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Noise is often regarded as anathema to quantum computation, but in some settings it can be an
unlikely ally. We consider the problem of learning the class of n-bit parity functions by making
queries to a quantum example oracle. In the absence of noise, quantum and classical parity learning
are easy and almost equally powerful, both information-theoretically and computationally. We show
that in the presence of noise this story changes dramatically. Indeed, the classical learning problem
is believed to be intractable, while the quantum version remains efficient. Depolarizing the qubits
at the oracle’s output at any constant nonzero rate does not increase the computational (or query)
complexity of quantum learning more than logarithmically. However, the problem of learning from
corresponding classical examples is the Learning Parity with Noise (LPN) problem, for which the
best known algorithms have superpolynomial complexity. This creates the possibility of observing a
quantum advantage with a few hundred noisy qubits. The presence of noise is essential for creating
this quantum-classical separation.

I. INTRODUCTION

A theory of quantum fault-tolerance has been erected
to overcome pervasive decoherence [1–3]. Without such
fault-tolerant machinery, large classes of quantum algo-
rithms can fail to give any significant improvement over
classical algorithms [4]. This may lead one to suppose
that noise can only rob quantum algorithms of their
supremacy or at best increase the cost of running them.
However, Burhman, Newman, Rohrig, and de Wolf pre-
sented a model of fault-tolerant decision trees where one
is given oracle access to input bits perturbed by coher-
ent noise [5]. Among other results, they established a
logarithmic separation between quantum and classical
query complexity, showing that quantum computers can
be more robust than classical computers when comput-
ing with noisy inputs. Here we exhibit a problem for
which noise is an even more significant classical foe and
is crucial to achieving a quantum speed-up, or rather,
a classical slow-down. Our problem is believed to be
super-polynomially more difficult classically when noise
is added, but only logarithmically harder in the quantum
case. This challenges the conventional wisdom that quan-
tum computations are inherently delicate while classical
computation is more robust.

We consider the problem of learning a class of Boolean
functions by making queries to a quantum example or-
acle [6]. Such an oracle provides a quantum state that
encodes a hidden function, and the goal is to discover
the function efficiently, meaning with a number of queries
and an amount of post-processing that scales polynomi-
ally in the number of input bits. In the quantum setting,
we are permitted to apply coherent operations to the
quantum state, whereas in the classical setting we must
first measure the state in the computational basis before
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further computation. This model of quantum learning
differs from other attempts to use quantum computers
to perform machine learning tasks [7–11]. Information-
theoretically, quantum learning from queries to ideal or-
acles is only polynomially more powerful than classical
learning [12, 13]. Computationally, however, there is a
class of functions that is polynomial time learnable from
quantum coherent queries but not from classical queries,
under the assumption that factoring Blum integers is in-
tractable [12].

In this work, we exhibit a learning problem with a su-
perpolynomial quantum computational speed-up only in
the presence of noise. The physical implementation of
any oracle on bare qubits will inevitably be noisy. To
fairly assess the performance of a quantum algorithm
given access to such an oracle, we must compare it to a
classical algorithm given access to a noisy classical oracle
with similar noise characteristics. To do this, we imag-
ine constructing a noisy classical oracle by completely
dephasing the inputs and outputs of a noisy quantum
oracle in the computational basis.

For the class of parity functions, we show that depo-
larizing the example oracle’s output at any nonzero rate
has a small (logarithmic) effect on the computational
complexity of learning from quantum coherent examples.
However, the function cannot be learned from classical
examples provided by the corresponding noisy classical
oracle, as this is equivalent to a problem called Learning
Parity with Noise (LPN), for which the best known algo-
rithm has superpolynomial complexity [14]. Both prob-
lem settings are tractable without noise, so a quantum
advantage is not merely retained; it occurs because of the
noise.

The rest of the paper is organized as follows. Sec-
tion II reviews definitions relevant to quantum learning.
Sections III and IV consider the learning problem with-
out and with noise, respectively. Finally, Section V con-
cludes.
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II. DEFINITIONS

We begin by reviewing relevant definitions. A mem-
bership oracle for a Boolean function f : {0, 1}n → {0, 1}
is an oracle that, when queried with input x, outputs the
result f(x). It is so called because we can think of f(x)
as telling us whether input x belongs to a set associated
with the function (namely, the set of inputs that evaluate
to 1). A query to a uniform random example oracle for
a Boolean function f returns an ordered pair (x, f(x))
where x is drawn uniformly at random from the set of
all possible inputs of f . The membership oracle gives an
agent freedom to choose the input, whereas the example
oracle merely allows one to “push a button” and request
an output.

