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Einstein-Podolsky-Rosen (EPR) steering describes how different ensembles of quantum states can
be remotely prepared by measuring one particle of an entangled pair. Here, we investigate quantum
steering for single quantum d-dimensional systems (qudits) and devise efficient conditions to cer-
tify the steerability therein, which we find are applicable both to single-system steering and EPR
steering. In the single-system case our steering conditions enable the unambiguous ruling-out of
generic classical means of mimicking steering. Ruling out ‘false-steering’ scenarios has implications
for securing channels against both cloning-based individual attack and coherent attacks when im-
plementing quantum key distribution using qudits. We also show that these steering conditions also
have applications in quantum computation, in that they can serve as an efficient criterion for the
evaluation of quantum logic gates of arbitrary size. Finally, we describe how the non-local EPR vari-
ant of these conditions also function as tools for identifying faithful one-way quantum computation,
secure entanglement-based quantum communication, and genuine multipartite EPR steering.

PACS numbers: 03.65.Ud, 03.67.Dd, 03.67.Lx

I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering was origi-
nally introduced by Schrödinger [1] in response to the
EPR paradox [2]. Such steering is the ability of one party,
Alice, to affect the state of another remote party, Bob,
through her choice of measurement [1]. This relies on
both the entanglement of the pair shared between Alice
and Bob and the measurement settings chosen for each
particle of the pair. Recently, the concept of EPR steer-
ing has been reformulated in terms of an information-
theoretic task [3] showing that two parties can share en-
tanglement even if the measurement devices of one of
them are uncharacterized (or untrusted). This new for-
mulation also illustrates a strict hierarchy between Bell
non-locality, steering and entanglement. It is worth not-
ing that, as with Bell inequalities and entanglement wit-
nesses, which have been widely used to verify quantum
correlations, EPR steering inequalities [4] and steering
measures [5] have been introduced to detect and quantify
the steerability of bipartite quantum systems. It is also
now understood that steering has applications in certain
quantum key distribution (QKD) schemes, where one of
the parties do not trust their measurement apparatus,
i.e., one-sided device-independent QKD (1SDI-QKD) [9].
In addition to these theoretical breakthroughs several ex-
perimental demonstrations of EPR steering have been
reported [6–8].
Since the reformulation of EPR steering by Wiseman

et al. [3], there has been a range of investigations into
steering’s unique properties, quantification and potential
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extensions. For example, it has been shown that there
exist entangled states by which steering can be performed
in only one direction [10–12], from Alice to Bob but not
from Bob to Alice. In addition, the original bipartite
steering effect has been generalized to genuine multipar-
tite steering [13–16]. Moreover, a temporal analog of the
steering inequality has been introduced [17], and a non-
trivial operational meaning to violations of such an in-
equality was found through a connection to the security
bounds of certain QKD schemes [17].

Given this range of breakthroughs in our understand-
ing of quantum steering, a natural question arises: does
there exist a strict and experimentally efficient criteria
for quantum steering that can be used to certify the
reliability of both quantum communication (like QKD)
and quantum computation tasks? So far, it was been
shown that 1SDI-QKD [9] benefits from EPR steering.
However, there is no unified scheme for the use of quan-
tum steering for generic quantum information processing
tasks. In fact, the role of quantum steering in quantum
computation, if any, is not clear.
Here, we present a simple but unified picture to con-

nect quantum steering with such generic quantum in-
formation tasks. See Fig. 1 for a schematic illustration
of a typical implementation. Two novel steering con-
ditions are introduced to identify genuine single-system
quantum steering in the presence of errors and which can
be applied to both quantum computation and quantum
communication using qudits (systems of arbitrary dimen-
sion). Both steering conditions need only the minimum

of two local measurement settings for experimental im-
plementation. Our results give a strict meaning of vio-
lating the temporal analog of the steering inequality [17]
and extend the 1SDI-QKD from qubit [9] to qudit cases.
Moreover, we show how these conditions can be applied
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FIG. 1. Single-system steering for quantum information tasks. The state âi is sent from Alice to Bob. Here âi is a post-
measurement state of a qudit ρs under the measurement Ai for i = 1, 2. By sharing certain information distributed via a
classical communication channel (not shown), Alice can steer the state of Bob’s particle by asking him to perform the quantum
operation U . For example, by simply choosing U as an identity operator, Alice’s steering enables them to realize QKD. When
U is an arbitrary quantum logic gate, steering single systems is equivalent to performing quantum computation. To identify
whether Alice can implement such steering, Bob can use the steering condition (7) or (9) to rule out the results mimicked by
generic classical strategies. As illustrated, Bob performs measurements Bu(i) to implement these certifications. These steering
conditions ensure secure quantum communication and faithful quantum computation (see table I). Here, it is allowed that
Alice and Bob have no spatial separation but access the single system at different times.

in the standard non-local EPR setting and then used to
validate quantum computation for both the quantum cir-
cuit model [18] and one-way quantum computing [19]. Fi-
nally, we discuss the implications for certifying genuine
multipartite EPR steering and implementing multipar-
tite secret sharing with partially uncharacterized mea-
surement devices.

II. QUANTUM STEERING FOR SINGLE
SYSTEMS

In the scenario of single-system quantum steering, Al-
ice’s ability to affect the quantum state Bob has access
to is based on both her ability to prepare an arbitrary
quantum state to send to Bob and her knowledge, if any,
about the state Bob finally receives (which may differ
from her prepared state, for various reasons) [20]. If Al-
ice has full information about the quantum system Bob
is holding, she is capable of steering this system into an
arbitrary state. Alice can follow two steps to achieve this
(Fig. 1).

First, Alice prepares a specific state of a qudit with a
given initial state state ρs generated from some quan-
tum source, before sending it to Bob, by performing
complementary measurements Ai for i = 1, 2. Once
the particle is measured with a chosen Ai, ρs becomes
âi ≡ |ai〉ii〈ai| for ai ∈ v = {0, 1, ..., d− 1}, where the d
states constitutes an orthonormal basis {|ai〉i} [20]. The
set of states {|a2〉2} is complementary to the state set

{|a1〉1} by defining |a2〉2 = 1/
√
d
∑d−1

a1=0 ω
a2a1 |a1〉1, with

ω = exp(i2π/d).

