D(f) = ρGtr [f ]−f . So

that we can write V ar(f, f) = −tr
[

ρGf
†D(f)

]

. Recall that

the trace can be expressed as a twirl over generalized Pauli

matrices as tr [f ] = d−N
∑

kp(σ̄kσp)
†fσ̄kσp. This identity

proves quite useful in the derivation of the matrix representa-

tion of V ar(f, f). Following the same approach, as outlined

in [13], we can derive the matrix representation V̂ of the vari-

ance much like the Dirichlet matrix and obtain:

V̂ =
1

dN
1

d2N

∑

(ν,κ)

∑

(a,b)

∑

(k,p)

∑

(x,y)

e
2πi
d

(<a,x>+<b,y>)

×
(

ρabρ(a,b)(−ν,−κ) − ρabρ(a,b)(−ν,−κ)θ(k,p),(ν,κ)
)

× |ȳ ⊕ k, x̄⊕ p) (k,p| . (55)

3. Dirichlet and variance matrices in the dual basis

Note that the Dirichlet matrix and the Variance matrix are

formally very similar. A central difference however is that the

sum over (ν, κ) in the definition of V̂ is taken over the full ma-

trix basis σ̄νσκ = Zν1
1 Zν2

2 · · ·Zν2N
2N Xκ1

1 Xκ2
2 · · ·Xκ2N

2N . This

is considerably different from the sum over (j, (lj ,mj)) in

the Dirichlet matrix Ê . This sum is constrained to run only

over all local operators acting only on a single site. Hence V̂
contains considerably more summands than Ê . It is now the

central challenge to show that despite this larger number of

summands the span of V̂ lies well within the span of Ê and

the matrix can be supported with a small τ . The structural

similarity becomes even more evident, when we perform a

convenient basis transformation. We consider the dual basis

of the commuting subgroup generated by the projectors in the

quantum double Hamiltonian:

∣

∣(a,b)(k0,p0)

)

=
1

dN

∑

(x,y)

e
2πi
d

(<a,x>+<b,y>)e−
2πi
d

<k0,x̄>

× |ȳ ⊕ k0, x̄⊕ p0) . (56)
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Note that every dual vector that starts from some particu-

lar reference state labeled by (k,p), is orthogonal to all other

dual states which is not contained within the left action of

the commuting generator group of the Hamiltonian. That is,

every dual space spanned
∣

∣(a,b)(k0,p0)

)

is orthogonal to the

one spanned by
∣

∣(a,b)(k′
0,p

′
0)

)

if we can’t find a σ̄ȳσx̄ so that

σ̄k′
0
σp′

0
∝ σ̄ȳσx̄σ̄k0σp0 . Hence we have a natural decom-

position of the matrix alegbra into dual basis sets. Now, we

furthermore introduce the states

∣

∣

∣
−(ν,κ)

ab(kp)0

)

=
1√
2

(∣

∣(a,b)(k0,p0)

)

(57)

− θ(k0,p0),(−ν,−κ)

∣

∣

∣
(a,b)

(−ν,−κ)
(k0,p0)

))

,

where θ(k0,p0),(ν,κ) = e
2πi
d

(<k0,κ>−<p0,ν>), and recall

the short hand notation (a⊕e(ν),b⊕e(κ)) = (a,b)(−ν,−κ).

With these vectors at hand, we can write the variance matrix

as the direct sum over the orthogonal sets of the dual basis

vectors as V̂ =
⊕

(kp)0
V̂(kp)0 . Where every summand is

positively weighted sum of projectors on to the

∣

∣

∣
−(ν,κ)

ab(kp)0

)

so

that

V̂(kp)0 =
1

dN

∑

(ν,κ)

∑

(a,b)

ρabρ(a,b)(−ν,−κ)

∣

∣

∣
−(ν,κ)

ab(kp)0

)(

−(ν,κ)
ab(kp)0

∣

∣

∣
.