The problem of learning a class of Boolean functions
by querying such oracles can be generalized to a quantum
coherent setting [6]. A quantum membership oracle Qf is
a unitary transformation that acts on the computational
basis states as

Qf : |x, b〉 7→ |x, b⊕ f(x)〉, (1)

where x ∈ {0, 1}n and b ∈ {0, 1}. A uniform quantum
example oracle for f outputs the quantum state

|ψf 〉 ≡
1

2n/2

∑
x∈{0,1}n

|x, f(x)〉. (2)

This oracle only gives the learner freedom to request some
number of quantum states, each at unit cost. For both or-
acles, the query register comprises the qubits containing
x, and the result qubit is the auxiliary qubit containing
f(x) (Fig. 1).

Given any quantum oracle, we define a correspond-
ing classical oracle by completely dephasing every inter-
face to the quantum oracle, passing each input/output
qubit through a channel EZ(ρ) = (ρ + ZρZ)/2, where

Z =

(
1 0
0 −1

)
. Any quantum membership oracle be-

comes a classical membership oracle, and any uniform
quantum example oracle becomes a uniform random ex-
ample oracle. This definition allows us to begin with a
noisy quantum oracle and identify a corresponding noisy
classical oracle with similar noise characteristics. Equiv-
alently, one can instead completely dephase the learner’s
interface by moving the dephasing channels outside the
quantum oracle. One can then define a classical learner
as a learner who interacts with oracles through dephased
interfaces, whereas a quantum learner has no such re-
striction. Classical and quantum learners can now be
given access to the same noisy quantum oracle. Note
that a classical learner interacting with a quantum or-
acle is equivalent to the traditional classical problem of
learning from the corresponding classical oracle.

In the domain of learning theory, a concept f is a
Boolean function f : {0, 1}n → {0, 1}. A concept class
C = ∪n≥1Cn (hereafter, class) is a collection of con-
cepts, and each Cn contains the concepts whose domain

... ...

FIG. 1: One can construct a uniform quantum example or-
acle from a quantum membership oracle for f . H denotes a
Hadamard gate. The quantum learner then performs a quan-
tum computation to identify the function f . The correspond-
ing classical example oracle is obtained from the quantum
oracle by measuring its output qubits in their computational
bases. The classical learner uses this output together with
classical computation to learn the function.

is {0, 1}n. Given a target concept f ∈ C, a typical goal
is to construct a hypothesis function h : {0, 1}n → {0, 1}
that agrees with f on at least a 1−ε fraction of the inputs
in {0, 1}n, i.e.

Prx [h(x) = f(x)] ≥ 1− ε (3)

where x is drawn from the uniform distribution. Such a
function is called an ε-approximation of f .

A class C is efficiently PAC (Probably Approximately
Correct [15]) learnable under the uniform distribution if
given a uniform example oracle for any target concept
f ∈ C, there is an algorithm that

1. for any ε, δ ∈ (0, 1/2), outputs an ε-approximation
h of f with probability 1− δ,

2. runs in time and uses a number of queries that is
poly(n, 1/ε, 1/δ).

The definition of learning is identical in the quantum set-
ting except that the uniform example oracle is replaced
by a uniform quantum example oracle, and the allowed
computations may be coherent. We will also consider ex-
ample oracles corrupted by noise of constant rate η < 1/2
in a way that is defined later. The definition of learning
is unchanged in this case, although one may require the
algorithm to run in time poly(1/(1/2− η)) as well.

We now restrict the discussion to the class of parity
functions

fa(x) = 〈a, x〉 =

n∑
j=1

ajxj mod 2 (4)

where a ∈ {0, 1}n and aj (xj) denotes the jth bit of a
(x). We are given access to a uniform quantum example
oracle for the unknown concept fa(x) = 〈a, x〉. If we
incorrectly guess even a single bit of a, our hypothesis
function is a 1/2-approximation to fa and remains so
for any number of incorrect bits. Therefore, we must
with high probability find a exactly (i.e. probably exactly
correct learning), and this is what we require hereafter.
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III. LEARNING FROM IDEAL QUERIES

First, consider the noiseless case where each query re-
turns a pure quantum state. This case is tractable for
both quantum and classical queries as we now review.