Second, the particle in the state âi is sent to Bob. Here
Bob does not know the state of particle âi sent from Al-
ice. To steer Bob’s state âi into other quantum states
U(âi) ≡ UâiU

†, Alice can directly perform the unitary
operation U by herself before the particle transmission,
or publicly, via a classical channel, ask Bob to apply U on
|ai〉i. While the quantum operation U is announced pub-
licly, the state U(âi) is still unknown to Bob. It is clear
that Alice has complete knowledge about the quantum

system held by Bob since the state ρs, the measurement
Ai and the subsequent operation U are designed by Alice.
When Bob performs measurements on his particle after
the operation U , his two complementary measurements
Bu(i) for i = 1, 2 are specified by the orthonormal bases

{
∣

∣bu(i)
〉

u(i)
≡ U |bi〉i |bu(i) = bi ∈ v} with the results

{bu(i)}.
In an ideal case, the state received by Bob is the same

as the initial state âi prepared by Alice under the trans-
formation U . In practical situations, however, noise from
the environment or other artificial effects introduce an
unknown source of randomness. In order to explicitly
qualify whether Alice can steer the states of the parti-
cles eventually held by Bob, and rule out either third-
party eavesdropping, classical mimicry of the channel, or
to qualify the quality of the channel itself, we consider
the following generic classical means of describing state
preparation, transitions between states, and the limits to
which they can influence the measurement results of Bob.
First, we assume that the state of the particle sent

by Alice can be described by a classical realistic the-
ory which predicts the particle is in a state described
by a fixed set (A1 = a1, A2 = a2). Suppose next that
P (a1, a2) is the probability that, before the measure-
ments are performed, the particle is in a state (a1, a2).
Under this assumption the marginal probability P (ai)
and the conditional probability P (ai|aj) for i, j = 1, 2
and i 6= j should follow the relation

P (a1, a2) = P (a1)P (a2|a1) = P (a2)P (a1|a2). (1)

Second, we assume that the particle state can change,
while it is being transmitted from Alice to Bob, from
(a1, a2) to an unknown state ρλ with a transition prob-
ability P [λ|(a1, a2)]. Then, the state of the parti-
cle changes to

∑

a1,a2
P (a1, a2)

∑

λ P [λ|(a1, a2)]ρλ. To
connect this state with our steering scenario, where
the state of the particle, and how it evolves, may de-
pend on the choice to measure a1 or a2 individually,
we rewrite the transition probability as P [λ|(a1, a2)] =
P (λ|ai)P (aj |λ, ai)/P (aj |ai) [22]. From which, combined
with the relation (1), the joint probability of finding
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(a1, a2) and observing λ as the final state can be explic-
itly represented by

P [(a1, a2), λ] = P (a1, a2)P [λ|(a1, a2)]
= P (ai)P (λ|ai)P (aj |λ, ai). (2)

As shown by (1) and (2), it does not matter what order
Alice does a series of measurements, the joint probability
will always be the same. The state of the particle that
Bob holds is then

ρB =

d−1
∑

ai=0

P (ai)
∑

λ

P (λ|ai)ρλ. (3)

When summing over all a1 and a2, Eq. (2) becomes

P (λ) =
∑

a1

P (a1)P (λ|a1) =
∑

a2

P (a2)P (λ|a2). (4)

With the above classical realistic description of Alice’s
states, the state received by Bob becomes independent
of the measurement setting chosen by Alice, i.e., ρB =
∑

λ P (λ)ρλ, implying that Bob always has the same state
whatever measurement Ai and operation U Alice designs.
This means Alice cannot steer Bob’s states. We call the
states with this feature unsteerable. The above proof
can be seen as equivalent to that used in the derivation
of EPR steering inequalities and extended EPR steer-
ing conditions, where Alice’s measurement results are as-
sumed to be a classical distribution. See Appendix A for
detailed discussions.
Finally, if Alice’s state and the unknown states ρλ are

described by a classical theory of realism, and thus only
classically correlated with Bob’s results, then the descrip-
tions Eqs. (1), (2) and (4) are applicable to ρλ as well.
However, here Bob’s measurement results are assumed to
be based on measurements on a quantum particle. Thus
the expectation values of the two mutually-unbiased mea-
surements Bu(1) and Bu(2) with respect to the unknown
quantum states ρλ obey the quantum uncertainty rela-
tion in the entropic form [23]

H(Bu(1)|λ) +H(Bu(2)|λ) ≥ log2(d), (5)

whereH(Bu(i)|λ) = −∑d−1
bu(i)=0 P (bu(i)|λ) log2 P (bu(i)|λ).

III. QUANTUM STEERING CONDITIONS

A. Steering conditions

In order to distinguish steerability from the results
mimicked by the methods based on the classical theories
considered above, in what follows we will introduce two
novel quantum steering conditions of the from S > αR,
where S is the kernel of the criterion and αR is the max-
imum value of the kernel supported by classical theories.
For ideal steering, S will be maximized. Since ruling

out classical mimicry is equivalent to excluding unsteer-
able states (3), exceeding the αR will deny, or rule out,
processes (e.g., noisy channels) that make once steerable
states unsteerable and thus assist in confirming genuine
quantum steering.
The kernel of our first steering condition is

SdU ≡
2

∑

i=1

d−1
∑

ai=0;bu(i)=ai

P (ai, bu(i)). (6)

For ideal steering the maximum value for the kernel is
SdU = 2. Whereas, for the states described by Eq. (3),

we have αR = 1 + 1/
√
d. Thus the quantum steering

condition reads

SdU > 1 +
1√
d
. (7)

For any unsteerable states the measured kernel will not
violate this bound. To determine the maximum value of
the kernel supported by realistic theories, we consider the
expectation value of the kernel SdU for the state ρB (3).
Then SdU becomes

SdU,R =

2
∑

i=1

d−1
∑

ai=0

∑

λ

Tr[U |ai〉ii〈ai|U †ρλ]P (λ|ai)P (ai).

