Observation of Squeezed Light with 10-dB Quantum-Noise Reduction

Henning Vahlbruch, Moritz Mehmet, Simon Chelkowski, Boris Hage, Alexander Franzen, Nico Lastzka, Stefan Goßler, Karsten Danzmann, and Roman Schnabel
Phys. Rev. Lett. 100, 033602 – Published 23 January 2008

Abstract

Squeezing of light’s quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a nonclassical manifestation of light with great potential in high-precision quantum measurements, for example, in the detection of gravitational waves [C. M. Caves, Phys. Rev. D 23, 1693 (1981)]. Equally promising applications have been proposed in quantum communication [H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)]. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of light’s quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10 dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 13 August 2007

DOI:https://doi.org/10.1103/PhysRevLett.100.033602

©2008 American Physical Society

Authors & Affiliations

Henning Vahlbruch, Moritz Mehmet, Simon Chelkowski, Boris Hage, Alexander Franzen, Nico Lastzka, Stefan Goßler, Karsten Danzmann, and Roman Schnabel

  • Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Callinstr. 38, 30167 Hannover, Germany

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 100, Iss. 3 — 25 January 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×