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It is by now well understood that quantum dissipative processes can be harnessed and turned into a
resource for quantum-information processing tasks. In this paper we demonstrate yet another way in
which this is true by providing a dissipation-assisted protocol for the simulation of general Markovian
dynamics. More precisely, we show how a suitable coherent coupling of a quantum system to a set of
Markovian dissipating qubits allows one to enact an effective Liouvillian generator of any Lindbladian
form. This effective dynamical generator arises from high-order virtual-dissipative processes and
governs the system dynamics exactly in the limit of infinitely fast dissipation. Applications to the
simulation of collective decoherence are discussed as an illustration.

I. INTRODUCTION

Quantum decoherence and dissipation have been
regarded until recently purely detrimental to the aim
of quantum information processing (QIP) [1, 2]. In-
teractions with the environment in fact inevitably
lead to entanglement between the quantum com-
puting system and uncontrollable degrees of free-
dom. This unwanted entanglement in turn results
in a system subdynamics that is in general incoher-
ent and irreversible: unitarity is quickly lost and
with it the quantum information processing advan-
tages e.g., computational speed-ups, one was seek-
ing. This state of affairs triggered a spectacular the-
oretical effort that led to the discovery of a host of
techniques to tame decoherence [3] as quantum error
correction [4, 5], decoherence-free subspaces [6–8],
noiseless subsystems [9–13] and holonomic quantum
computation [14, 15].

It is therefore a conceptually remarkable shift the
recent realization that by reservoir-engineering dis-
sipation can be harnessed and turned into a useful
practical resource for QIP (see [16] for some early
pioneering contributions). For example one can dis-
sipatively achieve quantum state preparation [17–
19], quantum simulation [20, 21], holonomic quan-
tum computation [22] and even universal computa-
tion [23]. Simulation of highly non-trivial properties
of matter as topological order [24] and non-abelian
synthetic gauge fields [25] can also be accomplished
by dissipative means. Finally, all forms of QIP that
encode information in the ground state of a time-
dependent Hamiltonian, e.g., open system adiabatic
quantum computation and quantum annealing, also
benefit from dissipation and relaxation to negate
thermally driven errors [26–28].

In particular in [29] it has been shown that quan-
tum information can be encoded in the set of steady
states (SSS) of a sufficiently symmetric strongly
dissipative system and manipulated coherently by
an effective dissipation-projected Hamiltonian. The

latter is of geometric nature and is robust against
some types of Hamiltonian and dissipative pertur-
bations [30]. The key idea of Ref. [29] is a simple
one: once the system is prepared in the SSS the
fast dissipative processes adiabatically decouple non
steady-states away while at the same time strongly
renormalize the system Hamiltonian in such a way
that the SSS remains invariant under this projected
dynamics. This phenomenon can be thought of as
a sort of environment-induced quantum Zeno effect
[31, 32] at the superoperator space level [30].
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FIG. 1. A quantum system S (blue ball) is coupled with
coupling strengths gi to M qubits (yellow balls). Each of
these qubits is subject to amplitude damping with rates
τ−1
i . Proposition 2 shows that in the limit of small τi the

qubits can be adiabatically decoupled and the effective
dynamics of S is described by M Lindblad operators of
strength g2i τi

In this paper we extend the ideas of [29] to higher
order. In the case in which the dissipation-projected
Hamiltonian is vanishing, higher order virtual dissi-
pative processes give rise, in a suitable limit, to an
effective Liouvillian generator that leaves the SSS in-
variant. However, at variance with the case studied
in [29] this effective generator is no longer Hamilto-
nian: a slow irreversible process unfolds within the
SSS. We will show how this mechanism can be ex-
ploited to the end of the simulation of any Marko-
vian dynamics. More precisely, we will show that by
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suitably coupling a quantum system to a structured
reservoir comprising multiple qubits undergoing fast
amplitude damping one can implement an effective
Liouvillian generator in general Lindblad form [33].
We will illustrate our results by analyzing the dissi-
pative simulation collective decoherence.