The classical oracle provides an example (x, fa(x))
where x is uniformly random over {0, 1}n. Since fa(x)
is a linear function, it is clear that n queries are suffi-
cient to learn fa exactly with a constant probability of
success. The probability that n queries produce linearly
independent examples is

n−1∏
j=0

(1− 2j−n), (5)

which is greater than 1/4 for any n > 1. Any algorithm
that detectably fails with constant probability less than
p and otherwise succeeds can be repeated no more than
log1/p(1/δ) times to reduce the failure probability below
δ. The value of a is obtained from the examples by Gaus-
sian elimination.

In the quantum setting, fa can be learned with con-
stant probability from a single query. Given |ψf 〉, apply
Hadamard gates

H =
1√
2

(
1 1
1 −1

)
(6)

to each of the n+ 1 output qubits. A simple calculation
shows that the output state becomes

1√
2

(|0n, 0〉+ |a, 1〉) . (7)

Therefore, with probability 1/2, measurement reveals the
value of a directly in the query register whenever the
result qubit is one. Again the probability of success can
be amplified with O(log(1/δ)) queries.

Note that this is very similar to the Bernstein-Vazirani
algorithm [16] but adapted to use an example oracle
rather than a membership oracle. The only difference
is our treatment of the final qubit. In the Bernstein-
Vazirani algorithm, the result qubit is input as a |−〉 state
and will, with certainty in the noiseless case, end up as
a |1〉. It then does not even need to be measured. For
the example oracle we have considered, we do not have
the luxury of choosing the input, so we simply check that
the result qubit is |1〉, which collapses the output state of
the other n qubits to the result of the Bernstein-Vazirani
oracle.

IV. LEARNING IN THE PRESENCE OF NOISE

Now we consider how the situation changes when we
add noise to the output of the example oracle. We will see
that learning parity from a noisy example oracle seems
to become computationally intractable, while the same

task with a noisy quantum example oracle can be solved
efficiently on a quantum computer. We will first consider
a simple case that is easy to analyze followed by the more
realistic case of depolarizing noise.

A. Classification noise

Just about the most trivial model of noise one can
imagine is this one: flip the result qubit with probability
η by applying the Pauli σx =

(
0 1
1 0

)
operator. Classi-

cally, learning fa from such corrupted results is called
learning parity with noise (LPN). The LPN problem is
equivalent to decoding a random linear code in the pres-
ence of stochastic noise [14]. In the worst case, decod-
ing linear codes is NP-hard [18] and also hard to solve
approximately [19]. The LPN problem setting is rem-
iniscent of the Goldreich-Levin (GL) theorem [17], but
there one is free to choose the queries to an oracle that
lies on the answers to some fixed fraction of the queries,
but must lie consistently on repeated queries. This re-
striction allows efficient solution of the GL problem. On
the other hand, the LPN problem is believed to be com-
putationally intractable [24] and potential cryptographic
applications have been proposed for this problem and its
generalizations [20]. The best known algorithms for LPN
are sub-exponential (but super-polynomial) in n [14, 21].
Problem instances with hundreds of bits may be imprac-
tical to solve [22].

However, the quantum case remains easy. With noise,
the output of the oracle transformed by Hadamards be-
comes the mixture of (7) with probability 1− η and

1√
2

(|0n, 1〉+ |a, 0〉) (8)

with probability η. The probability that the query regis-
ter contains a remains 1/2, independent of η. Thus, after
k queries, the probability of observing a is 1 − (1/2)k.
This suggests the simple strategy of reporting either
a =“whatever nonzero result is seen” or 0n otherwise.
It fails with a probability that is exponentially small in
k and independent of n.