This can be further manipulated to give

SdU,R ≤
∑

λ

P (λ)
(

Tr[|m〉11〈m| ρλ] + Tr[|n〉22〈n| ρλ]
)

≤ 1 +
1√
d
,

where m,n ∈ v. The first inequality is derived by using
the relation (4) about P (λ), and the classical bound αR =

1+ 1/
√
d is then obtained by determining the maximum

eigenvalue of the operator |m〉11〈m|+ |n〉22〈n|.
Our second steering condition is based on the mutual

information between Alice and Bob. From the point of
view of information shared between sender and receiver,
the ability for Alice to steer Bob’s state is confirmed if the
mutual dependence between the measurement results of
Alice and Bob is stronger than the dependence of Bob’s
measurement outcomes on the unknown states ρλ and
ρB. This condition of steerability can be represented in
terms of the mutual information as follows,

2
∑

i=1

I(Bu(i);Ai) >

2
∑

i=1

I(Bu(i); {λ}). (8)

From the basic definition of mutual information, Eq. (8)
implies that

2
∑

i=1

d−1
∑

ai=0

P (ai)H(Bu(i)|ai) <
2

∑

i=1

∑

λ

P (λ)H(Bu(i)|λ).
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Imposing the relation (5) on the state ρλ, we obtain the
second steering condition of the form

SentU = −
2

∑

i=1

d−1
∑

ai=0

P (ai)H(Bu(i)|ai) > log2

(

1

d

)

. (9)

In addition to the steering conditions devised here, vi-
olating the temporal steering inequality [17] can serve as
an indicator of single-system steering. In Appendix B, we
show that this inequality can be derived from these same
classical conditions (1) and (3), which provides a stricter
interpretation to violations of that inequality. As shown
therein, the steering conditions are related to practical
quantum information tasks and can be more useful than
the temporal steering inequality alone, from a practical
point of view. See Appendix C for a concrete demonstra-
tion of the sensitivity of these conditions.
In particular, one of the main advantages of the steer-

ing criteria is that they can be efficiently implemented in
experiments. A minimum of two measurement settings
are sufficient to measure the kernels SdU and SentU. In
addition, they are robust against noise, which is demon-
strated in Appendix D (alongside an analysis of the ro-
bustness of the steering inequality for single systems).

B. Implications of the steering conditions

We have used a generic classical description of state
preparation and transitions between states to derive the
threshold αR for our steering conditions. The allows us
to use these conditions to certify quantum steering (EPR
steering and single-system steering) when the measure-
ment apparatus of Alice is uncharacterized or when both
Alice’s measurement device and the operation U are not
trustworthy.
It is important to note that ruling out such a classical

description, or mimicry, is equivalent to excluding the set
of unsteerable states (3). Thus satisfying these conditions
will deny, or rule out, processes that make states unsteer-
able. For example, it is possible that, while the measure-
ment devices of Alice functions as well as expected, any
processes that can change the states of particles from â1
and â2 to unknown states belonging to {ρλ} will cause
Alice to be ignorant about the true connection between
her true measurement outcomes and Bob’s states. Such
state changes make Bob’s state unsteerable, as described
by Eq. (3).
In practical situations, one usually does not know the

full information about the noise from the environment,
or other artificial effects which introduce an unknown
source of randomness. The steering conditions (7) and
(9) can certify the ability of Alice to steer the states of
the particles eventually held by Bob, and then rule out
third-party eavesdropping, classical mimicry of the chan-
nel and any processes that make the transmitted particles
unsteerable. Hence these steering conditions can be con-

sidered as an objective tool to evaluate the reliability of
quantum communication and quantum computation.

IV. EXAMPLE APPLICATION TO QUANTUM
COMMUNICATION

As an example of a practical application of our steering
conditions in quantum communication we consider the
following scenario. When the state of the qudit sent from
Alice to Bob changes from the state âi to a state Ureal(âi)
through a channel Ureal, the value of the kernel SdU is

SdU =

2
∑

i=1

d−1
∑

ai=0

P (ai)F (ai, u(i)),

where the probabilities P (ai) = Tr[ρsâi] and the state
fidelities [18] F (ai, u(i)) = Tr[Ureal(âi)âu(i)]. Let us as-
sume that an error is introduced by a quantum cloning
machine [24] which copies equally well the states of both
bases, F (ai, u(i)) = F , for all a ∈ v [25]. If Al-
ice wants to demonstrate steering of Bob’s particle in
the presence of such eavesdropping, they have to find
SdU = 2F > 1 + 1/

√
d, or alternatively the state fidelity

must satisfy the condition:

F >
1

2
(1 +

1√
d
).

It is equivalent to saying that the disturbance, D = 1−F ,
or error rate, has to be lower than a certain upper bound
Dind = (1− 1/

√
d)/2. This bound is exactly the same as

the well known security threshold [24].
For the second steering condition (9), we derive a sec-

ond criterion on the state fidelity F [25]:

F̃ > −1

2
log2(d),

where F̃ ≡ F log2(F ) + (1 − F ) log2 [(1− F )/(d− 1)].
This provides the upper bound, Dcoh, on D under co-
herent attacks. If D < Dcoh, then Alice can steer Bob’s
state. Interestingly, this bound Dcoh exactly coincides
with the existing result [24, 26]. The above two condi-
tions on F are summarized in table I.

V. EXAMPLE APPLICATION TO QUANTUM
COMPUTATION

When the measured kernels S are larger than the max-
imum values αR predicted by classical theories, the real
process describing the state transitions Ureal can be said
to be close to the target unitary quantum operations U
that Alice and Bob expect [27]. Validating such a uni-
tary is a common, and sometimes difficult, task in quan-
tum computation. To understand how to evaluate such a
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transformation using our steering conditions, we rewrite
the condition (7) as

1

d

2
∑

i=1

d−1
∑

ai=0

Tr[Ureal(âi)âu(i)] > 1 +
1

d
.

Here, without losing any generality, we assume that ρs =
I/d, where I is the identity matrix. The quantity

Fâi→U(âi) ≡
1

d

d−1
∑

a=0

Tr[Ureal(âi)âu(i)]

can be considered as an average fidelity between Ureal(âi)
and âu(i) over all the d states. With the average state fi-
delities Fâi→U(âi) for the complementary bases A1 and
A2, one can obtain the lower bound of the process fi-
delity Fprocess ≡ Tr[UrealU ] by F process ≥ Fâ1→U(â1) +
Fâ2→U(â2) − 1 [28]. Hence, using the steering condition
together with the above relation, we obtain a condition
for a faithful quantum process in terms of process fidelity:

Fprocess >
1

d
.