It is important to stress that our approach to the
simulation of Lindbladians is quite distinct from the
other ones discussed in the literature [34–37]. First
it involves the use of dissipation as a simulational
resource and not simply as the object of the simula-
tion. Second, it is a sort of analog simulation which
aims at simulating the infinitesimal generator of the
dynamics i.e., the Lindbladian L. We will not build
quantum circuits which, for any given t ≥ 0, approx-
imate the associated finite-time evolution etL (or a
Trotterized version thereof) [35]. Once L is given
our simulational setup is defined ∀t ≥ 0. Moreover,
we do not need the ability of performing multiple
measurements and coherently feeding their results
back into the system, as in [34]. Finally, we are not
limited to weak non unitarity as in [36].

II. PRELIMINARIES

Let H, [dim(H) <∞] denote the Hilbert space of
the system and L(H) the algebra of linear opera-
tors over it. A time-independent Liouvillian super-
operator L0 acting on L(H) is given. The SSS
of L0 consists of all the quantum states ρ (ρ ∈
L(H), ρ ≥ 0, Tr ρ = 1) contained in the kernel
KerL0 := {X /L0(X) = 0} of L0. We shall de-
note by P0 = P2

0 (Q0 := 1 − P0) the spectral pro-
jection over KerL0 (the complementary subspace of
KerL0). As in [29] the Liouvillian L0 is also assumed
to be such that: a) etL0 , (t ≥ 0) defines a semi-group
of trace-preserving positive maps with ‖etL0‖ ≤ 1,
b) The non-zero eigenvalues λh, (h > 0) of L0 have
negative real parts, i.e., the SSS is attractive. In
this case P0 = limt→∞ etL0 and P0 L0 = L0 P0 = 0.
We also denote by S := − limz→0(z − L0)−1Q0

the reduced resolvent of L0 at (z = 0) and by
τR := ‖S‖. Note that the reduced resolvent satisfies
SL0 = L0S = Q0. Since L0 has unit of inverse time
(we set here and throughout the paper ~ = 1) while
Q0 is of course dimensionless, τR has indeed unit
of time and provides a natural time-scale associated
with the relaxation processes described by L0. The
energy scale τ−1

R is of the order of the dissipative
gap of L0 i.e., the smallest modulus of a non-zero
eigenvalue of L0. The dimensionless (and normal-

ized) resolvent is defined by S̃ := τ−1
R S. We now add

a Hamiltonian term K := −i[K, •] where K = K†

such that LT = L0 +K. We set K = (τRT )−1/2K̃, in

such a way that K̃ is dimensionless and ‖K̃‖ = O(1).

The time-scale T is our scaling parameter and has
to be thought of as large or even infinite in the spirit
of the adiabatic theorem.

We first establish a key technical result that rep-
resents the higher-order extension of the projection-
theorem of Ref. [29] in the case of a vanishing
dissipation-projected Hamiltonian. The following
proposition provides the first stepping stone of our
universal Lindbladian simulation protocol.

Proposition 1: If P0KP0 = 0, then for sufficiently
large T one has that

sup
t∈[0, θT ]

‖(etLT − e t
T L̃eff )P0‖ ≤ Cθ

√
τR
T

(1)

where L̃eff := −P0K̃S̃K̃P0, LT := L0 + 1√
τRT
K̃, θ =

O(1) > 0 and Cθ = O(1) depends on θ and L0.

Proof.– Is provided in Appendix A. �

This result provides the starting point of this
paper. In particular from Eq. (1) it follows that

limT→∞ ‖(eTθLT − eθL̃eff)P0‖ = 0. In words: if the
system is prepared at time t = 0 inside the SSS and
then evolves for finite fraction θ of T , in the large T
limit the time-evolution leaves the SSS invariant and
it is governed by the effective (dimensionless) gen-

erator L̃eff. [It is also sometimes convenient to in-
troduce the effective dimensionful generator Leff :=
−P0KSKP0 whose norm is ‖Leff‖ = O(‖K‖2τR). In
terms of Leff the second term in the norm of Eq. (1)
reads etLeff .]