(58)

If we transform the Dirichlet matrix into the same dual

basis, we observe the same block diagonal structure over

Ê =
⊕

(kp)0
Ê(kp)0 . One central difference to the variance is

that the resulting matrices Ê(kp)0 can not always be expressed

as a sum of projectors. The resulting matrices Ê(kp)0 have

more weight on the diagonal. However, we can find other ma-

trices that lower bound them in a semi-definite sense so that

Ê(kp)0 ≥ Ê ′
(kp)0

, where Ê ′
(kp)0

is a sum of projectors. Note

that when employing this bound we only worsen our estimate

of τ . The lower bound Ê ′
(kp)0

is now of the desired form so

that we can write after a similar calculation:

Ê ′
(kp)0

=
1

4

∑

j,(lj ,mj)

∑

(a,b)

ρabγ(ω
(lj,mj)(a,b)) (59)

×
∣

∣

∣
−(lj,mj)

ab(kp)0

)(

−(lj ,mj)
ab(kp)0

∣

∣

∣
.

C. Bounds on the gap from a comparison theorem and

canonical paths in the matrix algebra

We have constructed the pair (Ê ′, V̂) in a suitable basis.

It is our goal to find a sufficiently small constant τ so that

the positive semi-definite matrix inequality τ Ê ′ − V̂ ≥ 0
holds. Since both matrices are jointly block diagonal, we

can compare them block-by-block, i.e., find τ(kp)0 for every

(k0,p0) so that τ(kp)0 Ê ′
(kp)0

− V̂(kp)0 ≥ 0 and simply

choose τ to be the largest τ(kp)0 . This problem can be solved

using a framework which is called support theory [23, 24].

This framework was used in Ref. [13], to derive an upper

bound on τ for a matrix pair, which is very similar to the one

presented here. The fact that we can generalize theorem 11

in [13] to quantum doubles is a consequence of the following

observation:

We have pointed out earlier that Ê ′
(kp)0

and V̂(kp)0 are

structurally very similar in that both matrices are positively

weighted sums of rank one projectors |−(ν,κ)
ab(kp)0

)(−(ν,κ)
ab(kp)0

|.
The difference, however, lies in the fact that for Ê ′

(kp)0
we

only sum over projectors that stem from single site Pauli

operators labeled by (lj ,mj) for j = 1 . . .N , whereas in

V̂(kp)0 we sum over projectors that come from the full gen-

eralized Pauli algebra. The sum in V̂(kp)0 is therefore signif-

icantly bigger. However, the algebra that can be constructed

in both cases is the same. We can construct every general-

ized Pauli σ̄νσκ from the the product of single site generalized

Pauli so that σ̄νσκ = σ̄l1 . . . σ̄l|ν|σm1 . . . σm|κ| . A local error

path for a generalized Pauli σ̄νσκ is a sequence of general-

ized Pauli operators starting from the identity (ν0, κ0) = 0
with ((ν0, κ0), (ν1, κ1), . . . , (νt, κt), . . . , (ν, κ)) and termi-

nating in (ν, κ), so that any subsequent configurations along

the path (νt, κt) and (νt+1, κt+1) only differ by a single site

generalized Pauli operator (see 1). With such a decomposi-

tion of generalized Pauli operators at hand, observe that any

vector |−(ν,κ)
ab(kp)0

) can be decomposed in single site vectors
∣

∣

∣
−(lj ,mj)

ab(kp)0

)

as

|−(ν,κ)
ab(kp)0

) =

tmax−1
∑

t=0

θ(k0,p0),(−νt+1,−κt+1)|−(lt+1,mt+1)

(a,b)
(−νt,−κt)

(kp)0

),

(60)

where the labels (νt+1, κt+1) and (νt, κt) differ by the single

site labels (lt+1,mt+1). This decomposition lies at the center

of the comparison theorem 11 in Ref. [13].

