Is γ-Ray Emission from Novae Affected by Interference Effects in the F18(p,α)O15 Reaction?

A. M. Laird, A. Parikh, A. St. J. Murphy, K. Wimmer, A. A. Chen, C. M. Deibel, T. Faestermann, S. P. Fox, B. R. Fulton, R. Hertenberger, D. Irvine, J. José, R. Longland, D. J. Mountford, B. Sambrook, D. Seiler, and H.-F. Wirth
Phys. Rev. Lett. 110, 032502 – Published 15 January 2013

Abstract

The F18(p,α)O15 reaction rate is crucial for constraining model predictions of the γ-ray observable radioisotope F18 produced in novae. The determination of this rate is challenging due to particular features of the level scheme of the compound nucleus, Ne19, which result in interference effects potentially playing a significant role. The dominant uncertainty in this rate arises from interference between Jπ=3/2+ states near the proton threshold (Sp=6.411MeV) and a broad Jπ=3/2+ state at 665 keV above threshold. This unknown interference term results in up to a factor of 40 uncertainty in the astrophysical S-factor at nova temperatures. Here we report a new measurement of states in this energy region using the F19(He3,t)Ne19 reaction. In stark contrast to previous assumptions we find at least 3 resonances between the proton threshold and Ecm=50keV, all with different angular distributions. None of these are consistent with Jπ=3/2+ angular distributions. We find that the main uncertainty now arises from the unknown proton width of the 48 keV resonance, not from possible interference effects. Hydrodynamic nova model calculations performed indicate that this unknown width affects F18 production by at least a factor of two in the model considered.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 October 2012

DOI:https://doi.org/10.1103/PhysRevLett.110.032502

© 2013 American Physical Society

Authors & Affiliations

A. M. Laird1,*, A. Parikh2,3, A. St. J. Murphy4, K. Wimmer5,6, A. A. Chen7, C. M. Deibel8,9, T. Faestermann10,11, S. P. Fox1, B. R. Fulton1, R. Hertenberger11,12, D. Irvine7, J. José2,3, R. Longland2,3, D. J. Mountford4, B. Sambrook7, D. Seiler10,11, and H.-F. Wirth11,12

  • 1Department of Physics, University of York, York YO10 5DD, United Kingdom
  • 2Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, c/ Comte d’Urgell 187, E-08036 Barcelona, Spain
  • 3Institut d’Estudis Espacials de Catalunya, c/Gran Capita 2-4, Ed. Nexus-201, E-08034 Barcelona, Spain
  • 4SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
  • 5National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
  • 6Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
  • 7Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
  • 8Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
  • 9Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
  • 10Physik Department E12, Technische Universität München, DE-85748 Garching, Germany
  • 11Maier-Leibnitz-Laboratorium der Münchner Universitäten (MLL), DE-85748 Garching, Germany
  • 12Fakultät für Physik, Ludwig-Maximilians-Universität München, DE-85748 Garching, Germany

  • *Corresponding author. alison.laird@york.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 110, Iss. 3 — 18 January 2013

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×