Taking a two-qubit entangling gate for an example,
this indicator coincides with the well known criterion [28]
in terms of the concurrence C [29]. Two qubits can be
considered or recast as a single system with a level num-
ber d = 22 = 4. The entanglement capability of a two-
qubit entangling gate, like a controlled-not operation,
can be defined by the minimal amount of entanglement
that can be generated by the real operation Urel. In
terms of the concurrence C, a measure of quantum en-
tanglement, it is found that C ≥ 2Fprocess−1 [28]. Then,
for a nontrivial gate, one requires C > 0, which implies
that Fprocess > 1/2. Our condition on Fprocess derived
from the steering condition (7) coincides with this crite-
rion. Note that the condition derived from the second
steering condition (9) is Fprocess > 62.14%, tighter than
that resulted from the condition (7).
The above results can be efficiently implemented with

the minimum two measurement settings. This is es-
pecially useful to evaluate experimental quantum logic
gates of arbitrary size, for example, an experimental
three-qubit Toffoli gate with trapped ions [30]. For a
three-qubit gate (d = 23), the condition on the process

fidelity is Fprocess > 1/
√
8 ≈ 35.36%. The process fidelity

of the experimental quantum Toffoli gate with trapped
ions reported in [30] is Fprocess = 66.6(4)%, which can be
identified as being functional according to our proposed
criterion. When the number of qubits N increases, the
classical bound will decrease with

√
d = 2N/2 and ap-

proach zero when N is large.
The second steering condition (9) can be used to eval-

uate experimental quantum gates. When using the same
conditions as Dcoh to consider the quality of gate opera-
tions under coherent attacks, one can obtain the condi-
tion on Fprocess in terms of Dcoh:

Fprocess > 1− 2Dcoh,

TABLE I. A summary of the steering conditions for quantum
information processing. The criteria derived from steering
conditions for secure quantum communications and faithful
quantum computations are represented in terms of the state
fidelity F and the process fidelity Fprocess, respectively.

Condition Communication Computation

SdU > 1 + 1√
d

F > 1
2

(

1 + 1√
d

)

Fprocess >
1√
d

SentU > log2
(

1
d

)

F̃ > − 1
2
log2(d) Fprocess > 1− 2Dcoh

which is tighter than the criterion derived from the first
condition (7). The relation F = Fâ1→U(â1) = Fâ2→U(â2)

is used above. Alternatively, the gate can be also qual-
ified if the average state fidelity satisfies F > 1 − Dcoh.
Table I summarizes the above two conditions on Fprocess.

VI. EPR STEERING CONDITIONS AND
APPLICATIONS

As discussed above, traditional EPR-steering and
single-system-steering scenarios mirror each other. In
the language we use, this can be understood from the
fact that, by changing the role of λ [31], both steering
conditions (7, 9) can be used to detect EPR steering for
bipartite d-level systems shared between Alice and Bob.
See Appendix A.2.d. However, the converse is also true,
such that EPR steering inequalities, for example, the in-
equalities used in the experiments [6, 7], can serve as
criteria for single-system steering (see Ref. [17] and Ap-
pendix B).
When using the bipartite counterpart of steering con-

ditions (7, 9) for quantum communication, one obtains
security criteria for quantum channels that are the same
as the single-system case, which can thus be considered
as a d-level extension of 1SDI-QKD [9]. Similarly, the
EPR steering conditions give criteria of computation per-
formance for quantum gates realized in one-way modes
[19]. A quantum gate U can be encoded in a bipartite
maximally-entangled state [32]:

|U〉 = 1√
d

d−1
∑

ai=0

|ai〉i |Out(ai)〉 ,

where |Out(ai)〉 ≡ U |In(ai)〉, and |In(ai)〉 is the input
state of the quantum gate U . A readout of the gate
operation, |Out(ai)〉, depends on the measurement result
ai, which is just the effect of EPR steering. See Appendix
E for an application to a two-qubit gate realized in the
one-way mode. Hence our EPR steering conditions can
indicate reliable gate operations for experiments [33] in
the presence of uncharacterized measurement devices.
The idea of bipartite steering conditions based on (7,

9) can be straightforwardly generalized to genuine multi-
partite EPR steering. The main ingredient is to consider
a kernel, from either the joint probabilities like Eq. (6)
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or the entropic conditions in Eq. (9), for a specific bipar-
tition of a multipartite system. Then a complete kernel
of a steering condition is composed of the joint probabili-
ties, or entropic conditions, for all possible bipartitions of
the multipartite system. See [16] for concrete examples
for steering conditions based on (7). In particular, the
entropic condition for genuine multipartite EPR steering
using (9) could be useful for multipartite quantum secret
sharing [34] when coherent attacks occur in the quantum
network.

VII. CONCLUSION AND OUTLOOK

We investigated the concept of quantum steering for
single quantum systems and pointed out its role in quan-
tum information processing. We derived two novel steer-
ing conditions to certify such steering. These conditions
ensure secure QKD using qudits and provide new criteria
for efficiently evaluating experimentally quantum logic
gates of arbitrary computing size (see table I). More-
over, the bipartite counterparts of our steering conditions
can detect EPR steerability of bipartite d-level systems,
and have practical uses for evaluating one-way quantum
computing and quantum communication with entangled
qudits and verifying genuine multipartite EPR steering.
It may be interesting to investigate further the connec-
tion between single-system steering and other types of
quantum steering such as one-way steering [10–12].
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Appendix A: Comparing single-system steering with
EPR steering

In this section we compare EPR steering with single-
system steering by discussing their basic assumptions and
the classical mimicries, or simulation, of steering effects
(Fig. 2). This provides a clear connection between EPR
and single-system steering and the steering conditions for
both cases discussed in our work. From this comparison,
we show that classical mimicry or simulation can in both
cases be considered as equivalent.

1. EPR steering for quantum information
processing (QIP)

Compared with the single-system steering [Fig. 2(a)],
the scenario of EPR steering also consists of two steps:
First, Alice generates a bipartite entangled system from
an entanglement source (sometimes termed an EPR
source) [Fig. 2(b)]. To have a concrete comparison, let
us assume that this entangled state is of the form

|Φ〉 = 1√
d

d−1
∑

a1=b1=0

|a1〉A1 ⊗ |b1〉B1 (A1)

where {|a1〉A1 ≡ |a1〉1 |a1 ∈ v} and {|b1〉B1 ≡ |b1〉1 |b1 ∈
v}.
Second, Alice keeps one particle of the entangled pair

and sends the other particle to Bob. A subsequent uni-
tary operator U is applied on the Bob’s subsystem ac-
cording to the instructions of Alice. This transformation
can be done either by Bob after receiving the particle,
or by Alice herself before the transmission of the parti-
cle. After such a transformation, the state vector of the
bipartite system becomes

(I ⊗ U) |Φ〉 = 1√
d

d−1
∑

a1=b1=0

|a1〉A1 ⊗ U |b1〉B1 .