This strategy is strictly suboptimal since it ignores the
information contained in the result qubit. The fact that it
works so well, regardless, suggests that our noise model
is rather unfair to the classical case by degrading the
result qubit, which the quantum algorithm hardly even
needs. Indeed, in the Bernstein-Vazirani algorithm, the
output bit isn’t measured at all. Still, this simple case
serves to illustrate how noise can more severely impact
the classical learner. Even in the more realistic noise
model we consider next, the quantum algorithm survives
the addition of significant amounts of noise because the
quantum queries reveal so very much.
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B. Depolarizing noise

Now we consider the case where the output of the ora-

cle is subject to independent depolarizing noise D
⊗(n+1)
η

where Dη(ρ) = (1 − 2η)ρ + 2ηI/2 and η < 1/2 is a con-
stant known noise rate. This noise process is an idealiza-
tion of realistic independent noise and corrupts the ideal
output of the oracle with probability proportional to η.

Classically, in the presence of this noise, we obtain ex-
amples (x⊕ e1:n, fa(x)⊕ en+1) where x is uniformly ran-
dom over {0, 1}n and each bit of the noise (e1:n, en+1) is 1
with probability η. Here e1:n ∈ {0, 1}n and en+1 ∈ {0, 1}.
Since x is uniformly random, x′ = x ⊕ e1:n is uniformly
random as well and

(x⊕ e1:n, fa(x)⊕ en+1) = (x′, fa(x′ ⊕ e1:n)⊕ en+1). (9)

The probability that fa(x′ ⊕ e1:n) 6= fa(x′) depends on
the value of a and is given by

ζa =

n∑
w=1

w∑
k=1,odd

(
|a|
k

)(
n− |a|
w − k

)
ηw(1− η)n−w (10)

where |a| denotes the number of 1’s in a (also called the
Hamming weight). The total probability of error on the
result bit is simply η′ := η(1− ζa)+ ζa(1−η). Therefore,
learning from these examples is the LPN problem with
noise rate η′ ∈ [η, 1− η].

In contrast, coherent manipulation of the noisy output
state of the example oracle allows a quantum learner to
learn fa in a number of queries that is logarithmic in n.
The algorithm is as follows. Make k = O(log n) queries
to the example oracle, and for each query, Hadamard
transform all n+1 noisy output qubits and measure them
to obtain an outcome. Each outcome has the form (m, b)
where m ∈ {0, 1}n is a result string in the query register
and the result bit b is uniformly random. Discard the
outcome if b = 0 and otherwise retain the result string
m. We are left with k′ result strings m1, m2, . . . , mk′ on
which we perform a bit-wise majority vote to obtain an
estimate â of a.

We will now argue that the estimate â obtained from
this protocol is equal to a for appropriately chosen pa-
rameters. Given any constant δ > 0, the algorithm must
find an estimate â such that Pr[â 6= a] < δ. We make
repeated use of a loose form of the Chernoff bound

Pr [|X − ηk| < δηk] > 1−2e−δ
2ηk/3 ≡ 1−Bk(η, δ) (11)

where X is the sum of k independent Bernoulli random
variables with Pr(1) = η and 0 < δ < 1. Clearly we can
query the oracle until we retain a total of k′ result strings.
This takes 2k′ expected queries. By performing, say, 3k′

queries, we are guaranteed via Eq. (11) to retain fewer
than k′ with probability exponentially small in k′. Now,
let Dη

q be the probability distribution over {0, 1}n that
corresponds to the bit string q corrupted by independent
bit-flip noise of rate η. The retained strings are drawn

from the distribution (1 − η)Dη
a + ηDη

0n . Let s be the
random variable giving the unknown number of strings
drawn from Dη

a. These successful queries, which we take
to be m1,m2, . . . ,ms without loss of generality, contain
information about the hidden function. The expected
value of s is µs = (1 − η)k′, and its variation from this
mean is controlled by

Pr [|s− µs| < δ′µs] > 1−Bk′(1− η, δ′). (12)

Our algorithm votes independently on the jth bits of the
strings for each j = 1, 2, . . . , n. Let Mj be the random
variable corresponding to the sum (m1)j + (m2)j + · · ·+
(mk′)j of the jth bits. The worst case occurs when aj = 1

and we assume this. Define random variables M
(a)
j =

m1 + · · ·+ms and M
(0)
j = Mj −M (a)

j with means µ
(a)
j =

(1 − η)s and µ
(0)
j = η(k′ − s), respectively. The mean

of Mj is µj = µ
(a)
j + µ

(0)
j . Conditioned on obtaining a

typical value of s, the probability of a successful vote on
the jth bit is

γj ≥Pr

[
Mj >

k′

2

]
≥ Pr [|Mj − µj | < δ′µj ] (13)

