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We study the dynamics and the resulting state after refaxati a quasi-disordered integrable lattice system
after a sudden quench. Specifically, we consider hard-cagserts in an isolated one-dimensional geometry
in the presence of a quasi-periodic potential whose stheisgabruptly changed to take the system out of
equilibrium. In the delocalized regime, we find that the xatéon dynamics of one-body observables, such
as the density, the momentum distribution function, andot®ipation of the natural orbitals, are, to a good
approximation, power law. In that regime, we also show thseovables after relaxation can be described by
the generalized Gibbs ensemble, while such a descriptitnféa the momentum distribution and the natural
orbital occupations in the presence of localization. Atdhigcal point, the relaxation dynamics is found to be
slower than in the delocalized phase.

PACS numbers: 05.70.Ln, 72.15.Rn, 02.30.1k, 05.60.G@Xth

I. INTRODUCTION integrable quantum systems close to an integrable poift [36
In relation to current ultracold gases experiments (and
to low-dimensional mesoscopic devices), one question that

The nonequilibrium dynamics of isolated integrable quany,ee s to he addressed is the fate of the GGE description when

tum systems is constrained by a large number of conserveghq|ational invariance is absent in the system. Numkrica
quantities, which generally preclude relaxation to thérmacgeyations for hard-core bosons in a box [1-3] and in the
equilibrium [1-23]. This may affect current experimentatth  resence of a harmonic confining potential (relevant tooapti
are realized in one-dimensional (1D) and quasi-1D geomep,ice setups) [2, 17], have shown that the GGE indeed de-
tries close to integrable points [24] and future technalai  gqripes observables after relaxation. However, a recadyst

devices. As such, this phenomenon cannot be considered g 3 enches in the quantum Ising chain has put forward the
purely academic anymore. Advances in controlling and mag,tion that “as soon as the translational invariance is émok

nipulating highly isolated quantum gases in low c.iimens;ionsthe GGE fails to apply” [37]. This was supported by calcula-
and at very low temperatures, has made it possible to study,ns of equal-time correlations after a quench in the prese

in great detail the relaxation dynamics following an abruptyt gisorder. Since the general statement made in Ref. [37] is
change of some of the system’s parameters [25, 26], S0 th@{ contradiction with previous results [1-3, 17], spegiatith

questions related to the lack of thermalization can nowldso ,5se in the presence of a confining potential [2, 17], here we

addressed experimentally. For example, in Ref. [25], it Wageyjst the question of whether the GGE is valid in the absenc
experimentally shown that the relaxation dynamics of oneys transiational invariance.

dimensional atomic Bose gases do not necessarily lead to a0ne important difference between the systems studied in

thermal momentum distribution of the atoms. Ref. [37] and those studied in Refs. [1-3] is the inclusion of
Soon after the experimental finding in Ref. [25], it was disorder in the former. Even in the presence of interactions
shown in Ref. [1] that expectation values of few-body ob-disorder can lead to localization [38—41], and, in noninte-
servables in isolated integrable systems after relaxatorbe  grable systems, localization can lead to lack of thermadina
predicted by generalized ensembles (GGEs). GGEs are coafter relaxation following a quantum quench [41, 42]. The la
structed by maximizing the entropy [27, 28], while satigfyi  ter can be understood to follow from the failure of eigerestat
constraints imposed by the constants of motion that make thidermalization in the localized regime [41]. It is then matu
system integrable. Interestingly, the mechanism thatsiéad to expectthat, in integrable systems, localization, arichao-
thermalization in non-integrable systems, namely, eigdéas essarily the breaking of translational symmetry, may |eesal t
thermalization [29-32], can be generalized to the intelgrab failure of the GGE. This would follow from a failure of the
case in the sense that most eigenstates that are not ondy clogeneralized eigenstate thermalization [3].
in energy but also in their distribution of conserved quanti In order to separate the effects of breaking translational
ties share the same expectation values of few-body obsergymmetry and localization in an integrable system, we study
ables [3]. This allows one to understand why GGE workshard-core bosons in an incommensurate superlattice. This
The validity of GGE description after relaxation has beenmodel exhibits a transition between an extended and a lo-
tested in many different integrable quantum models [1-23]¢alized phase at a finite strength of the superlattice pialent
and has been argued to be adequate for predicting prethdg#3], and is to be contrasted with the case of uniform random
malized expectation values of observables [33—-35] in nondisorder where localization occurs for any nonzero disorde



strength [24]. We show that in the extended phase, the GGEansformation [47]. The resulting Hamiltonian maintaihe
provides a correct description of one-body observables aft form in Eq. (1) but with the hard-core operators replaced by
relaxation, despite the lack of translational invariar@a.the  fermionic ones. It then follows that the spectrum, as well as
other hand, in the localized phase, the GGE is found to fdil. Athermodynamic and density related properties, are the same
the critical point, a slower relaxation dynamics is seenrs p for hard-core bosons and non-interacting spinless fersaion
clude the observation of stationary values of the obseegabl The Aubry-André model [43] is known to undergo a local-
for the largest system sizes. However, as long as the statiofization transition at a criticalc = 2t. ForA < A, all single-

ary value is reached, the GGE provides a good description gdarticle states are extended, i.e., Bloch-like states. vAbo
observables after relaxation at the critical point. the critical point, single-particle states are expondigtia-