Then, depending on Alice’s measurement result a1, the
state of the particle finally held by Bob can be steered
into a corresponding quantum state, Uâ1U

†, which is the
same as the result derived from single-system steering.
When the state |Φ〉 is represented in the bases {|a2〉A2 ≡
|a2〉2 |a2 ∈ v} and {|b2〉B2 ≡ |b2〉2 |b2 ∈ v}, we have

|Φ〉 = 1√
d

∑

a2+b2
.
=0

|a2〉A2 ⊗ |b2〉B2 , (A2)

where
.
= denotes equality modulo d. Through the same

method as that shown above, Alice can steer the state

of Bob’s particle into the quantum state, Ub̂2U
†, by the

measurement on her subsystem with a result a2 satisfying
the correlation a2 + b2

.
= 0.

We remark that, for an EPR source creating entangled
states that are different from |Φ〉, the transformation U
could be implemented in other ways. For example, when
Alice and Bob share bipartite supersinglets [35], which
are expressed as

|Ψ〉 = 1√
d

∑

ai+bi=d−1

(−1)ai |ai〉Ai ⊗ |bi〉Bi , (A3)

for i = 1, 2, Alice can steer the state of Bob by di-
rectly measuring her qudit in a basis featured in U .
Since supersinglets are rotationally invariant [35], i.e.,
(R ⊗ R) |Ψ〉 = |Ψ〉, where R is a rotation operator, Al-
ice’s measurement in the basis {R |ai〉i} will steer the
state of Bob’s qudit into a corresponding state, R |bi〉i,
for ai + bi = d− 1. For d = 2, supersinglets become uni-
tary invarient and provide a resource for implementing
any unitary transformations U to Bob’s qubit.
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FIG. 2. Comparison between single-system steering and EPR steering. We compare these two scenarios by, first, their basic
concepts of ideal single-system steering (a) and ideal EPR steering (b), and, second, classical mimics of single-system steering
(c), (e) and EPR steering (d), (f). For the ideal case, Alice can use the effect of EPR steering, by sharing the entangled
states (EPR source), to implement the operation U on the state of Bob’s qudit. While the resources utilized for quantum
steering are different, the state of the particle finally held by Bob can be steered into a corresponding quantum state, UâiU

†,
for both quantum steering scenarios. To distinguish classical mimicry from genuine quantum steering, the respective classical
models based on realistic theories (c) and (d) are introduced. These “classical simulations” can be concretely represented in
the practical descriptions of, for example, unqualified measurements of Alice and the unqualified operation U performed by
Alice or Bob [(e) and (f)]. As shown in (e) and (f), these effective simulations are equivalent.

2. Steering conditions

For both ideal single-system and EPR steering sce-

narios, the state received by Bob, b̂i, is the same as or
perfectly correlated with the initial state âi prepared by
Alice under the transformation U . However, for Bob’s
limited knowledge about the measurements used or the
particle prepared by Alice, her measurement results be-
come untrusted to Bob. He is uncertain whether these
measurements and state preparation are qualified. In the
worst case where Alice’s measurement outcomes may be
randomly generated from her apparatus, classical simula-
tions then can describe Alice’s measurement results. To
show that Alice has true steerability in practical situa-
tions, we introduced the steering conditions (7) and (9),
to distinguish genuinely quantum steering from classical
mimicry. In what follows, we will detail this classical
mimicry and its implication for practical applications.
With these examples, it will be clear that the proof for
single-system conditions can be seen as equivalent to that
used in the derivation of EPR steering conditions.

a. Mimicry of single-system steering

In the case of single-system steering, as detailed in the
main text, the classical mimicry of steering is based on
the realistic assumptions that (1) the state of the parti-
cle sent by Alice can be described by a fixed set (a1, a2),

and (2) the state can change from (a1, a2) to another
state λ which corresponds to a quantum state of the qu-
dit ρλ finally held by Bob, see Fig. 2(c). In order to see
this mimicry from a practical point of view, one can think
that, for example, such a situation arises as a result of the
unqualified measurement device and the states of parti-
cles sent to Bob. For some reason, Alice’s measurement
apparatus does not properly output real measurement
results ai but randomly generates outcomes with a dis-
tribution P (a1, a2) [see Eq. (1)] that correspond to some
output states ρi when the measurement setting i is chosen
by Alice. After the unqualified operation U , the state ρi
becomes the unknown state ρλ which constitutes an un-
steerable state ρB [Eq. (3)]. Here the joint probability of
finding (a1, a2) and observing λ as the final state satisfies
the classical relation (2). It is equivalent to say that Alice
can consider the joint set (a1, a2), with the probability
of occurrence P (a1, a2), as describing predetermined in-
structions for her to prepare and send a particle with
final quantum state ρλ to Bob. See Fig. 2(e).

It is also possible that the operation U is qualified
but the measurement device of Alice is not. The two
realism assumptions are applicable to this case as well.
The above classical mimicry scenario can be recast such
that the output states ρi already correspond to the un-

known state ρ
(0)
λ , see Fig. 3(a). It does not matter what

the subsequent qualified operation on the particle U is,
the final states held by Bob ρλ constitute an unsteerable
state ρB. From a practical point of view, similarly, one
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FIG. 3. Steering mimicries where the operation U is qualified but the measurement device of Alice is not. The classical mimics
of single-system steering (a) and EPR steering (b) are based on the realistic assumptions that (1) the state of the particle sent
by Alice can be described by a fixed set (a1, a2), and (2) the state can change from (a1, a2) to another state λ which corresponds
to a quantum state of the qudit ρλ finally held by Bob. One can concretely represent these scenarios in the practical descriptions
of unqualified Alice’s apparatus (c) and (d), respectively. These concrete simulations are then shown to be equivalent.

can think that Alice’s measurement apparatus randomly
generates outcomes with the probability of occurrence

P (a1, a2) that correspond to unknown output states ρ
(0)
λ

[Fig. 3(c)].

b. Mimicry of EPR steering

The above scheme for mimicking single-system steer-
ing can be readily mapped to the case of EPR steering.
Here, the mimicry of EPR steering depends on two simi-
lar assumptions: (1) the state of the particle held by Alice
can be described by a fixed set obeying realism (a1, a2),
and (2) a given set (a1, a2) corresponds to some quantum
state, ρλ, of the qudit finally held by Bob, see Fig. 2(d).
The unqualified bipartite state shared between her and
Bob, and a subsequent unqualified operation, can result
in such assumptions. For example, let us assume that
the entanglement source does not create entangled pairs
but a qudit with state ρi for Bob and another separable
particle for Alice instead. For the state ρi there is a cor-
responding measurement setting i chosen by Alice, for
which Alice’s measurement device creates an output of a
random signal with a distribution described by the prob-
ability P (a1, a2) (1). The subsequent operation U takes
ρi to an unknown state ρλ, and then the final state held
by Bob is unsteerable (3). The classical relation (2) is
again applicable to this transition between states. Here
it is reasonable to incorporate the entanglement source
into the measurement apparatus as a single unqualified
experiment setup for Alice. See Fig. 2(f). Then it is
effectively a scenario where Alice observes a set (a1, a2)
appearing with probability P (a1, a2) which creates a par-
ticle with a final quantum state ρλ for Bob.

