The quantum-jump approach to dissipative dynamics in quantum optics

M. B. Plenio and P. L. Knight
Rev. Mod. Phys. 70, 101 – Published 1 January 1998
PDFExport Citation

Abstract

Dissipation, the irreversible loss of energy and coherence, from a microsystem is the result of coupling to a much larger macrosystem (or reservoir) that is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, which results in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation used density matrices to describe an ensemble of microsystems, either in the Schrödinger picture with master equations, or in the Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example, single trapped ions, or cavity-radiation-field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel. These methods, variously described as quantum-jump, Monte Carlo wave function, and quantum-trajectory methods, are the subject of this review article. We discuss their derivation, apply them to a number of current problems in quantum optics, and relate them to ensemble descriptions.

    DOI:https://doi.org/10.1103/RevModPhys.70.101

    ©1998 American Physical Society

    Authors & Affiliations

    M. B. Plenio and P. L. Knight

    • Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 70, Iss. 1 — January - March 1998

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Reviews of Modern Physics

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×