The exposition is organized as follows. In the next sec<alized with localization lengt§ = In(A)~! [43]. Because of
tion (Sec. 1), we introduce the model and observables to béhe mapping above, the same holds true for hard-core bosons.
studied in the remainder of the paper. We also briefly discus$his implies that the ground state of the latter undergoes a
the computational approach utilized in our study, as well asuperfluid-insulating transition a& = 2t is crossed. In the
the ensembles that are used to compare with the results aftiercalized phase, the ground state is a Bose glass [24].
relaxation. In Sec. lll, we study the relaxation dynamids fo  In connection to optical lattice experiments, such as the
lowing a sudden quench in the different regimes of the modelones carried out in Refs. [25, 26], we are interested in study
Section |V is devoted to the comparison of observables afteing two different one-body observables. The on-site dgnsit
relaxation with the predictions of statistical ensembdssyell  n; = (fy;), and the momentum distribution functiom. my is
as a finite size scaling analysis that allows us to gain irtsighthe diagonal part of the Fourier transform of the one-plartic
on the behavior in the thermodynamic limit. We also makedensity matrixpi; = <Bi’ff3j>,
contact with the results in Ref. [37] by studying the behavio

of off-diagonal one-particle correlations. The conclusiare 1L
then presented in Sec. V. m==y di=1) g;. 2)
i,]=0
Il. MODEL, OBSERVABLES, AND ENSEMBLES Additional information on the coherence properties of & s

tem can be gained through the study of the natural orbitals
@“ and their occupationg,, defined through the eigenvalue

Our study is performed within the Aubry-André model [43] .
£quation

for hard-core bosons in a one-dimensional lattice with ope

boundary conditions. The Hamiltonian reads
Y > PG =nag’. ®3)
]

L-1 L
A At _ N

: tJZl (bJ leJrH'C') i jZlCOS(ZﬂO'j +o)n;, @) In homogeneous periodic systems, the natural orbitals are
plane waves and their occupations coincide with the momen-
where the operatdi (b,) creates (annihilates) a hard-core bo- tum distribution function, san andng give the same infor-

- P T . . mation about the system. However, once translational invar
son at S'tfaj’ a”‘ﬂ”i - bJ' bi is the on-site occupation number ance is broken these two quantities become different. Out
operator.bj andb}L obey the usual bosonic commutation rela- of equilibrium, they can even give apparently inconsistent
tions, i.e.,[Bi ’ E,T] = &, but satisfy a constrairﬁf —pf?=0, sults. For example, during the expansion of a hard-corerboso
which forbids multiple occupancy of the lattice sites. Toph  gas its momentum distribution function becomes identieal t
ping parameter is denoted bywe sett = 1, A= 1 throughout  that of noninteracting fermions, which may be taken as an in-
this work),L is the number of sites, and we only consider sys-dication that the system lacks coherence [48]. However, the
tems in which the number of particledlYis N = L/2 (half occupation of the natural orbitals is very different frora tine
filling). By selectingo to be an irrational number, we gener- 0f fermions; many orbitals remain highly populated, whieh r
ate a quasiperiodic potential whose strength is contrdiied Vveals the bosonic character of the out-of-equilibrium g [
the parametek. In our study, we choose to be the inverse In addition, in higher dimensional interacting systemshé
golden ratio,g = (v/5— 1)/2, a choice motivated by the fact occupation of the highest occupied natural orbital scaiés w
that the golden mean is considered to be the most irrationdhe total number of particles, then one can say that thersyste
number [44].¢ allows to shift the phase of the potential, and exhibits Bose-Einstein condensation [49, 50].
will be used later to average over different realizationstin In equilibrium, the properties of hard-core bosons, madiele
finite systems. For most of our work, we get= 0. by Eq. (1), have been studied in detail in the ground state [51

Despite the quadratic form of Eq. (1), it cannot be di-52]and at finite temperature [53]. Here, our goal is to examin
rectly diagonalized because of the on-site constraintsider the dynamics after the system is taken out of equilibrium by a
ding multiple occupancy of the lattice sites. This can, how-sudden change of (A, — Ag). The initial statg¥;) is taken
ever, be circumvented by mapping the 1D hard-core bosotp be the ground state ¢, [Eq. (1) with A = A/] and the
Hamiltonian onto a spin-1/2 chain via the Holstein-Primfako evolution is studied undédr [Eq. (1) withA = Ag]
transformation [45], and then mapping the spin-1/2 chaton on o
noninteracting spinless fermions [46] via the Jordan-Wign |W(r)) = e HrT|Y)), (4)
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To study the time evolution of the observables introducechard-core bosons, where the conserved quantities are taken
above, we follow a computational method based on the Bosée be the projection operators to the single-particle estprs
Fermi mapping and the use of properties of Slater determief the fermionic Hamiltonian to which Eq. (1) can be mapped,
nants. This method has been explained in detail in Ref. [54]the Lagrange multipliers can be written as [1]
so we do not reproduce it here. It allows one to calculate .
each matrix elemenp;; (at any given timer) in terms of Am=In (1— <LPA|||m|LP|>) _ 9)
the determinant of afN + 1) x (N + 1) matrix, which results (Wi [Im|W))
from the product of two matrices with sizéd + 1) x L and )

