Stability analysis of a hybrid cellular automaton model of cell colony growth

P. Gerlee and A. R. A. Anderson
Phys. Rev. E 75, 051911 – Published 17 May 2007

Abstract

Cell colonies of bacteria, tumor cells, and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on an Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation for the growth of the colony interface. This dispersion relation shows that the stability of the growth depends on how far the nutrient penetrates into the colony. For low nutrient consumption rates the penetration distance is large, which stabilizes the growth, while for high consumption rates the penetration distance is small, which leads to unstable branched growth. When the penetration distance vanishes the dispersion relation is reduced to the one describing Laplacian growth without ultra-violet regularization. The dispersion relation was verified by measuring how the average branch width depends on the consumption rate of the cells and shows good agreement between theory and simulations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 18 November 2006

DOI:https://doi.org/10.1103/PhysRevE.75.051911

©2007 American Physical Society

Authors & Affiliations

P. Gerlee* and A. R. A. Anderson

  • Division of Mathematics, University of Dundee, Dundee DD1 4HN, Scotland

  • *Electronic address: gerlee@maths.dundee.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 75, Iss. 5 — May 2007

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×