Remarks: 0) The stronger the dissipation outside
the SSS i.e., the shorter τR, the weaker the effective
one inside i) Since, by construction ‖L̃eff‖ = O(1),
the (dimensionless) action associated to the effective

propagator eθL̃eff is O(θ) for T →∞. ii) The RHS of
Eq. (1) represents an error bound, if we fix it at ε�
1, we see that one needs that T ≥ ε−2 CθτR. iii) If

K 7→ K+T−1K̃1 where ‖K̃1‖ = O(1) and P0K1P0 6=
0 then (1) holds with L̃eff 7→ L̃eff + P0K̃1P0 and a
different constant Cθ = O(1) [38]

The effective Liouvillian generator L̃eff is clearly
reminiscent of the second-order effective Hamilto-
nians routinely used e.g., in quantum optics, and
obtained by some sort of adiabatic decoupling tech-
nique [40]. However, this dynamics, at variance with
that case as well as with the situation considered in
[29] is not unitary but of general Liouvillian type.
The key point is that this effective non-unitary dy-
namics depends on K and on its non-trivial inter-
play with the bare dissipation generated by L0. This
opens up the possibility of using it to engineer dissi-
pative systems with a desired Liouvillian generator.
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III. UNIVERSAL LINDBLADIAN
SIMULATION

Let us consider a system S coupled to a system B
via the general Hamiltonian

K =

M∑
i=1

Li ⊗Bi, (2)

where the tensor ordering follows that of the total
Hilbert space, H = HS ⊗ HB and, without loss of

generality, we assume B†i = Bi, (i = 1, . . . ,M). We
also assume that the dissipative term is of the form
L0 = 1S ⊗LB , such that LB(ρ0) = 0 where ρ0 is by
assumption the unique steady state of LB . The SSS
of L0 is given by all the states of the form ρ⊗ρ0 and
it is isomorphic to the full-state space of S. In this
case one has P0(X) = TrB(X)⊗ρ0 and P0KP0(•) =
−i[Keff , •] with Keff = TrB (Kρ0)⊗ 1B [29]. Let SB
be the the projected resolvent of LB at z = 0.

Proposition 2: If Keff = 0 then Leff = L(S)
eff ⊗1B ,

L(S)
eff (ρ) = −i[Heff, ρ]+

M∑
i,j=1

2Γij(LiρLj−
1

2
{LjLi , ρ})

(3)

where Γ := (Γ(A)+Γ(A)†)/2, Heff = 1
2i

∑M
i,j=1(Γ(A)−

Γ(A)†)i,jLjLi and Γ
(A)
ij = −Tr (SB(Biρ0)Bj) .

Proof.– Is provided in Appendix B. �
Notice that H†eff = Heff and that Eq. (3) describes

a truly Lindbladian dynamics iff Γ ≥ 0. Our main
result now follows as a particular case of Proposition
2 above. Let us consider a d-dimensional system S
coupled to a system B comprising M qubits, by the

Hamiltonian K =
∑M
i=1 gi (L†i ⊗ σ

−
i + h.c.), where

the Li’s are given operators acting on the system

state-space only. Let us also suppose LB =
∑M
i=1 Li

where each of the M qubits independently dissipates
according to the local Liouvillian

Li(ρ) = τ−1
i (σ−i ρσ

+
i −

1

2
{σ+

i σ
−
i , ρ}). (4)

The unique steady state of LB is ρ0 = |0〉〈0|⊗M and
since Tr(σ±i ρ0) = 0 (∀i) one has Keff = 0.

Proposition 3: Leff = L(S)
eff ⊗ 1B where

L(S)
eff (ρ) = 4

M∑
i=1

g2
i τi(LiρL

†
i −

1

2
{L†iLi, ρ}). (5)

Proof.– To obtain Eq. (5) from Eq. (3), re-write the

Bi, Li in (2) such that K =
∑M
i=1 gi (L†i ⊗σ

−
i +h.c.).