L x (N+1). The computation time of the entire one-particle In order to calculate the expectation value of the one-
density matrix essentially scales B&(N -+ 1)3 (the matrix particle dianAS|ty matrix in the grand—canonltA:al ensemble,
multiplication needs not to be done for every entry), whichpG= =Tr b?bjﬁGE} ,and in the GGEpGCE = Tr [binijGGE}
allows us to efficiently study the dynamics of systems of up tonote that the GGE is also grand-canonical), we use the ap-
1000 lattice sites. _ proach introduced in Ref. [55]. The grand-canonical calcu-

We then contrast the time-averaged results for the obseryations, similarly to the ones carried out for studying the d
ables after relaxation with the predictions of statistioag- namics' use the Bose-Fermi mapp|ng and properties of Slater
chanics. While the most relevant traditional ensemble tQjeterminants. The computation time of the entire one-garti
compare with would be the microcanonical one (because thgensity matrix in this case scaleslas[55].
time evolving system is isolated), we instead use the grand-
canonical ensemble (GE). This is because calculationsein th
former scale exponentially with system size, while, in tate | 1. TIMEEVOLUTION
ter, they scale power law. Within the GE, we can study very

large lattices, in which we expect a good agreement between 14 rohe the relaxation dynamics after the quench, we cal-
the predictions from different statistical ensembles [SH}e . |ate the normalized differend®(1) (whereO stands fon,

density matrix in the GE reads m, n) between the expectation value of observables at differ-
1 Ak ent times and their long-time avera@é”. 50(1) is defined
OGE = —— — as
Pce Zor exp( T ) ; (5)
| " 5, [0y(-0
wherekg is the Boltzmann constanh is the total number 30(1) = - (10)
operator, and g is the partition function ;0
H—uN [Note thatj is a dummy variable that stands fo(in n;), k
Zge=Tr [exp(— kT ﬂ (6)  (in my), anda (in ng)]. If observables relax to stationary

values,d00(1) will fluctuate about a time-independent value.

In order to compare the grand-canonica| predictions for thghls Value, as well as the amplitude of the time fluctuations
observables to those obtained following the quantum dynamabout it, are expected to be finite for finite systems but shoul
ics, T and it need to be chosen so that/dgeHr] = E and  vanish in the thermodynamic limit. We note tt@f-l Yis taken
Tr[pceN] = N, whereE = (W||Hg|¥,) is the energy of the to be anaverage over a variable size time interval that gunta
time evo|ving System after the quench' which is conserved. the |0ngest times that we have simulated. In the event tleat th
In integrable hard-core bosons systems, in the absence 8pservable has not relaxed by thé@(7) will make it evident
disorder or quasi-disorder, the grand-canonical [1-3]raird ~ @s it will not become stationary.
crocanonical [3] descriptions have been shown to fail to pre  In Fig. 1, we show results fa¥O(7) in a set of quenches in
dict the outcome of the relaxation dynamics for few-body ob-which the initial state is the ground state of Eq. (1) with=0
servables. Instead, the GGE has been proposed to be the adiee-, & superfluid state) ang is below Ar = 1), at Ar = 2),

quate ensemble to deal with this problem [1]. The GGE denand aboveAr = 3,4) the localization transition. Results are
sity matrix can be written as presented for three different system sizes=(10, 100, and

1000, from top to bottom in each panel). In Figs. 1(a)-1(c),
A 1 N one can see that all three observables in the quench terminat
PeGE = ?GEexp<— %’\mlm) ’ ™ ing in the extended phase exhibit a clear relaxation dynsmic
in which 0O(1) decreases as time passes, and then fluctuates
Wheref\m are the conserved quantitiéﬁ,’I their Corresponding about a finite time-independent value. Both, the finite time-
Lagrange multipliers, andgge is the partition function independent value and the amplitude of the fluctuations, are
seen to decrease with increasing system size.
N The quench towards the critical poi« = 2) [Figs. 1(d)—
Zoge=Tr {exp<— %)‘mlmﬂ : (8) 1(f)] exhibits a different dynamics. As the system size in-
creases beyond 100 sites, the three observables considered
The Lagrange multipliers need to be selected so that the eXxiere do not reach a clear stationary value during the times
pectation values of the conserved quantities in the GGEhare t studied (up tor = 10° for nj and T = 5.37 x 10" for m, and
same as in the initial state, i.e.,[d&celm] = (Wi |Im|W1). For  ng). This can be understood as the critical point is known to
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FIG. 1: (Color online) Relaxation dynamics @f, m, andng as they approach the long-time average in a quénch 0 — A = 1 (a)—(c),
A =0—= A =2 (d)—(f), Al =0 — Ag = 3 (9)—(i), andA; = 0 — Ag =4 (j)—(I), for systems with 10, 100, and 1000 lattice sitesitf top
to bottom in each panel). The time averages are computedlag$o sincen; is computationally less expensive thap and g, for that
observable we simulated longer times and averaged over 8608 withr € [1057 106] for all lattice sizes. Fom, andnq, we averaged over
900 steps withr € [10*,10°] for L = 10 andL = 100, and over 437 steps for= 1000 witht € [10*,5.37x 10%] (in the plots,Tmax= 5.37x 10%).

be very special. The single particle spectrum becomes a Cawone observed in the quenéhh = 0 — Ap = 1, namely, the

tor set (the bands acquire zero measure), and the gaps fostationary values odm and dn (and the fluctuations about

a devil’s staircase [56]. Such a peculiar spectrum seems tithem) decrease with increasing system size.on the other

render dephasing ineffective in these systems. Our findingand, exhibits a different behavior. Because of localirati

implies that, at the critical point, stationary values of thb-  in real spacedn becomes lattice size independent, i.e., it

servables may be more difficult to observe experimentally. remains finite in the thermodynamic limit. In that case, the
only effect that increasing has is to reduce the amplitude of

Finally, the quench towards the localized regimethe time fluctuations ofn about the stationary value.

