Temperature Dependence of Spin-Transfer-Induced Switching of Nanomagnets

I. N. Krivorotov, N. C. Emley, A. G. F. Garcia, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman
Phys. Rev. Lett. 93, 166603 – Published 15 October 2004

Abstract

We measure the temperature, magnetic-field, and current dependence for the switching of nanomagnets by a spin-polarized current. Depending on current bias, switching can occur between either two static magnetic states or a static state and a current-driven precessional mode. In both cases, the switching is thermally activated and governed by the sample temperature, not a higher effective magnetic temperature. The activation barriers for switching between static states depend linearly on current, with a weaker dependence for dynamic to static switching.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 March 2004

DOI:https://doi.org/10.1103/PhysRevLett.93.166603

©2004 American Physical Society

Authors & Affiliations

I. N. Krivorotov, N. C. Emley, A. G. F. Garcia, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman

  • Cornell University, Ithaca, New York, 14853 USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 93, Iss. 16 — 15 October 2004

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×