Remembering that ρ0 = |0〉〈0|⊗M , and LB as in
Eq. (4), we recover Eq. (5) as required by direct
evaluation of the matrix Γ(A) in Prop. 2 �

Notice now that, in view of remark iii) after

Prop. 2, one can add any Hamiltonian K1 = T−1K̃1

[‖K̃1‖ = O(1)] acting on the system S only (⇒
P0KP0 = P0K1P0). This will result in L̃eff 7→
L̃eff + K̃1. Therefore we see that Prop. 2 shows that
in principle any Liouvillian in the Lindblad form
[33] i.e., the most general generator of semi-groups
of Markovian CP maps, can be obtained given the
availability of M auxiliary qubits (one for each Lind-
blad operator) subject to an amplitude damping
channel and the ability to enact the Hamiltonian
K. Dissipation turns into a resource that allows one
to simulate a general Lindbladian evolution.

We would like to make a few important remarks:
1) One might think of obtaining the Lindbladian dy-
namics Eq. (5) directly coupling the system S to
some reservoir with an interaction Hamiltonian of
type (2) and then using the standard Born Markov
approximation [40]. The point is that the lat-
ter involves uncontrolled approximations (Markov)
whereas Eq. (1) has a uniform and controlled error

O(
√
τR/T ). This means that the effective dynamics

of S becomes exactly Lindbladian, with generator
(5), for T →∞. Of course this is true as long as the
auxiliary qubits are exactly described by the Lind-
bladian in Eq. (4) i.e., their genuine Markovianity
is a key resource in our universal simulation proto-
col along with the ability of switching on the the
Hamiltonian in Eq. (2). 2) In view of physical ap-
plications, we stress that the effective dynamics in
Eq. (5) still holds if the M qubits are replaced by
M bosonic modes subject to amplitude damping i.e.,
the σ−i in Eq. (4) are replaced by annihilation oper-
ators ai. 3) A comparison of the complexity of our
analog simulation technique with the “digital” ones
[35] it is not directly viable. A meaningful way to as-
sess quantitatively the efficiency of our proposal is to
see how the required resources i.e., number of auxil-
iary qubits and dissipation, scale with the number N
of qubits. In Appendix C it is shown that the dissi-
pation rate γR := τ−1

R fulfills γR = O(ε−1LJ) where
J := maxi ‖Li‖ is independent of N and ε � 1 is
the simulation error (for a fixed time). Furthermore
for a k-local Lindbladian [35] one has L = O(2kNk).
This shows that, for a physically reasonable Lind-
bladian, resources scale polynomially with N.

In the next section we will discuss, for the sake of
illustration of our general results, the simulation of
different types of collective decoherence when S is
itself a set of multiple qubits.
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IV. SIMULATING COLLECTIVE
AMPLITUDE DAMPING

Here we use our general result Eq. (5) to sim-
ulate qubits subject to collective damping. This
type of symmetric noise is interesting as it admits
decoherence-free subspaces [6–8] and can be used to
dissipatively prepare entangled states. Let us con-
sider a system ofN qubits coupled to a bosonic mode
e.g., N atoms coupled to a cavity EM mode, via
a (collective) Jaynes-Cummings Hamiltonian K =
g (S−a† + S+a). Moreover we assume that the sys-
tem dissipates according to the Liouvillian L0 =
1S ⊗ LB where LB(ρ) = −iω [a†a, ρ] + τ−1

R (aρa† −
1
2{a
†a, ρ}). Using Eq. (5) with L1 = S− one finds

the effective generator L(S)
eff (ρ) = 4g2τR (S−ρS+ −

1
2{S

+S−, ρ}) where ρ is just the N -qubit state as
the generator is trivial in the bosonic degrees of free-
dom (frozen at |0〉).
Proposition 2 shows that one can consider for the
auxiliary qubits a Liouvillian that is more general
than Eq. (4) (as long as its steady state is unique).
We illustrate this fact by considering the thermaliza-
tion of an auxiliary qubit at non-zero temperature.
Namely, we add to Eq. (4) an excitation Liouvillian,
such that now LB(ρ) = τ−1