[Figs. 1(g)-1(i) forAr = 3 and Figs. 1(j)-1(l) forAg = 4]

does lead to stationary values fiog, andn,. Note thatm, We have also studied quenches starting from different ini-

and ny exhibit dynamics that are qualitative similar to the tial states that are eigenstates of Eq. (1), and even from the
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FIG. 2: (Color online) Same as Fig. 1 but for quenches figra- 8, i.e., from deep inside the Bose-glass phase.

ground of commensurate superlattices such as the ones stud(0) is already smaller in quenches starting in the Bose-glass
ied in Refs. [2, 18, 21], finding a qualitatively similar dy- phase than in those starting in the superfluid phase.

namics to the one depicted in Fig. 1. As an example of a
different initial state, in Fig. 2, we report results in whic
the quenches start from the ground state of Hamiltonian (1)

L - Approach to the stationary values
deep inside the Bose-glass phaae= 8). Figure 2 shows

that the dynamics is indeed very similar to the one reported
in Fig. 1. The only apparent difference is that for quenches
within the Bose-glass phas# (=8 -+ Ap =3 andA; =8 —
Ag = 4), the stationary value odn is smaller than in the
guenches from the superfluid phase to the Bose-glass pha
(Ay =0— A =3 andA; =0 — Ag = 4). For the former, we
find 6n3(w) ~ 0.06 anddn®4(w) ~ 0.04 while for the lat-
ter 5n%73(0) &~ 6n%74(e0) ~ 0.15. This is understandable as

In a recent numerical study of the relaxation dynamics of a
disordered nonintegrable fermionic system with shorgean
interactions and random long-range hopping, it was found
t, in the extended phase, observables exhibit a power-la
approach to their thermal expectation values [41]. Power-I
like relaxation dynamics was also seen in recent opticatéat
experiments with a clean system in a one-dimensional geom-
etry [26]. These results are to be contrasted with the expo-



Since we are dealing with finite lattice sizes with open
boundary conditions, we have also studied the effect theat av
aging over different phases[see Eq. (1)] has on our results.
A typical outcome of such an average is depicted in Fig. 3(a),
for 1000 different values of distributed uniformly in0, 27].

The average over different phases can be seen to reduce time
fluctuations after relaxation, but leaves the results ferap-
proach to the stationary value almost unaffected.

Another important question to be answered, which is of
special interest to current experiments with ultracoldegas
A=Z0 o 1 is how long it takes for observables to reach the stationary

: : : values. Given the strong indications found above that the re
1 10 100 1000 10000 |axation dynamics is power law, the times at which statignar
(b) phase $=0 —— values are attained will be determined by hém(), dm(eo)
0.0044+0.022¢ 00067 ——— anddn () (here, ” should be understood as long-time af-
ter relaxation) scale with system size. In Fig. 4, we show

phasé =0 —
phase average ———
0.221°7°
0.014+0.16e 012" ———

0.1

om(T)

0.01

0.1

om(T)

0.01

0.001
1

FIG. 3: (Color online) (apmy vs T for ¢ =0, as well as after averag-
ing over 1000 random values ¢f (uniformly distributed in[0, 271),

in systems with 100 lattice sites. The fits to power-law anploex
nential behavior were done over the intervat [1,40] (a vertical 10°
line markst = 40), which contains 1200 data points. @)y vs T -
for ¢ =0 in a system with 1000 lattice sites. The fits to power-law 102 ..
and exponential behavior were done over the intenval[1,600 (a T
vertical line markst = 600), which contains 230 data points. ‘9)’

2 [A=0-2 A=8 .2

nential approach expected in generic nonintegrable spstem 143

Since both studies [26, 41] were limited to small latticeesiz

and no extensive scaling analysis could be performed, dtis n __—

clear how these findings are affected by finite size effects. & ]
The dynamics depicted in Figs. 1 and 2 for three systen% 102 T

sizes, which are a decade away from each other, provide a aam”E:; T \

clearer picture of the role of finite size effects. We indegd fi

10t

R . o . 3 A=0-4 (e —— A=8-14
indications of power-law relaxation, as it is apparent ia th 10

L . . 10 100 100010 100 1000
plots that the time interval over which a power-law like beha L L

ior is seen increases with system size. We explicitly shasv th
in Fig. 3, where we compare the relaxation process for sys-
temsgwnh 100 and 1000 Igtnce sites. In the foEmer [Fig. B(a3)1 FIG. 4: ¥ (Color online) Finite size scaling d@in(<), om(e) and

