• Open Access

J/ψ Elliptic Flow in Pb-Pb Collisions at sNN=5.02TeV

S. Acharya et al. (ALICE Collaboration)
Phys. Rev. Lett. 119, 242301 – Published 15 December 2017

Abstract

We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sNN=5.02TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5<y<4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v2 is observed in the transverse momentum range 2<pT<8GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at sNN=2.76TeV in semicentral collisions. At midrapidity, the J/ψv2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low pT the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.

  • Figure
  • Figure
  • Figure
  • Received 27 September 2017

DOI:https://doi.org/10.1103/PhysRevLett.119.242301

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

© 2017 CERN, for the ALICE Collaboration

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 119, Iss. 24 — 15 December 2017

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×