In order to state the result of this comparison theorem, we

need to define quantum canonical paths. Observe that the de-

composition in Eqn. (60) not only depends on the partially

constructed Pauli, but also on the syndromes, or the excita-

tions the path starts from initially. To obtain a valid decom-

position we need to keep track of the excitations as well. We

therefore define a quantum canonical path to consist of a se-

ries of labels

η̂(a,b) = [{(a,b), 0}, {(a,b)(−ν1,−κ1), (ν1, κ1)}, (61)

. . . {(a,b)−η ,η}],

where the first of the labels (a,b) correspond to syndromes

(excitations) and the second label η = (ν, κ) corresponds

to a partially constructed generalized Pauli operator. While

edges correspond to single qudit errors present in the

Dirichlet form, the whole path corresponds to a general

error appearing in the variance. That is, at each link ξ̂ =
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[{(a,b)(−νk,−κk), (νk, κk)}, {(a,b)−(νk⊕lk+1,κk⊕mk+1), (νk⊕
lk+1, κk ⊕ mk+1)}] two subsequent Pauli operators differ

only by a single site operator. Assume now we choose

for every syndrome (set of excitations) (a,b) and every

generalized Pauli η a canonical path η̂(a,b). Even though

the quality of the bound strongly depends on the particular

choice of this decomposition, we acquire valid bounds for

any choice of η̂(a,b). We have now all components in place to

follow the proof of theorem 11 in Ref. [13]. With a simple

additional bound on the maximum length of canonical paths

we obtain the upper bound on τ as:

τ ≤ max
ξ̂

4µ(N)

dNρabγ(ω(l,m)(a,b))

∑

η̂(a′,b′)∋ξ̂

ρa′b′ρ(a′,b′)−η .

(62)

The maximum is taken over all possible edges ξ̂. The sum

is taken over all canonical paths η̂(a′,b′) that traverse the edge

ξ̂. That is we sum over syndromes (a′,b′) and errors η that

contain the edge ξ̂ in their canonical path η̂(a′,b′). Moreover

observe that the bound also depends on the length µ(N) of

the largest canonical path which has been analyzed in section

III D. We pause to observe that this bound is very similar

to the canonical paths bound for graph laplacians as given

derived in [20, 21, 25]. However this bound has been obtained

for a full quantum mechanical semi-group and the paths are

constructed from the multiplication rules of a matrix algebra.

D. Evaluation of the bound and the generalized energy barrier

The similarity of this bound to the classical canonical

paths gives rise to a convenient way of evaluating the up-

per bound in Eqn. (62). We use the approach introduced

in Ref. [25]. To evaluate the bound we need to introduce

a map Φξ that maps any η̂(a,b) that makes use of the link

ξ̂ = [{(a,b)−ξ, ξ}, {(a,b)−(ξ⊕(l,m)), ξ ⊕ (l,m)}] to a cor-

responding Pauli. We define this map through

Φξ(η̂(a,b)) = η ⊖ ξ. (63)

Note that this map from the set of paths into the set of general-

ized Paulis is injective. This means that given the edge ξ̂ and

the image Φξ(η̂(a,b)) we can trivially recover the path through

η = Φξ(η̂(a,b))⊕ ξ and the error syndrome (a,b), since this

pair uniquely identifies a path. We can now apply the argu-

ment of Ref. [25], and try to find a constant ǫ so that for all

edges ξ̂ and all paths η̂(a,b) the following inequality holds

ρa′b′ρ(a′,b′)−η

γ(ω(l,m)(a,b))ρab
≤ exp (2βǭ)

γ∗
ρ
(a′,b′)

Φξ(η̂
(a′,b′)

) . (64)

We have denoted γ∗ to correspond to the smallest value of

γ(ω(l,m)(a,b)) over all permitted transitions. Such a constant

can be found and we define

ǫ = max
η̂(a′,b′)

ǫ(η̂(a′,b′)), (65)

where for every error we have that:

ǫ(η̂(a′,b′)) = max
ξ̂∈η̂(a′,b′)

(

ǫ((a′,b′)
−ξ

) + ǫ((a′,b′)
ξ⊖η

)

− ǫ((a′,b′))− ǫ((a′,b′)
−η

)
)

. (66)

In fact, the constant ǫ was chosen directly so that the in-

equality above is satisfied for all paths and all edges. This

inequlity can be now used to estimate an upper bound to

Eqn. (62), and we find that for all ξ̂

τ ≤ 4µ(N)

γ∗
exp (2βǭ)max

ξ̂

∑

η̂(a′b′)∋ξ̂

ρ
(a′,b′)

−Φξ(η̂
(a′b′)

)

dN
.(67)

Since, the map Φξ is injective for every edge ξ̂, we can only

reach a subset of all generalized Pauli operators. Hence, we

may bound the sum over this subset by summing over every

generalized Pauli, so that we may bound

∑

η̂(a′b′)∋ξ̂

1

dN
ρ
(a′,b′)

−Φξ(η̂
(a′b′)

) ≤
∑

everyη

1

dN
ρ(a′,b′)−η = 1.