; . or the quenches studied in Figs. 1 and 2. The dashed
t_)oth, power-law and expon_enual decay provide a reasonab‘éﬁ,]es are power-law fits leading tn(co) 0 L 049, sm(eo) [ L 052
fit to the data. Inthe latter [Fig. 3(b)], where power-lawbeh g 5,7( ) O L0951 in (a), dn(e) O L0, 5m(m) 0 1L-952 and
ior is apparent for about three decades, a fit to an expomentign (w) 0 L-052 in (b), dn(eo) 0 L0225 in (c), on(eo) O L-026
decay is clearly inconsistent with the data. Hence, ourt®su in (d), dn(e) O L=99% dm(w) O L=043 and 6n(e0) O L=949 in
provide another example of a system in which, whenever rege), on(e) O L=%9%, dm(c0) O L=%51 and 31 () O L=%48 in (f),
laxation takes place, the relaxation dynamics is powerTaw. on(e:) [ L0, sm( @) 0L 041 and6n 0L%4%in (g), dn(e0) O
what extend power-law like relaxation is generic to the dy-L° dm(eo) OL-9%0anddn(eo) 0L~ 04 in (h). The power-law fits
namics of isolated quantum systems, specially nonintégrabWere done using the data for systems between 100 and 100 latt
ones, is a topic that deserves further attention. sites (eleven data points).



the scaling of those quantities in the quenches analyzed in IV. DESCRIPTION AFTER RELAXATION
Figs. 1 and 2. Figures 1(a), 1(b), and 1(e)-1(f) show that,
away from the critical point, the scaling 6fm(e) anddn (w)

is close to /L, and a similar scaling is seen fén() in After discussing the relaxation dynamics, we focus on the

quenches to the extended phase [Figs. 1(a) and 1(b)]. Suﬂ@scr.iption of the observables after relaxation. In generi
a scaling has been proven to provide a bound for the normafnoN-intégrable) quantum systems, one expects the dynam-

ized time variance of observables that are quadratic in Fern{CS {0 lead to thermalization, namely, to expectation value

operators in noninteracting fermion models [57], but we fingof observables that are equal to those of a system in thermal

it to be also applicable to more general observables in inteSuilibrium. Because of thermodynamic universality, iisis

grable systems. As discussed before, in quenches to the |83<pecteq_tolbe true whenever the isolated system and its ther
calized regimegn(eo) becomes independent of system size. M@l equilibrium counterpart share the same mean energy and
Also, the slow relaxation dynamics of andn at the critical number of particles [29-32], independently of the initiaite

point precludes the observation of a clear scalingdio( ) in the former.

andon (o) [Figs. 1(c) and 1(d)], while the scaling 6f() is In Fig. 5, we show results fam, m,, andn, for quenches
close to YLY/4. The scaling oBn() at the critical pointand ~ from initial states withA; = 0, andAr = 1 and 4. For all
in the localized regime violate the bound proven in Ref. [57] quantities, we report their values in the initial state, lthey-

A power-law approach odn(7), dm(t) anddn(t) to the  time averages, and within the GE and the GGE. The plots for
stationary values, together with a power-law scalingra(feo), the density in the initial state [Figs. 5(a) and 5(d)] make ev
om(e) anddn () with system size, implies that the time at ident that, despite the presence of open boundary consljtion
which stationary values are attained increases as a power laat T = 0 the density is constant throughout the system. This
with system size. This means that measuring densities and because of the particle-hole symmetry of the model. After
momentum distribution functions in experiments is advantathe quench, this is not true anymore and the density becomes
geous with respect to directly measuring two-point coti@a.  time dependent and inhomogeneous. Remarkably, the time-
functions. After relaxation, the values of the latter haeem averaged result for the density after relaxation and the pre
shown to be exponentially small with the distance between thdictions of the GGE are almost indistinguishable from each
points [2, 23] and, as such, the time it takes for those carrel other forAg = 1 in Fig. 5(a) andAr = 4 in Fig. 5(d). The
tions to relax to the stationary values increases expaalgnti predictions of the GE are different from the outcome of the
with the distance between the points [23]. relaxation dynamics in both quenches.

Initial —-—-
Time Average
GGE ----
< GE -----
::.'g_ .
=~ ‘L—"‘-.
0 0 0 t— ]
1 2 3 4 5 6 7 8 9 10 -TC -T72 0 T2 m 0 200 400 600 800 1000
i k a

FIG. 5: (Color online) Density in the first 10 sites [(a),(d@jomentum distribution function [(b),(e)], and naturabital occupations [(c),(f)]
for quenches in which the initial state is the superfluid gbstate of a system withy = 0 while A = 1 [(a)—(c)], Ar = 4 [(d)—(f)], and for

L = 1000. We present results for the observables in the intti#sthe long-time average (calculated betweenl10P to T = 10° for n; (9000
steps), and between= 10* and1 = 5.37 x 10* (437 steps) fomy andny, see the caption of Fig. 1), as well as within the GE and the GGE
Note that, excepdn(e) for Ap = 4, dn(e), dm(0) anddn (o) are very small fol. = 1000 (see Fig. 4). In addition, we have checked that all
time averages are well converged.
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FIG. 6: (Color online) Same as Fig. 5 but for quenches figra- 8, i.e., from deep inside the Bose-glass phase.

