• Open Access

Beam-Energy Dependence of Directed Flow of Λ, Λ¯, K±, Ks0, and ϕ in Au+Au Collisions

L. Adamczyk et al. (STAR Collaboration)
Phys. Rev. Lett. 120, 062301 – Published 6 February 2018

Abstract

Rapidity-odd directed-flow measurements at midrapidity are presented for Λ, Λ¯, K±, Ks0, and ϕ at sNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV in Au+Au collisions recorded by the Solenoidal Tracker detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum rule can be a valuable new tool for probing the collision dynamics.

  • Figure
  • Figure
  • Figure
  • Received 24 August 2017

DOI:https://doi.org/10.1103/PhysRevLett.120.062301

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 120, Iss. 6 — 9 February 2018

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×