(68)

The last equality follows from the representation of the

trace, as presented in step 2. of this section and an argument

taken from [13], section IV. Since this bound is independent

of the choice of edge ξ̂ we obtain the convenient bound on τ
that only depends on the generalized energy barrier and the

length of the longest path,

τ ≤ 4µ(N)

γ∗
exp (2βǫ) . (69)

On first sight, this bound looks identical to the bound that

was obtained for Z2 - stabilizers. However, the generalized

energy barrier is quite different. It does reduce to the one

defined in [13], when we set d = 2, but the advance is that it

now holds for all possible Abelian quantum double models. If

we subsitute the energies ǫ((a,b)) as defined in Eq. (47), we

obtain

ǫ(η̂(a′,b′)) = (70)

max
ξ̂∈η̂(a′,b′)

(

∑

v

(

Ja′−ξel

v + Ja′ξel⊖ηel

v − Ja′

v − Ja′−ηel

v

)

∑

p

(

Jb′−ξf

p + Jb′ξf⊖ηf

p − Jb′

p − Jb′−ηf

p

)

)

.

We can write (a′,b′) = (a,b) ⊖ e(ξ) and similarly a′ =
a ⊖ e(ξel), b′ = b ⊖ e(ξf ), where ξel, ηel, ξf , ηf are

the electric/magnetic part of the errors: ξ = (ξel, ξf ) and

η = (ηel, ηf ). ξel (ηel) is understood as σ̄ξel (σ̄ηel
) error

applied to a state, while ξf (ηf ) stands for applying the σξf
(σηf

) error. This is a direct consequence of the charge flux
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duality. We observe, that the charge / flux contributions be-

have formally identical and the contribution to the energy bar-

rier can be seen as the sum of both these contributions, i.e.

ǫ(η̂(a′,b′)) = ǫa(η̂(a′,b′))+ǫ
b(η̂(a′,b′)). It therefore suffices to

only discuss one sector, i.e. either the chargeon of the fluxon

part of the model from now on and we write:

ǫa(η̂(a′,b′)) = max
ξ̂∈η̂(a′,b′)

∑

v

(

Ja′−ξel

v + Ja′ξel⊖ηel

v (71)

−Ja′

v − Ja′−ηel

v

)

.

We can evaluate this barrier as follows: We can write

Jα
v =

∑

z J
z
v δz,α for convenience. To this end we can ex-

press Eq. (71) as

ǫa(η̂ab) = max
ξ

d−1
∑

v : z=0

Jz
v

(

δz,av⊕ev(ξ) − δz,av
(72)

+δz,av⊕ev(η)⊖ev(ξ) − δz,av⊕ev(η)

)

.

Even though this expression (and the following expressions)

directly only incorporates the electric sector, i.e. ξ = ξel and

η = ηel above, it is still the complete energy barrier. Due

to the charge-flux duality, we can construct the electric and

magnetic errors one after the other, therefore at any time we

need only to look at one of the sectors.

In order to evaluate this barrier, we need to consider several

different scenarios in order to express this equation more con-

veniently. The different cases correspond to different values

of ev(ξ) and ev(η) and are summarized in the table. The value

inside the parentheses of course depends on the relative value

of av and z. Our goal is to get a bound that holds for all pos-

sible av starting configurations, thus we maximize expression

(72) as a function of av . In order to achieve that maximum,

we have chosen the relative value of av and z such that it gives

the highest possible value in each case.

ev(ξ) ev(η) Sum of δ’s z

0 0 0 any

p p 0 any

0 p 0 any

p 0 1 av ⊕ ev(ξ) or av ⊖ ev(ξ)
p q 1 av ⊕ ev(ξ) or av ⊖ ev(ξ)⊕ ev(η)

TABLE I: Here p 6= q, p 6= 0, q 6= 0.