Two other identifying properties of the initial state, whic the bosons in this many-body system can be seen as single par-
signal the existence of off-diagonal quasi-long rangeesorr ticles localized within a few sites. This picture is confine
lations, are the presence of a sharp peakminat k =0 by the form of the natural orbital wave functions (not shown)
[Figs. 5(b) and 5(e)] and iny ata = 0 [Figs. 5(c) and 5(f)]. After the relaxation dynamics following the quencii¢s=
The quenches can be seen to lead to a dramatic decrease8fs Ar = 1 andA; = 8 — Ag = 4, one can infer from Fig. 6
the height of those peaks after relaxation, which is simidar [panels (b), (c), (e), and ()] that one-particle correlas are
the effect of finite temperature in equilibrium systems [55] enhanced from the ones in the initial state. This followshas t
For mg andng, a stark contrast can be observed between théeight of the zero momentum occupations increases, the zero
results obtained for the quengh=0— Ar =1 and those ob- momentum peaks become narrower, and the occupation of the
tained for the quench; = 0 — Ar = 4. While, in the former, lowest natural orbitals depart from one. This is the veriedif
the time-averaged results and the GGE predictions are almosnt from what happens in the quenciA¢s= 0 — Ag # 0 de-
indistinguishable from each other, the same is not trueifer t picted in Fig. 5, where one-particle correlations are reduc
latter. This suggests that the transition to localizatimypan  Despite of this contrast, we find that the GGE results are al-
important role in the description after relaxation. In dibsi, =~ most indistinguishable from the time-average ones forlall o
the thermal values for both observables in the GE are clearlgervables in quenchés = 8 — Ag = 1, while for quenches
different from the results after relaxation. Al = 8 — Ar = 4 only the density andy are accurately de-

Qualitatively, we have obtained a very similar picture te th Scribed by the GGE. In the latter quench, the GGE fails to
one gained through Fig. 5, for what happens after relaxatiof€Scribe the natural orbital occupations, pointing oncérag
in the extended and localized regimes, for a wide range ofowards the role of localization.
different initial states. Among those, we considered gobun
states and excited states of hard-core boson Hamiltoniens i o .
the form of Eq. (1) but with different local potentials, ind- Scaling with system size
ing period-two superlattices [2, 18, 21]. In Fig. 6, we show
results for the case in which the initial state is the grouates Even more important than the actual differences seen in
of Eq. (1) withA = 8. In contrast to the case with =0,  Figs. 5 and 6 between the long-time averages and the predic-
for A} = 8 the initial state is deep into the Bose-glass phas¢ions of statistical ensembles (GE and GGE) is how those dif-
where the density is inhomogeneous [Figs. 6(a) and 6(d)] anferences scale with increasing system slze-(1000 in those
the system lacks coherence. The latter is reflected by the aligures). One could imagine, for example, that while the dif-
most flat initial momentum distribution [Figs. 6(b) and §(e) ferences between the time averages and the GE are large for
Localization in this regime is revealed by the natural @bit finite systems they may disappear in the thermodynamic.limit
occupations [Figs. 6(c) and 6(f)], which is nearly one fag th Another possibility is that the differences between theetim
first 500 orbitals (there are 500 particles in the systema), i. averages and the GGE are small for the quenches and sys-
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tem sizes studied here but they may not vanish in the thetended, critical, and localized regimes. Different iditates,
modynamic limit, which would invalidate the GGE descrip- on the other hand, lead to qualitatively similar behavior of
tion for thermodynamic systems. Cases in which integrablAOCCE/CE j e Ar is the parameter that determines how the
systems seemed to behave thermally, but failed to exhibit thoutcome of the relaxation dynamics compares to the predic-
required scaling with system size, were recently studied irions of statistical ensembles.
Refs. [18, 21]. In quenches terminating in the extended phase ¥ 1,

In order to study the scaling of the discrepancies betweerigs. 7(a) and 7(b)], one can see that®>CE and An©CE ex-
the time averages and the statistical predictions, we cégnpuhibit a power-law decrease with increasing system size. The
the normalized differenceSO between the long-time average small oscillations ilMm®CE, seen in Fig. 7(b) for the largest
of the observableSf " and the ensemble predictio®S E/CE ~ gystem sizes, are due to the small values of this quantigy Th

depend on the exact time intervals and number of time steps

¥ 07— OJGGE/GE{ used in the time averages. Hence, such oscillations are an ar
NOCCE/CE - (11) tifact of our numerical calculations and are not expectdakto
2;0i present if one takes the infinite time averages used in pusvio

Note thatO stands fom, m, andn, andj is a dummy vari- works [3, 31], which are not available hedam°® andAn °F,

able that stands fdr k, anda, respectively. This quantity is ©" the other hand, exhibit a clear saturation to finite values
defined in the same s'pirita%'D in Eq. (10) ' with increasing system size. From these scalings, we con-

In Fig. 7, we show the scaling afmSGE/GE andan GEE/GE clude that the GGE correctly describgsandn, after relax-
for the quénches studied in Figs. 1 and 2. Apparent differtion, despite the absence of translational invariancettzed

ences can be seen between the scalings Whdies in the ex- presence of disorder. On the contrary, the GE fails to descri
those observables, which makes evident that these systems d

not thermalize in the traditional sense.