As discussed in the above mimicry of single-system
steering, it is possible that the operation U is quali-
fied but Alice’s measurement apparatus, including the
EPR source, is not. In this case one can effectively con-

sider that the unqualified EPR source outputs a fixed set
(a1, a2) for Alice’s particle and a qudit that is already in

an unknown state ρi = ρ
(0)
λ for Bob [Fig. 3(b)]. For any

qualified operation U on the particle state ρ
(0)
λ , the fi-

nal state held by Bob is still unsteerable. From the same
practical point of view as introduced above, we can think
that the joint set (a1, a2), with the probability of occur-
rence P (a1, a2), resulting from the random outcomes of
Alice’s device, corresponds to a particle with final quan-
tum state ρλ for Bob, see Fig. 3(d). It is clear that the
joint probability of finding (a1, a2) and observing λ as
the final state in this case satisfies the classical relation
(2).

c. The equivalence between the steering mimicries

With the above concrete explanations of the classical
mimicry for both the single-system steering and EPR
steering, one can interpret these two classical scenarios as
being equivalent to each other. See (e) and (f) in Fig. 2
and (c) and (d) in Fig. 3. Following the same approach
based on the realistic assumptions and their practical sce-
narios, in what follows we will discuss two more cases to
complete the proof of the equivalence between the steer-
ing mimicries.
The case where Alice’s measurement apparatus is un-

qualified, while the EPR source functions as expected,
can raise two other possible scenarios which again can
be shown to be covered by ”realism” assumptions. Fig-
ure 4(a) depicts one of the possibilities. As the oper-
ation U is unqualified, one can practically think that
Alice’s measurement apparatus generates random out-
comes with a distribution P (a1, a2), independent of the
entangled pair generated from the EPR source. The sub-
sequent operation makes the state of the qudit of the
entangled pair sent to Bob, say ρi, change to ρλ as illus-
trated by Fig. 4(c). It is clear that such mimicry of EPR
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FIG. 4. Mimicries of EPR steering where the EPR source is qualified but the measurement device of Alice is not. (a) the
unqualified operation is used, and (b) the operation used is qualified in the mimicry. These two possible situations can be
described by the two realism conditions and represented in practical descriptions (c) and (d), respectively. The demonstration
(c) has the analogue of single-system steering described by Fig. 2(e). The concrete mimicry (d) is equivalent to that of
single-system steering depicted in Fig. 3(c).

steering is equivalent to the simulation of single-system
steering described by Fig. 2(e) [see also Fig. 2(c)].
Figure 4(b) illustrates the other situation where the

entanglement source and the operation U are qualified
but Alice’s measurement apparatus is not. A possible
concrete example for this case is the following. The un-
qualified measurement device of Alice always measures
her particle of the entangled pair, say |Φ〉, in the first
basis {|a1〉1 |a1 ∈ v} intrinsically whatever measurement
setting Alice chooses, and it announces random signals
a1 or a2 as an outcome. Such a measurement, combined
with the random signals, make the state of the qudit sent

to Bob unsteerable, i.e, ρi = ρ
(0)
λ belongs to the same set

{|b1〉1 |b1 ∈ v} whatever measurement setting chosen by
Alice and as such then constitutes an unsteerable state
ρB after the operation U . See Fig. 4(d). This is an ana-
logue of EPR-steering mimicry to that of single-system
steering described by Fig. 3(c) [see also Fig. 3(a)].

d. EPR steering conditions for QIP

As shown above, the mimicry of single-system steer-
ing is equivalent to that mimicking EPR steering. Then
the steering conditions (7) and (9) derived for single sys-
tems can be mapped onto, and subsequently be used for
verification of, EPR steering for bipartite d-dimensional
systems. Then, such EPR steering conditions can certify
the reliability of QIP scenarios where entangled pairs are
shared between Alice and Bob. When the state |Φ〉 is
used to mediate steering the EPR steering condition that
corresponds to (7) is of the form

S(EPR)
dUΦ ≡

d−1
∑

a1=bu(1)=0

P (a1, bu(1))

+
∑

a2+bu(2)
.
=0

P (a2, bu(2)) > 1 +
1√
d
. (A4)

Similarly, with proper changes to the above joint proba-
bilities, we have the following steering condition for su-
persinglets

S(EPR)
dRΨ ≡

∑

au(1)+bu(1)=d−1

P (au(1), bu(1))

+
∑

au(2)+bu(2)=d−1

P (au(2), bu(2)) > 1 +
1√
d
,(A5)

where, for Alice who implements quantum measure-
ments, her measurement outcomes {au(i)} result from

the measurement described by the basis {
∣

∣au(i)
〉

u(i)
≡

R |ai〉i |au(i) = ai ∈ v}. Here Bob uses the same mea-
surements as that used by Alice. For the EPR steering
conditions represented in the entropic forms, we have

S(EPR)
entUΦ ≡ −

2
∑

i=1

d−1
∑

ai=0

P (ai)H(Bu(i)|ai) > log2

(

1

d

)

,

(A6)
for the state |Φ〉 shared by Alice and Bob, and

S(EPR)
entRΨ ≡ −

2
∑

i=1

d−1
∑

au(i)=0

P (au(i))H(Bu(i)|ai) > log2

(

1

d

)