The case-to-case scenario shown in the table can be sum-

marized in one simple formula, and we can rewrite the sum of

the Kronecker symbols as the more convenient expression:

δev(ξ),0 ·δev(ξ),ev(η)
(

δz,av⊕ev(ξ) + δz,av⊖ev(ξ)⊕ev(η)

)

, (73)

where δx,y = 1− δx,y = {0 if x = y; 1 if x 6= y}.

Using this formula considering that for a canonical path η̂a
we can consider the edge ξ = ηt as the partially constructed

Pauli operator at some step t. To this end we need to consider

for every η̂a the largest contribution along the path and there-

fore have to maximise this value for the largest value t. With

this substitution, the contributions ǫa(η̂) looks like:

ǫ(η̂) = max
t

(

max
z,v′

Jz
v′

)

∑

v

δev(η̄t),0 · δev(η̄t),ev(η), (74)

i.e. the energy barrier is the maximum energy cost the en-

vironment has to provide to the system during any canoni-

cal path which constructs the error configuration η. However,

since this energy barrier upper bounds the mixing time, in or-

der to get a better upper bound we may choose the canonical

path wisely, i.e. so it gives a smaller energy barrier. The reader

will observe, that this energy barrier corresponds exactly to

the one that was analyzed in detail in section III of this paper.

We point to a notable difference to the analysis of only Z2

models. In these models only those sites contribut where the

charge disappeared to vacuum, while for the d > 2 general

cases a site contributes even if the anyon doesn’t completely

disappear at the end of the canonical path, but it changes to an

anyon characterized by a different syndrome, be it the vacuum

or anything else.

This energy barrier gives a valid bound on the mixing time

for all choices of canonical paths we can make, but the quality

of the bound depends on the choice of the canonical path. To

this end, when evaluating the bound, we follow the decom-

position into single site Paulis as it was amply discussed in

section III C.

VI. CONCLUSIONS

We have established a strict Arrhenius law upper bound for

the memory time of all quantum doubles based on an Abelian

group and gave a mathematically proper definition for the en-

ergy barrier. We have also seen that the energy barrier is a

constant for these models. We may apply our results to the

model introduced in Ref. [10] to evaluate whether entropic

protection is possible for such models.

Even though our bound on the mixing time is quite general

in the sense that it applies to any Abelian quantum double,

there are a variety of models to which our analysis doesn’t

apply. For these models the possibility of entropy protection

is not yet excluded. One of the possible directions one can

go is to invent different kind of defects, other than the type

referred to here as ”consistent” (defects that allow a consis-

tent labeling of anyons based on the region they stay at) and

”permuting”-type (which only apply a permutation to any par-

ticle crossing a defect line). We investigated Hamiltonians

with consistent defect lines. However, interesting construc-

tions use non-consistent defect lines to introduce topological

defects, such as the construction of Bombin for the toric code

with twists [26]. Another possibility we can’t exclude is to as-

sume a different thermal environment, and thus use a different

noise model for this analyis. This might result in the simple

permuting-type defect lines introducing entropic protection to

Abelian systems. Our analysis only applies to Abelian quan-

tum doubles, i.e. qudit stabilizer codes, therefore, entropic
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protection of quantum doubles based on non-Abelian groups

(or of models that are not quantum doubles of any group) is

not ruled out, especially since one can think of a variety of de-

fect lines which can arise in such models [27]. One can also

consider constructions where lower dimensional topological

systems are coupled to an ancillary system, and this coupling

modifies the dynamics of the original model [5, 28].
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Appendix A: Maximum cardinality and sum of multisets

without a zero-sum subset

In this section, we derive elementary facts about multisets

of Zd without any subset sum equal to zero. This is moti-

vated by the problem of fusing anyons in a Zd quantum dou-

ble. Indeed, consider a set of anyons labelled by their anyonic

charge. Since there can be several anyons of the same any-

onic charge, we are interested in set-like mathematical objects

where multiplicity is explicit. For instance, for a set of two

anyons of type 1 and one anyon of type 3, we would like to

write {1, 1, 3}.