10" F—s. Quenches terminating at the critical poindg[ = 2,
Figs. 7(c) and 7(d)], and except for the largest system sizes

5 1072 display a behavior that is qualitatively similar to the osers
£ in quenches to the extended regime. Namely, they exhibit a

3 108 power-law like decrease @fm®CE andAnSCE with increas-

ing system size. However, a tendency towards saturation can
also be seen in the differences for the largest system sizes.
These can be attributed to the failure of the observables to
relax to stationary values for the times considered here [se
Figs. 1 and 2]. Hence, as long as relaxation is achieved, the
GGE provides a good description of observables also at the
critical point. The GE, on the other hand, fails to descrifpe
andngy (as it does in the extended regime).

The quenches to the localized phadge £ 3, Figs. 7(e) and
7(f), andAr = 4, Figs. 7(g) and 7(h)] exhibit a very differ-
ent scaling ofAm®E and An®CE from the one observed in
those to the extended regime and the critical point. One can
see in the corresponding panels in Fig. 7 that Mioe= 3 and
SR AF = 4, AmPCE andAn ©CE are almost constant with increas-

10 As0=3 A=8 3 ing system size, the same way (up to an offset) thraft
10 [ r20_4 ol Lo and AnCE are. This makes evident that the GGE descrip-
[ I tion breaks down in the localized phase, in a similar way that
<1C_ 102 F~- EUUEE B - standard statistical ensembles fail, in general, to desan-
g Nee tegrable systems after relaxation. We should note, however
1073 AA[?]GGE - = R that the GGE predictions are closer to the long-time average
, AMCE ;: ;\ /4“‘” than the ones provided by the GE, as expected given the larger
10 : e ints i i
10 100 100010 100 1000 number of constramt; imposed |r? the former.ensembIeG.E
L L We have also studied the scaling of the differente®

andAnCE for all parameter regimes depicted in Fig. 7. We find
FIG. 7: (Color online) Finite size scaling oAmSGE/GE and  thatAn°E behaves similarly tdm®E andAn®F, i.e., it satu-
AnCCE/GE for the quenches studied in Figs. 1 and 2. The dashesates to finite values with increasing system size. On the con
lines in (a)—(e) are power-law fits leading #on®CE [ L-099 and  trary, An®CE exhibits a qualitatively different behavior from
AnCCE O L-9% in (a), andAmCCE O L-0% andAnCCEOL-078  AMGGE andAnCCE. Independently oA, we find thatAnGCE
in (b). Up to 100 sites, the time average was taken over 9Qisste s very small and almost size independent. This is partitula
with T € [10%, 10°). For all other system sizes, the time average Wasinteresting because is a property that is shared by hard-core
taken over 437 steps withe [10%,5.37x 10%). bosons and noninteracting fermions. Given the very small va



10t
T~ A=0-14% b 4
[ |
10 b
@) ()
5 10° N
Tl S S Vo
A=8.1
10 F———————rf e eSS SRS
2 C
10 © (d
3 ,—/\/\/w
E 10 L~
104 b i . /\\\_///;_,__,J’\
10° L
. A=04] | ST =844
10 : :
10 100 100010 100 1000
L L

FIG. 8: (Color online) Scaling aAn®GE and AnCE with increasing
system size. Results f@n®CE are reported for time averages cal-
culated using different numbers of time steps. Since tHerdifices

10
One-particlecorrelations

The three observables we have studied throughout this work
provide complementary information about one-particleeor
lations, some of which are currently accessible in ultrdcol
gases experiments;(@andmy). In order to conclude our study,
and to make contact with the discussion in Ref. [37], we
also directly analyze the behavior of one-particle cotiete.

Note thatp;j is a complex Hermitian matrix, and this is why
n;, my, andng are all real quantities.

In Fig. 9, we show how the absolute value @f decays
wheni is fixed to be the central site in the lattideL/2) and
j moves towards the boundaries. Results are presented for
two different initial states for quenches towards the edézh
critical, and localized regimes, for different times (adlvas
for the time average), and within the GGE and the GE. The
behavior ofp;j in the initial state (in equilibriunp;j is real)
reflects the nature of the ground state in the extended and lo-
calized phases. In the former, one-particle correlatiahsgoét

AnCCE are very small, the number of time steps used in the averaga power-law decayg(; O 1/+/|i — j|), no matter the value of

determine the result. The continuous (red) line shows arageeover

99 steps withr € [9.9 x 10°, 10°], the dashed (green) line an average

over 990 steps with € [9 x 10°,10°], and the dotted (blue) line an
average over 9900 steps withe [10%, 10°]. The dashed-dotted (red)
line showsAnCE for an average over 9900 steps.

ues we obtain foAn®CE, this quantity is strongly affected by

the width of the time interval used to calculate the time aver
ages as well as by the number of time steps used. Evidence
of this dependence is presented in Fig. 8 for quenches with

Ar =1 andAg =4 (the results for other values #f are qual-
itatively similar).

10 .
From the results reported in Fig. 8, we conclude that the N

GGE provides the correct description for the density distri

A, while in the latter they decay exponentially [52].