− (σ−ρσ+− 1
2{σ

+σ−, ρ})+
τ−1
+ (σ+ρσ−− 1

2{σ
−σ+, ρ}). By explicit computation

of the Γ matrix in Prop. 2 one can check that the
new effective generator (in the system S sector) is

L(S)
eff (ρ) =

∑
α=±

τ−1
eff,α(SαρSα† − 1

2
{Sα†Sα, ρ}) (6)

where τ−1
eff,± = 4g2 τ−τ+

(τ−+τ+)2 τ∓. A numerical check of

the validity of Eq. (1) is shown in Fig. 2.
Following a similar set-up as the previous sub-

section but with a Hamiltonian of the form K =
g Sx ⊗ σx , the effective generator becomes that of
collective dephasing along the x-direction

L(S)
eff (ρ) = 4g2 τ−τ+

τ+ + τ−
(SxρSx − 1

2
{SxSx, ρ}). (7)

In Fig. 3 we plot the distance between the ac-
tual and the effective evolution as a function of t
for different time-scales T . According to Eq. (1) by
changing T → c T (c > 1), we expect the distance
to fall by a factor of

√
c (cf. in Fig. 3 the maximum

error falls from the dash to solid line by a factor of
∼
√

10). In the limit of T →∞, the exact evolution
becomes identical to the effective one ∀t.

V. CONCLUSIONS

There is increasing evidence that dissipative and
quantum incoherent processes can be used to enact
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FIG. 2. (Color online) Distance from the exact evolution
(ET := eTLT ) and effective one with Liouvillian (6) , as

a function of 1/
√
T . N = 3, τ+ = 2, τ− = 1, and g =

(τRT )−1/2 (where the relaxation time is τR =
τ+τ−
τ++τ−

).

The linear fit is obtained using the least squares fitting
on all of the data points, and the norm is the maximum
singular value of the maps realized as matrices. Time is
measured in units of τR.
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FIG. 3. (Color online) Distance from the exact evolution
(Et := etLT ) and effective one with Liovillian Eq. (7),
as a function of log10(t). N = 1, τ+ = 2, τ− = 1, and

g = (τRT )−1/2 (τR =
τ+τ−
τ++τ−

). Note that for the dashed

line we have extended t past T , purely for convenience.
The norm is the maximum singular value of the maps
realized as matrices. Time is measured in units of τR.

quantum information processing primitives, see e.g.
[16–25]. In this paper we have shown how a suitable
coherent coupling between a quantum system S and
an environment comprising multiple qubits subject
to strong Markovian dissipation, can be used to sim-
ulate universal Lindbladian dynamics over S. More
precisely, by using high-order virtual dissipative pro-
cesses, one can build an effective Liouvillian genera-
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tor in arbitrary Lindblad form [33] that governs the
dynamics of S exactly in the limit of infinitely fast
dissipation. We illustrated our results by numerical
simulations of concrete physical models. Our find-
ings show that Markovianity itself can be seen as
resource in that it allows for universal simulation of

an important class of quantum irreversible processes.
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Appendix A: Proof of Proposition 1

Here we provide a proof of Eq. (1) of the main
text, and an asymptotic (large T ) estimate of the
constant Cθ. Let P be the spectral projection of
LT = L0 + K, (‖K‖ = O( 1√

T
) associated with the

zero eigenvalue of L0. Since, because of the Lindblad
structure, there is no nilpotent term associated with
the zero eigenvalue, the perturbation theory reads,
as shown in In T. Kato, Perturbation theory for Lin-
ear operators, for small ‖K‖, i.e., large T,

P − P0 = −P0KS − SKP0 +O(‖K‖2),

PLTP = P0KP0 − P0KSKP0 − P0KP0KS
− SKP0KP0 +O(‖K‖3) (A1)