≥Pr
[
|M (a)

j − µ(a)
j | < δ′µ

(a)
j

]
× (14)

Pr
[
|M (0)

j − µ(0)
j | < δ′µ

(0)
j

]
(15)

>1− 2Bk′(η̃, δ
′). (16)

We have defined η̃ = η(1 − (1 + δ′)(1 − η)) and chosen
δ′ < η/(1− η). The second inequality of (13) follows by
further choosing 1 − δ′ > 1

2 ((1 − 2η)(1 − η) + η)−1. To

find (16), we used η̃ ≤ (1− δ′)(1− η)2. This gives us an
upper bound

Pr [âj 6= aj ] = 1− γj < 2Bk′(η̃, δ
′), (17)

on the probability of the jth bit being computed incor-
rectly, which we can use together with a union bound to
find

Pr [â 6= a] ≤
∑
j

Pr [âj 6= aj ] < 2nBk′(η̃, δ
′). (18)

Choosing

k′ >
3

(δ′)2η̃
log

(
4n

δ

)
(19)

ensures that Pr [â 6= a] < δ. For sufficiently large η, one
can verify easily that (δ′)2η̃ is a polynomial in (1/2− η),
and therefore k′ = O(poly(1/(1/2− η))).

C. More general noise

Finally, we consider the case of general noise on the
output of the example oracle. Because the noise is the
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last thing that happens before the output is measured,
one can think of the situation as the result of a noise-
less oracle as viewed by a noisy measurement. For any
noise processes, the classical learner will instead of get-
ting results x, fa(x) get x′, f ′a(x) where x → x′ and
fa(x) → f ′a(x) depend on the details of the noise. For
any noise where f ′a(x) 6= fa(x′) this results in classifica-
tion noise which is, as we have said above, believed to
be inefficient in the number of queries. Almost any noise
will be of this form unless it is extremely small or con-
sists only of dephasing, which is noise the classical learner
performs by definition in any event.

For the quantum learner, the voting algorithm given
for depolarizing noise will still work for a wide variety of
noise processes. Again, each example results in a string
(m, b). So long as b is 1 with probability scaling no worse
than 1/n, and whenever it is m differs from the correct
result on fewer than n/2 bits, the vote on a logarithmic
number of queries will still give the correct answer with
high probability.

This is a rather operational specification of which types
of noise will remain easy for the quantum learner, and
indeed would need to be analyzed for the actual noise
present in any particular experiment. To see that this
specification includes a wide range of noise processes,
consider any independent noise which can be “twirled”
[23] into a depolarizing channel of η < 1/2. All such
channels are no worse for the quantum learner than the
corresponding depolarizing channel.

V. CONCLUSION

We have defined the problem of quantum learning from
a noisy quantum example oracle and shown that the

class of parity functions can be learned in logarithmic
time from corrupted quantum queries. In contrast, it ap-
pears to be intractable to learn this class in polynomial
time from classical queries to the corresponding classi-
cal noisy oracle [25]. If the oracle is ideal, the problem
is tractable for both quantum and classical learners, so
the noise plays an essential role in the exhibited behav-
ior. For this problem at least, decoherence is an ally of
quantum computation.

The example oracle for parity can be implemented in
practice with O(n) one- and two-qubit gates. The quan-
tum learner then needs only single-qubit gates and mea-
surements, or even just measurements in a nonstandard
basis. This suggests that an experimental demonstration
may be quite practicable. The independent depolarizing
noise model we use is an idealization of realistic decoher-
ence. Although a more detailed study of actual experi-
mental noise would be needed, it should be possible to
demonstrate quantum supremacy for learning using sev-
eral hundred noisy qubits, i.e. without the use of quan-
tum error-correction. In the meantime, since a classical
learner requires at least n queries in the noiseless case
while the quantum learner needs only O(log n) queries
with noise, a quantum advantage for query-complexity,
while small, could be shown experimentally in existing
systems.
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