Viscous froth lens

T. E. Green, A. Bramley, L. Lue, and P. Grassia
Phys. Rev. E 74, 051403 – Published 13 November 2006

Abstract

Microscale models of foam structure traditionally incorporate a balance between bubble pressures and surface tension forces associated with curvature of bubble films. In particular, models for flowing foam microrheology have assumed this balance is maintained under the action of some externally imposed motion. Recently, however, a dynamic model for foam structure has been proposed, the viscous froth model, which balances the net effect of bubble pressures and surface tension to viscous dissipation forces: this permits the description of fast-flowing foam. This contribution examines the behavior of the viscous froth model when applied to a paradigm problem with a particularly simple geometry: namely, a two-dimensional bubble “lens.” The lens consists of a channel partly filled by a bubble (known as the “lens bubble”) which contacts one channel wall. An additional film (known as the “spanning film”) connects to this bubble spanning the distance from the opposite channel wall. This simple structure can be set in motion and deformed out of equilibrium by applying a pressure across the spanning film: a rich dynamical behavior results. Solutions for the lens structure steadily propagating along the channel can be computed by the viscous froth model. Perturbation solutions are obtained in the limit of a lens structure with weak applied pressures, while numerical solutions are available for higher pressures. These steadily propagating solutions suggest that small lenses move faster than large ones, while both small and large lens bubbles are quite resistant to deformation, at least for weak applied back pressures. As the applied back pressure grows, the structure with the small lens bubble remains relatively stiff, while that with the large lens bubble becomes much more compliant. However, with even further increases in the applied back pressure, a critical pressure appears to exist for which the steady-state structure loses stability and unsteady-state numerical simulations show it breaks up by route of a topological transformation.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
9 More
  • Received 5 May 2006

DOI:https://doi.org/10.1103/PhysRevE.74.051403

©2006 American Physical Society

Authors & Affiliations

T. E. Green, A. Bramley, L. Lue, and P. Grassia*

  • SCEAS, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD, United Kingdom

  • *Electronic address: paul.grassia@manchester.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 74, Iss. 5 — November 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×