From the first equation it now follows (for sufficiently
large T )

‖P − P0‖ = O(τR‖K‖) ≤ C ′1τR‖K‖, (A2)

where C ′1 is a suitable constant (notice that ‖P0‖ =
1). On the other hand, using P0KP0 = 0 and the
definition Leff := −P0KSKP0 for the dimensionful

effective generator from the last equation in (A1) it
follows

‖PLTP − Leff‖ = O(‖K‖3), (A3)

whence (for small ‖K‖) ‖PLTP‖ ≤ C3‖Leff‖. Since
etLTP = etPLTPP one can write

(etLT − etPLTP)P0 = −(etLT − etPLTP)(P − P0)

etLT − etPLTP = (etLT − etLeff)

+ (etLeff − etPLTP) (A4)

Using ‖eX−eX+Y ‖ ≤ ‖Y ‖e‖X‖+‖Y ‖ with X := tLeff

and Y = t(PLTP − Leff) and the bounds above it
also follows that, for 0 ≤ t ≤ θT ,

‖etLeff − etPLTP‖ ≤ C ′2 t ‖K‖3 (A5)

where C ′2 is a constant of that, for dimensional rea-
sons, is O(τ2

R) i.e., C ′2 ≤ C2τ
2
R. From (A4) using

‖etLT ‖ = 1, and standard operator norm inequali-
ties one finds

εt :=‖(etLT − etLeff)P0‖ ≤ ‖(etLeff − etPLTP)P0‖+ (‖etLT ‖+ ‖etPLTP‖)‖P − P0‖
≤ ‖etLeff − etPLTP‖+ (1 + et‖PLTP‖)‖P − P0‖ (A6)

Notice that εt is the quantity showing up in the
LHS of (1) in the main text, namely is the quantity
whose upper bound over [0, T ] we desire to show is

O(
√
τR/T ). Now using the bounds (A2), (A3),(A5)

and 0 ≤ t ≤ θT, (θ > 0) one finds

εt ≤ τR‖K‖(C1 + C2 t τR‖K‖2), (A7)

where C1 ≥ C ′1(1 + eC3θ‖L̃eff‖). By moving to
the dimensionless Hamiltonian such that ‖K‖ =

(τRT )−1/2‖K̃‖ the inequality (A7) becomes εt ≤√
τR
T ‖K̃‖(C1 + t

T C2‖K̃‖2). Notice that the require-
ment of ‖K‖ being sufficiently small used repeat-
edly in the above translate now in the “adiabatic
criterion” of T being sufficiently large. Finally by
taking the supremum for t ∈ [0, θT ] one obtains
supt εt ≤

√
τR
T (C1 + C2 θ). Setting Cθ := C1 + C2 θ

completes the proof of Eq. (1) of the main text.

Appendix B: Proof of Proposition 2

We directly compute the second order effective
generator Leff := −P0KSKP0 by acting on some

state X, such that P0(X) = ρ ⊗ ρ0. Following the
main Eq. (2) in the main text we set

K =

M∑
i=1

Li ⊗Bi, (B1)

where the tensor ordering follows that of the to-
tal Hilbert space, H = HS ⊗ HB and, without loss

of generality, we assume B†i = Bi, (i = 1, . . . ,M).
Therefore one has

SKP0(X) = −i
M∑
i=1

(Liρ⊗ SB(Biρ0)−

ρLi ⊗ SB(ρ0Bi)),

(B2)

where we have introduced notation S = 1S ⊗ SB ,
which only acts non-trivially on system B for this
set-up, i.e. SB = −