,

(A7)
for the supersinglets.
As detailed above, the mimicry of single-system steer-

ing based on realistic theories is equivalent to that of
EPR steering where Alice’s outcomes follows realist the-
ories but Bob performs quantum measurements. Hence
the proof for the conditions (7) and (9) can be readily
applied to the above EPR steering conditions. In addi-
tion, following the same analysis of quantum communica-
tion based on single-system steering as introduced in the
main text, these bipartite counterpart of steering condi-
tions provide security criteria for quantum channels that
is equivalent to the single-system cases.
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Appendix B: EPR steering inequality for
single-system steering

The classical condition (1) and its implications, Eqs.
(2) and (3), provide a strict meaning of violating the
single-system analogue of the EPR steering inequality
used in the experiment of Smith et al. [7], i.e., the tem-
poral steering inequality introduced in [17]. The kernel
of this steering inequality reads

SN ≡
N
∑

i=1

E[〈Bi,tB 〉2Ai,tA

], (B1)

where

E[〈Bi,tB 〉2Ai,tA

] =
1

∑

a=0

P (Ai,tA = a) 〈Bi,tB 〉2Ai,tA
=a

(B2)
and N = 2 or 3 is the number of measurement for Alice
and Bob. The probability of measuring Ai = a at the
time tA is denoted by P (Ai,tA = a). The expectation
value about Bob’s measurement at the time tB, condi-
tioned on the measurement result of Alice, is defined by

〈Bi,tB 〉Ai,tA
=a =

1
∑

b=0

(−1)b P (Bi,tB = b|Ai,tA = a).

To obtain the upper bound derived from generic classi-
cal means, we firstly introduce the final state of Bob’s
particle (3) into the above equation and then have

〈Bi,tB 〉Ai,tA
=a =

1
∑

b=0

(−1)b
∑

λ

P (Bi,tB = b|λ)P (λ|Ai,tA = a)

=
∑

λ

P (λ|Ai,tA = a) 〈Bi,tB 〉λ .

Then it is clear that

E[〈Bi,tB 〉2Ai,tA

]

≤
1

∑

a=0

P (Ai,tA = a)
∑

λ

P (λ|Ai,tA = a) 〈Bi,tB 〉2λ .

Secondly, we use the result (4) derived from the criterion
on state transition (2) in the main text to obtain

P (λ) =
1

∑

a=0

P (Ai,tA = a)P (λ|Ai,tA = a),

for all measurements i. The temporal inequality is

SN ≤
N
∑

i=1

∑

λ

P (λ) 〈Bi,tB 〉2λ ≤
∑

λ

P (λ) = 1.

Thus SN > 1 can be considered as a condition for single-
system steering and deny processes that make states un-
steerable.

Appendix C: Comparison between steering
conditions and the temporal steering inequality

One of the main difference between the steering con-
ditions and the temporal steering inequality is in their
practical applications to quantum information tasks. In
what follows we will illustrate a simple example to show
that, compared with the temporal steering inequality, the
steering conditions can fulfil certain requirements so as
to be useful as checks for the reliability of QIP.
Let us assume that a source generates particles in the

state ρs = |0〉11 〈0| for Alice’s subsequent use for steer-
ing. The task of Alice and Bob is to perform an identity
operation I, or alternatively, to maintain the states of
the particles during the particle transmission. For such
an information task, the steering condition (7) for d = 2
and U = I used by them to check the steerability can be
of the form

S2I ≡
1

∑

a1=b1=0

P (a1, b1) +

1
∑

a2=b2=0

P (a2, b2) > 1 +
1√
2
.

When the particles are transmitted without any distur-
bance, they will have S2I = 2. To concretely show the
undesired situation, e.g., a wrong gate operation in quan-
tum computation, or an unwanted interaction between
the qubit and the quantum channel in quantum commu-
nication, we assume that there exists an effective opera-
tion X = |0〉11〈1| + |1〉11〈0| on the qubit such that the
final state of the qubit held by Bob is X |bi〉i. Such an
operation can make the qubit flip when the state is pre-
pared in |0〉1 or |1〉1. Then the value of the kernel S2I

becomes S2I = 1, i.e., the reliability of the qubit state is
not certified by the steering condition (7).
Whereas, using the same number of measurement set-

tings (N = 2), the temporal steering inequality is still vi-
olated by SN = 2, and this can not reveal the real effect
of a qubit flip on the particle during transmission. Hence,
the present form of the temporal steering inequality can
not be used in practical quantum information tasks, while
our steering conditions can because of their stricter be-
havior. However, after properly revising the kernel SN by
introducing a quantum operation U , the revised version
of the temporal inequality also can serve the same role as
the steering conditions. Its derivation and experimental
demonstrations will be detailed elsewhere.
The above consideration is also true for the bipartite

non-local counterpart. When Alice and Bob share the
state |Φ〉 = 1√

2

∑1
a1=b1=0 |a1〉A1 ⊗ |b1〉B1 to perform the

same task as above, they can certify the reliability by
using the steering condition (A4) for d = 2 and U = I

S(EPR)
dUΦ ≡

1
∑

a1=b1=0

P (a1, b1)+
1

∑

a2=b2=0

P (a2, b2) > 1+
1√
2
.

If there is a bit flip error in the transmission of Bob’s
qubit, then the state suffering from such effect (I⊗X) |Φ〉
can not give results that satisfy the above condition to act
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FIG. 5. Noise tolerance of steering conditions (7) and (9). If
the probability of white nose pnoise < p, then the single-system
steering, that underlies the qudits sent by Alice with the states
ρi(ai, pnoise), can be certified by the steering conditions (7) or
(9). Here the threshold of noise intensity p is an indicator
showing the noise tolerance of these steering criteria. Note
that the noise tolerance of the certification based on violating
the EPR steering inequality, i.e., SN > 1, implemented with
two measurement settings (N = 2) is the same as that of the
steering condition (7) for two-dimensional systems (the EPR
steering inequality introduced by Smith et al. [7] is applicable
to d = 2 only). For large d, both the conditions (7) and (9)
are robust against noise up to p = 50%.

as a reliability check (S(EPR)
dUΦ = 1) but still can violate

the inequality (SN = 2 > 1). Then, the EPR steering
inequality can not respond to the effect of a qubit flip in
the bipartite non-local scenario.