The quenches towards the extended phase [Figs. 9(a) and
9(b)] exhibit clear similarities no matter the value gt We
find that: (i)|pij| is very similar, but not the same, for= 100,
T = 1000, and the time average. (ii) The time average and
the GGE results show an excellent agreement with each other.
(iii) pij exhibits a faster, and featureless, exponential decay in

(b) Initial ——-
NN 1=100 -+~
\ 1=1000 - -- -
\. '\ Time Average

GGE -----

10°®

tion after relaxation following a quench both in the exteshde 0
. ; ; 1
and localized regimes. While the former may have been ex-

pected, the latter is somehow surprising in view of the behav - N\

ior of mg and ng in the localized regime (the GGE fails to —
describe the latter two). However, the generalized eiggast )
thermalization discussed in Ref. [3] can help one undedstan 10
why the GGE works in the localized phase when the observ-

able is the density. FoXp > 2, the eigenstates of the Hamil- 10°
tonian are localized within a number of sitéythat depends 10°
on Ag. The conserved quantities are the occupations of those
eigenstates, and those occupations are nothing but added on 10
site occupations withit sites. This implies that eigenstates &

of the Hamiltonian with similar expectation values of th@€o 107
served quantities should also have similar distributidrtbe

on-site occupations. Hence, the generalized eigenstate th 196
malization, which is expected to be valid for, m,, andng

in the extended regime, may also valid ferin the localized

regime. From this, it would then follow that, in the local-

[oF

ized regime, the GGE provides the correct descriptiomfor

FIG. 9: (Color online) Decay of the absolute valugpgffor i = 500

after relaxation. Note that this argument works equallyl wel @ndj > 500 in a system with = 1000. The time average was taken

for other integrable disordered systems that exhibit spalce
localization.

over 437 steps with € [10%,5.37x 10%]. The results depicted are the
absolute values after taking those time averaggs1) is complex].
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the GE. This is all consistent with our conclusion that theE5G tials. Our analysis has shown that the approach of obsewabl
provides the adequate description of one-particle obbégsa towards their time-independent values after relaxati@hise
after relaxation, while the GE fails to do so in this regime.  to power law. For the finite system sizes studied, all observ-

Figures 9(c) and 9(d) depict results for quenches to the critables reach their time-independent values within the densi
ical point. In this case, due to the slow relaxation dynamicsered time scales. The sole exception were the quenches to-
discussed before, the values|pf;| at different times differ  wards the critical point, where the dynamics were found to be
from each other and from the time average. The time-averageslower and time-independent values of the observables were
results can be seen to be closest to the GGE prediction and anet reached for the largest lattices. We have argued that, in
clearly distinct from those in the GE. Calculating the tirve a most of the cases analyzed, the times required for the observ
erages for later times (not depicted) do improve the agreéme ables to reach their stationary values increase power ldiv wi
between those averages and the GGE predictions, revealitige system size

a picture similar to the one obtained for quenches to the ex- \we further compared the long-time average of observables
tended phase in Figs. 9(a) and 9(b). with statistical descriptions provided by the GE and the GGE
Results for quenches to the localized phase are presentediihe GE failed to describe all observables after relaxation i
Figs. 9(e) and 9(f). Once agailm;;| at different times differ  the quenches considered, as expected since these syseems ar
from each other and from the time average. The latter is alsghtegrable. The GGE, on the other hand, was found to pro-
different (although quite close for the quenbh=8— Ar = vide a good description of observables after relaxatiomn t
4) to the GGE predictions. This is compatible with our pre-extended phase, and at the critical point, whenever observ-
vious findings that the GGE fails to descritig andnq after  aples became time independent (up to vanishingly small fluc-
relaxation in this regime. Further understanding of theelveh  tyations). The scaling behavior in these two cases suggests
ior seen for these quenches can be gained by analyzing thRat, in the thermodynamic limit, the GGE results are iden-
case in whichAr — o, so that Hamiltonian (1) can be writ- tical to those after relaxation. On the contrary, in the loca
tenasH = 3 ; €jf;, whereg; is the local chemical potential in  jzed regime, we have found that the GGE fails to describe
each site. It then follows that observables that depend on nonlocal correlations (suof as
o t nai(E—E)T andnq) after relaxation, and that this picture does not change
pij (1) = (W(1)[bb;|W(1)) ~ pij (0)€"4 (12) " \ith changing system size. The density, on the other hand,

. . : elas found to be well described by the GGE in all regimes.
which means that if one quenches deep into the localize .
phase,|oij(T)| ~ 0i(0), i.e., correlations present in the ini- From the outcome of this study, as well as from the results

tial state are preserved, similarly to what we see in Fig.9(e N Refs. [1-3, 17], we conclude that localization, and net th
We note that our results in Figs. 9(e) and 9(f) are similar toPré@king of translational symmetry as proposed in Ref.,[37]
the ones reported in Fig. 3 in Ref. [37] for two-point correla €an lead to the breakdown of the GGE description. Our work

tions of the order parameter. However, the contrast betweeSO POses the question of whether modifying the GGE by us-
Figs. 9(e) and 9(f) and Figs. 9(a) and 9(b) make evident thaf'd @ dlf_ferent set o_f conservgd quantities (here we usgd the
the failure of the GGE in disordered systems is a consequen@$cupation of the single particle eigenstates of the nenint
of localization and not of the breaking of translational syea ~ 2cting fermionic system to which hard-core bosons can be
try. Our results also make clear the importance of computingt@PPed), or adding further conserved quantities, wouahall

time averages, for complex quantities sucipgsbefore com- one to describe time averages of observables in the lodalize
paring with the: predictions of the GGE. regime. Recent work on finding optimal sets of conserved

guantities may shed light on these questions [58].

V. SUMMARY
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