∫∞
0
etLB (following from S =

−
∫∞

0
etL0Q0, see [29]). Acting with −P0K on this

we can see that:
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Leff(X) = {
M∑

i,j=1

Γ
(A)
ij (LiρLj − LjLiρ) +

M∑
i,j=1

Γ
(B)
ij (LjρLi − ρLiLj)} ⊗ ρ0, (B3)

where Γ
(A)
ij = −Tr (SB(Biρ0)Bj), and Γ

(B)
ij =

−Tr (SB(ρ0Bi)Bj). In passing we notice that one
can rewrite the system S part of these equations in
a more familiar form, using that without loss of gen-

erality Li = L†i and Bi = B†i . Just observe that
since SB is a Hermitian-preserving map, we have
Γ(A)∗ = Γ(B). It then follows

L(S)
eff (ρ) = −i[Heff, ρ]+

M∑
i,j=1

2Γij(LiρLj−
1

2
{LjLi , ρ})

(B4)

where Γ := (Γ(A)+Γ(A)†)/2, Heff = 1
2i

∑M
i,j=1(Γ(A)−

Γ(A)†)i,jLjLi and Γ
(A)
ij = −Tr (SB(Biρ0)Bj) . This is

Eq. (3) of the main text as required.

Appendix C: Scaling of Resources

From the definition Leff := −P0KSKP0 it follows
the “action” αt := ‖Leff‖t is of the order t τR‖K‖2.
By fixing αt = O(1) it in (A7) one obtains

εt ≤ τR‖K‖(C1 + αtC2) =: C τR‖K‖, (C1)

with C = O(1). Now, ‖K‖ ≤ 2 ‖K‖ and, from Eq.
(2) in the main text, ‖K‖ ≤ Lmaxi ‖Li‖‖Bi‖ :=
LJ, with J = O(1). From Eq. (C1) one has εt ≤
τR (2CJ)L whence γR := τ−1

R ≥ ε−1(2CJ)L implies
εt ≤ ε. The only quantity which (potentially) scales
with the number of qubits is the total number L of
Lindblad operators we have in the Liouvillian to be
simulated (equal to the number of dissipating ancilla
qubits required in our scheme). For the physically
meaningful class of k-local Liouvillians considered in
[35] one has L = O(Nk2k) (see Eqs. (3) and (4) in
[35]). This proves the lower bound of the dissipation
γR rate mentioned in the main text.

Appendix D: The Dissipation-Projection
Hierarchy

Before concluding, we would like to show how
the construction leading to the effective dynamics
(Eq. (1) in the main text) can in principle be iterated
over a sequence of exponentially longer time-scales.
Let us set the error parameter ε := ‖K‖τR � 1.
The effective relaxation time of Eq. (1) in the main

text can be roughly estimated as τ
(1)
R ∼ ‖L−1

eff ‖ ≥
(‖K‖2τR)−1 = ε−2τR � τR, where the last inequal-
ity stems from the condition ε� 1.

Suppose that the dynamics generated by Leff ad-

mits itself a high-dimensional SSS (let P(1)
0 denote

the associated projection) and that one can switch

on an extra Hamiltonian K1 such that ‖K1‖τ (1)
R =

ε � 1. One can now apply the projection theo-
rem (Eq. (1), main text) to Leff and K1 and ar-
gue that the effective dynamics in the SSS of Leff

is ruled by K(1)
eff := P(1)

0 K1P(1)
0 . If even this effec-

tive Hamiltonian vanishes then one can iterate the
projection procedure assuming as a starting state-
space the SSS of Leff. In general, if at the n-th

level one finds P(n)
0 K1P(n)

0 = 0 and P(n)
0 is high-

dimensional then one can move to the next level
where L(n+1)

eff = −P(n)
0 KnS(n)KnP(n)

0 and a new

Hamiltonian Kn+1 such that ‖Kn+1‖τ (n)
R = ε � 1

is introduced. Reasoning as in the above one can
show that at each iteration the relaxation time scale
(Hamiltonian norm) gets stretched (compressed) by
a factor ε−2 (ε2). From the point of view of poten-
tial applications the interest in exploring this pro-
jection hierarchy rests on the possibility that the
first non-vanishing effective Hamiltonian has some
desired property e.g., higher-locality [29].
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