Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns

N. D. Loh, M. J. Bogan, V. Elser, A. Barty, S. Boutet, S. Bajt, J. Hajdu, T. Ekeberg, F. R. N. C. Maia, J. Schulz, M. M. Seibert, B. Iwan, N. Timneanu, S. Marchesini, I. Schlichting, R. L. Shoeman, L. Lomb, M. Frank, M. Liang, and H. N. Chapman
Phys. Rev. Lett. 104, 225501 – Published 2 June 2010; Erratum Phys. Rev. Lett. 104, 239902 (2010)

Abstract

We reconstructed the 3D Fourier intensity distribution of monodisperse prolate nanoparticles using single-shot 2D coherent diffraction patterns collected at DESY’s FLASH facility when a bright, coherent, ultrafast x-ray pulse intercepted individual particles of random, unmeasured orientations. This first experimental demonstration of cryptotomography extended the expansion-maximization-compression framework to accommodate unmeasured fluctuations in photon fluence and loss of data due to saturation or background scatter. This work is an important step towards realizing single-shot diffraction imaging of single biomolecules.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 March 2010
  • Corrected 9 June 2010

DOI:https://doi.org/10.1103/PhysRevLett.104.225501

©2010 American Physical Society

Corrections

9 June 2010

Erratum

Publisher’s Note: Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns [Phys. Rev. Lett. 104, 225501 (2010)]

N. D. Loh, M. J. Bogan, V. Elser, A. Barty, S. Boutet, S. Bajt, J. Hajdu, T. Ekeberg, F. R. N. C. Maia, J. Schulz, M. M. Seibert, B. Iwan, N. Timneanu, S. Marchesini, I. Schlichting, R. L. Shoeman, L. Lomb, M. Frank, M. Liang, and H. N. Chapman
Phys. Rev. Lett. 104, 239902 (2010)

Authors & Affiliations

N. D. Loh1,11, M. J. Bogan2, V. Elser1, A. Barty3, S. Boutet2, S. Bajt4, J. Hajdu5, T. Ekeberg5, F. R. N. C. Maia5, J. Schulz3, M. M. Seibert5, B. Iwan5, N. Timneanu5, S. Marchesini6, I. Schlichting7,8, R. L. Shoeman7,8, L. Lomb7,8, M. Frank9, M. Liang3, and H. N. Chapman3,10

  • 1Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, New York 14853-2501, USA
  • 2SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  • 3Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
  • 4Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
  • 5Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
  • 6Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
  • 7Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
  • 8Max Planck Advanced Study Group, Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
  • 9Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
  • 10University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
  • 11Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853-2501, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 104, Iss. 22 — 4 June 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×