The formal mathematical object for this intuitive notion are

called multisets. In our simple case, they are simply a multi-

plicity function

f : Zd → N (A1)

where f(k) is the multiplicity of k in the multiset. For in-

stance, for d = 5, the multiset {1, 1, 3} is equivalent to

{(1, 2), (2, 0), (3, 1), (4, 0), (5, 0)} which is the graph of the

multiplicity function.

The cardinality of a multiset |f | is the total number of ele-

ments, taking multiplicity into account, i.e.,

|f | =
∑

k∈Zd

f(k) ∈ N. (A2)

The sum of a multiset s(f) is the sum of all its elements, tak-

ing multiplicity into account, i.e.,

s(f) =
∑

k∈Zd

kf(k) ∈ Zd. (A3)

Note that |f | is an integer whereas s(f) is defined modulo

d. Physically, the sum s(f) is the anyon type resulting from

fusing all anyons in the multiset. Moreover, one defines the

sum f + g of two multisets f and g

(f + g)(k) = f(x) + g(x). (A4)

It corresponds to the intuitive idea of adding the elements of f
and g. For instance, {1, 1, 3}+ {1, 2, 4}= {1, 1, 3, 1, 2, 4} =
{1, 1, 1, 2, 3, 4}. Finally, one defines a (multi)subset by

f ⊆ g ⇔ ∀k ∈ Zd f(k) ≤ g(k). (A5)

Given a multiset of anyons, we would like to know whether

it contains subsets which fuse to the vacuum. Mathematically,
given a multiset f , we are interested in the sum of its subsets

s(f ′) where f ′ ⊆ f . More precisely, we want to know if a

subset sums to zero modulo d. We define the spectrum of a

multiset

sp(f) =
⋃

f ′⊆f,f ′ 6=∅

s(f ′). (A6)

and say that a multiset is zero-sum free if 0 is not in its spec-

trum, i.e. no non-empty subset sums to 0 modulo d. We aim to

determine the largest possible cardinality and sum of a zero-

sum free multiset. This is related to a well-studied problem

in complexity theory and cryptography, called the subset sum

problem [29].

First, we want to understand what happens to the spectrum

when we add a singleton to the multiset, i.e., we consider the

operation f → f + {x}. The non-empty subsets of f + {x}
are {x}, the subsets of f and the subsets of f to which we add

the element x. Thus, we have

sp(f + {x}) = {x} ∪ sp(f) ∪ (sp(f) + x) . (A7)

We can then prove the following lemma

Lemma 7 The spectrum of a zero-sum free multiset strictly

increases when adding any singleton, i.e.,

f is zero-sum free ⇒ sp(f) ( sp(f + {x}) (A8)

PROOF: We prove the contrapositive of Eq. (A8), i.e. we con-

sider a multiset f for which sp(f) = sp(f + {x}) and we

will prove that it contains a zero-sum subset. Using Eq. (A7),

the equality of spectra implies that i) x is an element of sp(f)
and ii) sp(f) ⊆ sp(f) + {x}. Since the addition by x only

shifts the spectrum the two sets have the same cardinality and

sp(f) = sp(f) + {x}. In particular, since x is an element of

sp(f), there exists a subset f⋆ ⊆ f for which the following

equality holds modulo d: x = sp(f⋆) + x. Thus, the sum of

f⋆ is zero.

Using lemma 7, we can deduce the maximal cardinality of

a zero-sum free multiset. Indeed, consider a zero-sum multi-

set by sequentially adding its elements to the empty set. The

spectrum will increase at each addition of a singleton by at

least 1. However, a spectrum is contained in Zd and thus has

at most d− 1 elements. Hence, we have proven that

Theorem 8

f is zero-sum free ⇒ |f | ≤ (d− 1) (A9)

In fact, we can saturate the bound. Any multiset of an integer

k coprime with d and multiplicity d − 1 is zero-sum free. In

particular, the multiset containing d−1 with multiplicity d−1
maximizes the sum of any zero-sum free multiset.

Theorem 9

max
zero-sum free f

|f | = d− 1 (A10)

max
zero-sum free f

s(f) = (d− 1)2 (A11)