Appendix D: Robustness of steering conditions

We consider the following scenario to determine the
robustness of the proposed steering conditions. Let us
suppose that in the presence of white noise the pure state
|ai〉i of the qudit prepared by Alice’s measurements will
become

ρi(ai, pnoise) =
pnoise
d

I + (1− pnoise)âi, (D1)

where pnoise is the probability of uncolored noise. Then
the steerability revealed by using the qudits with states
ρi(pnoise) is certified by our steering conditions if the
intensity of uncolored noise pnoise is smaller than some
noise threshold, pnoise < p. Here p can be considered as
an indicator showing the noise tolerance of the steering
conditions. See Fig. 5. We determine the noise thresh-
old p by considering the critical noise intensity such that
S(pnoise) = αR. For the steering condition (7), we have

p =
(1− 1√

d
)

2(1− 1
d)

, (D2)

which shows that the steering condition is robust and the
noise is even tolerable up to p = 50% for large d. The

robustness of the steering condition (9) is similar to that
of the condition (7), and its noise tolerance in terms p
also can be up to p = 50% for large d.

Appendix E: EPR steering for one-way quantum
computing

A cluster state can be represented by an array of
vertices, where each vertex is initially in the state of
(|0〉+ |1〉) /

√
2 where |0〉 and |1〉 constitutes an orthonor-

mal basis. Every connected line (edge) between ver-
tices realises a controlled-phase (cphase) gates acting
as |m〉⊗ |n〉 → ωmn |m〉⊗ |n〉, where ω = exp(i2π/2) and
m,n ∈ {0, 1} [19]. In the present illustration, we consider
a four-qubit chain-type cluster state of the form

|C4〉 =
1

∑

m=0

1
∑

n=0

1
∑

j=0

1
∑

k=0

ωmn+nj+jk |n〉A1
⊗|j〉A2

⊗|m〉B1
⊗|k〉B2

(E1)
where |q〉Al

= |q〉Br
≡ |q〉 for q = 0, 1 and l, r = 1, 2. The

state |C4〉 represented in a horseshoe graph is shown in
Fig. 6(a). Here we assume that Alice holds two of the
qubits, A1 and A2, and Bob has the rest, B1 and B2.
When sharing such a genuine four-partite entangled

state between them, Alice’s quantum measurements on
her qubits can realize a quantum gate operation U on the
state of the qubits held by Bob:

U = (H ⊗H)cphase, (E2)

where H is the Hadamard operation, see Fig. 6(b). To
clearly see the gate operation realized in this one-way
model, we rephrase the state vector of |C4〉 in the follow-
ing form

|C4〉 =
1

∑

m=0

1
∑

n=0

|m〉A11
⊗ |n〉A21

⊗ U
(

|m〉B11
⊗ |n〉B21

)

(E3)

where |q〉Al1
= |q〉Br1

≡ (|0〉+ (−1)q |1〉)/
√
2 for q = 0, 1

and l, r = 1, 2. One can consider the state |m〉B11
⊗|n〉B21

as an input of the quantum gate U . Then the outcomes of
Alice’s measurementsA11 and A21,m and n, correspond-
ing to the post measurement state |m〉A11

⊗|n〉A21
, deter-

mines the output state of the gate operation, U
(

|m〉B11
⊗

|n〉B21

)

. For example, as Alice performs measurements
and has the results m = 0 and n = 0, the state of Bob’s
qubits (|0〉+ |1〉)⊗ (|0〉+ |1〉)/2 will be transformed by U
into an entangled state (|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉 −
|1〉⊗|1〉)/2. Alice can perform different measurements to
transform input states prepared in different basis by the
same gate operation U . The cluster state also can be of
the form

|C4〉 =
1

∑

m=0

1
∑

n=0

|m〉A12
⊗ |n〉A22

⊗ U
(

|m〉B12
⊗ |n〉B22

)

(E4)
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FIG. 6. EPR steering for one-way quantum computing. (a) A genuine four-qubit chain-type cluster state shared by Alice and
Bob is represented by a fully-connected horseshoe graph. Alice, who performs the measurements A1i and A2i for i = 1, 2 on her
qubits A1 and A2, respectively, can reveal the EPR steering effect to realize the gate operation U on the qubits of Bob B1 and
B2. (b) The state |m〉

B1i
⊗ |n〉

B2i
is an input of the quantum gate U composed of one two-qubit cphase gate and two single-

qubit Hadamard operations. For one-way quantum computing, the outcomes of Alice’s measurements, m and n, corresponding
to the post measurement state |m〉

A1i
⊗ |n〉

A2i
, determines the output state of the gate operation, U

(

|m〉
B1i

⊗ |n〉
B21i

)

.

where |q〉Al2
= |q〉Br2

≡ (|0〉+(−1)qi |1〉)/
√
2 for q = 0, 1

and l, r = 1, 2.

Through the connection between Alice’s measurements
on her qubits and the resulting states of Bob’s qubits as
illustrated above, one can think of the quantum gate U as
being encoded in a bipartite maximally-entangled state

|U〉 = 1

2

3
∑

ai=0

|ai〉i ⊗ |Out(ai)〉 , (E5)

where |ai〉i ≡ |m〉A1i
⊗ |n〉A2i

with ai = m× 21 + n× 20

and |Out(ai)〉 ≡ U |In(ai)〉, and |In(ai)〉 ≡ |m〉B1i
⊗|n〉B2i

is the input state of the quantum gate U . Hence the
effect of EPR steering reveals that a readout of the gate
operation, |Out(ai)〉, depends on the measurement result
ai.

Our EPR steering conditions serves an useful tool to
identify reliable gate operations for experiments in the
presence of uncharacterized (or untrusted) measurement
devices. For example, for the above concrete case, we

have the following EPR steering conditions

S(EPR)
dUC4

≡
3

∑

a1=bu(1)=0

P (a1, bu(1))

+

3
∑

a2=bu(2)=0

P (a2, bu(2)) > 3/2. (E6)

where {bu(i)} denotes the results obtained from Bob’s

measurement specified by {
∣

∣bu(i)
〉

u(i)
≡ U |In(bi)〉 |bu(i) =

bi ∈ v}. It is easy to find that the kernel S(EPR)
dUC4

and its
condition for EPR steering are exactly the same as their
single-system analogues (6) and (7).
It is worth noting that the idea of bipartite EPR steer-

ing effects and the steering condition (E6) for one-way
quantum computing is rather different from that based
on genuine multipartite EPR steering [16]. The present
steering condition detects EPR steering with respect to
the fixed bipartite splitting of the four qubits A1,A2 and
B1,B2. When certifying genuine four-partite EPR steer-
ing for one-way quantum computing, one needs the con-
cept and method introduced in [16] to consider and verify
quantum steering with respect to all bipartite splittings
of the four qubits.
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